Hydrogen Gas Inhalation Treatment for Coronary Artery Lesions in a Kawasaki Disease Mouse Model
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement and Animal Protocol
2.2. LCWE-Induced KD Vasculitis Murine Model
2.3. Hydrogen Gas Inhalation
2.4. Echocardiographic and Z Score
2.5. Measurement of Interleukin-6 Using Enzyme-Linked Immunoassay
2.6. Statistical Analysis
3. Results
3.1. Resolution of Dilatation of CALs in LCWE-Injected Mouse Model Following Treatment with Inhaled Hydrogen Gas
3.2. Plasma Interleukin 6 in the LCWE Murine Model of KD Vasculitis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
KD | Kawasaki disease |
IVIG | intravenous immunoglobulin |
CAL | coronary artery lesions |
IL-6 | interleukin 6 |
LCWE | Lactobacillus casei cell wall extract |
ROS | reactive oxygen species |
LCA | left coronary artery |
References
- Sapountzi, E.; Fidani, L.; Giannopoulos, A.; Galli-Tsinopoulou, A. Association of Genetic Polymorphisms in Kawasaki Disease with the Response to Intravenous Immunoglobulin Therapy. Pediatr Cardiol. 2023, 44, 1–12. [Google Scholar] [CrossRef]
- Rajasekaran, K.; Duraiyarasan, S.; Adefuye, M.; Manjunatha, N.; Ganduri, V. Kawasaki Disease and Coronary Artery Involvement: A Narrative Review. Cureus 2022, 14, e28358. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kosaki, F.; Okawa, S.; Shigematsu, I.; Yanagawa, H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 1974, 54, 271–276. [Google Scholar] [CrossRef]
- Scherler, L.; Haas, N.A.; Tengler, A.; Pattathu, J.; Mandilaras, G.; Jakob, A. Acute phase of Kawasaki disease: A review of national guideline recommendations. Eur. J. Pediatr. 2022, 181, 2563–2573. [Google Scholar] [CrossRef] [PubMed]
- Aquilano, K.; Zhou, B.; Brestoff, J.R.; Lettieri-Barbato, D. Multifaceted mitochondrial quality control in brown adipose tissue. Trends Cell Biol. 2023, 33, 517–529. [Google Scholar] [CrossRef]
- Flores-Romero, H.; Dadsena, S.; Garcia-Saez, A.J. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol. Cell 2023, 83, 843–856. [Google Scholar] [CrossRef]
- Vringer, E.; Tait, S.W.G. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023, 30, 304–312. [Google Scholar] [CrossRef]
- Yin, H.; Feng, Y.; Duan, Y.; Ma, S.; Guo, Z.; Wei, Y. Hydrogen gas alleviates lipopolysaccharide-induced acute lung injury and inflammatory response in mice. J. Inflamm. 2022, 19, 16. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, S.; Du, H.; Hong, Z.; Lv, Y.; Nie, C.; Yang, W.; Gao, Y. Hydrogen Attenuates Myocardial Injury in Rats by Regulating Oxidative Stress and NLRP3 Inflammasome Mediated Pyroptosis. Int. J. Med. Sci. 2021, 18, 3318. [Google Scholar] [CrossRef]
- Wang, C.L.; Wu, Y.T.; Lee, C.J.; Liu, H.C.; Huang, L.T.; Yang, K.D. Decreased nitric oxide production after intravenous immunoglobulin treatment in patients with Kawasaki disease. J. Pediatr. 2002, 141, 560–565. [Google Scholar] [CrossRef]
- Marek-Iannucci, S.; Ozdemir, A.B.; Moreira, D.; Gomez, A.C.; Lane, M.; Porritt, R.A.; Lee, Y.; Shimada, K.; Abe, M.; Stotland, A.; et al. Autophagy-mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. JCI Insight 2021, 6, e151981. [Google Scholar] [CrossRef] [PubMed]
- Shahi, A.; Afzali, S.; Firoozi, Z.; Mohaghegh, P.; Moravej, A.; Hosseinipour, A.; Bahmanyar, M.; Mansoori, Y. Potential roles of NLRP3 inflammasome in the pathogenesis of Kawasaki disease. J. Cell. Physiol. 2023, 238, 513–532. [Google Scholar] [CrossRef]
- Marek-Iannucci, S.; Yildirim, A.D.; Hamid, S.M.; Ozdemir, A.B.; Gomez, A.C.; Kocaturk, B.; Porritt, R.A.; Fishbein, M.C.; Iwawaki, T.; Rivas, M.N.; et al. Targeting IRE1 endoribonuclease activity alleviates cardiovascular lesions in a murine model of Kawasaki disease vasculitis. JCI Insight 2022, 7, e157203. [Google Scholar] [CrossRef]
- Noval Rivas, M.; Arditi, M. Kawasaki disease: Pathophysiology and insights from mouse models. Nat. Rev. Rheumatol. 2020, 16, 391–405. [Google Scholar] [CrossRef]
- Shih, W.L.; Yeh, T.M.; Chen, K.D.; Leu, S.; Kuo, H.C. Positive Echocardiographic Association between Carotid Artery and Coronary Artery Diameter and Z-Score in a Mouse Model of Kawasaki Disease. Diagnostics 2024, 14, 145. [Google Scholar] [CrossRef]
- Lin, I.C.; Suen, J.L.; Huang, S.K.; Huang, S.C.; Huang, H.C.; Kuo, H.C.; Wei, C.C.; Wang, F.S.; Yu, H.R.; Yang, K.D. Dectin-1/Syk signaling is involved in Lactobacillus casei cell wall extract-induced mouse model of Kawasaki disease. Immunobiology 2013, 218, 201–212. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Z.; Zhang, F.; Zhang, Q.; Sun, L.; Lv, H.; Wang, B.; Shen, J.; Zhou, X.; Chen, F.; et al. Intravenous Immunoglobulin Therapy Restores the Quantity and Phenotype of Circulating Dendritic Cells and CD4(+) T Cells in Children With Acute Kawasaki Disease. Front. Immunol. 2022, 13, 802690. [Google Scholar] [CrossRef]
- Chen, K.D.; Huang, Y.H.; Wu, W.S.; Chang, L.S.; Chu, C.L.; Kuo, H.C. Comparable bidirectional neutrophil immune dysregulation between Kawasaki disease and severe COVID-19. Front. Immunol. 2022, 13, 995886. [Google Scholar] [CrossRef]
- Chen, K.D.; Lin, W.C.; Kuo, H.C. Chemical and Biochemical Aspects of Molecular Hydrogen in Treating Kawasaki Disease and COVID-19. Chem. Res. Toxicol. 2021, 34, 952–958. [Google Scholar] [CrossRef]
- Suganuma, E.; Sato, S.; Honda, S.; Nakazawa, A. A novel mouse model of coronary stenosis mimicking Kawasaki disease induced by Lactobacillus casei cell wall extract. Exp. Anim. 2020, 69, 233–241. [Google Scholar] [CrossRef]
- Tsuda, E.; Kamiya, T.; Ono, Y.; Kimura, K.; Kurosaki, K.; Echigo, S. Incidence of stenotic lesions predicted by acute phase changes in coronary arterial diameter during Kawasaki disease. Pediatr. Cardiol. 2005, 26, 73–79. [Google Scholar] [CrossRef]
- Tsuge, M.; Uda, K.; Eitoku, T.; Matsumoto, N.; Yorifuji, T.; Tsukahara, H. Roles of Oxidative Injury and Nitric Oxide System Derangements in Kawasaki Disease Pathogenesis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 15450. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Dong, Q.; Wang, X.; Xia, T.; Fu, Y.; Wang, Q.; Wu, R.; Wu, T. Palmitic Acid, A Critical Metabolite, Aggravates Cellular Senescence Through Reactive Oxygen Species Generation in Kawasaki Disease. Front. Pharmacol. 2022, 13, 809157. [Google Scholar] [CrossRef]
- Hu, J.; Qian, W.; Yu, Z.; Xu, T.; Ju, L.; Hua, Q.; Wang, Y.; Ling, J.J.; Lv, H. Increased Neutrophil Respiratory Burst Predicts the Risk of Coronary Artery Lesion in Kawasaki Disease. Front. Pediatr. 2020, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Peng, Y.; Wu, H.; Huang, Y.; Sheng, K.; Li, C.; Chu, M.; Ji, W.; Guo, X. The protective roles of liraglutide on Kawasaki disease via AMPK/mTOR/NF-kappaB pathway. Int. Immunopharmacol. 2023, 117, 110028. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Lo, M.H.; Hsieh, K.S.; Guo, M.M.; Huang, Y.H. High-Dose Aspirin is Associated with Anemia and Does Not Confer Benefit to Disease Outcomes in Kawasaki Disease. PLoS ONE 2015, 10, e0144603. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Guo, M.M.; Lo, M.H.; Hsieh, K.S.; Huang, Y.H. Effectiveness of intravenous immunoglobulin alone and intravenous immunoglobulin combined with high-dose aspirin in the acute stage of Kawasaki disease: Study protocol for a randomized controlled trial. BMC Pediatr. 2018, 18, 200. [Google Scholar] [CrossRef]
- Kuo, H.C. Hydrogen Gas Inhalation Regressed Coronary Artery Aneurysm in Kawasaki Disease-Case Report and Article Review. Front. Cardiovasc. Med. 2022, 9, 895627. [Google Scholar] [CrossRef]
- Tamura, T.; Suzuki, M.; Homma, K.; Sano, M.; Group, H.I.S. Efficacy of inhaled hydrogen on neurological outcome following brain ischaemia during post-cardiac arrest care (HYBRID II): A multi-centre, randomised, double-blind, placebo-controlled trial. eClinicalMedicine 2023, 58, 101907. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, W.-L.; Yeh, T.-M.; Chen, K.-D.; Leu, S.; Liu, S.-F.; Huang, Y.-H.; Kuo, H.-C. Hydrogen Gas Inhalation Treatment for Coronary Artery Lesions in a Kawasaki Disease Mouse Model. Life 2024, 14, 796. https://doi.org/10.3390/life14070796
Shih W-L, Yeh T-M, Chen K-D, Leu S, Liu S-F, Huang Y-H, Kuo H-C. Hydrogen Gas Inhalation Treatment for Coronary Artery Lesions in a Kawasaki Disease Mouse Model. Life. 2024; 14(7):796. https://doi.org/10.3390/life14070796
Chicago/Turabian StyleShih, Wen-Ling, Tsung-Ming Yeh, Kuang-Den Chen, Steve Leu, Shih-Feng Liu, Ying-Hsien Huang, and Ho-Chang Kuo. 2024. "Hydrogen Gas Inhalation Treatment for Coronary Artery Lesions in a Kawasaki Disease Mouse Model" Life 14, no. 7: 796. https://doi.org/10.3390/life14070796
APA StyleShih, W. -L., Yeh, T. -M., Chen, K. -D., Leu, S., Liu, S. -F., Huang, Y. -H., & Kuo, H. -C. (2024). Hydrogen Gas Inhalation Treatment for Coronary Artery Lesions in a Kawasaki Disease Mouse Model. Life, 14(7), 796. https://doi.org/10.3390/life14070796