The Effect of Obesity on Short- and Long-Term Outcome after Surgical Treatment for Acute Type A Aortic Dissection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Clinical and Operative Details
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics and Presurgical Clinical Presentation
3.2. Operative Details
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Artham, S.M.; Lavie, C.J.; Patel, H.M.; Ventura, H.O. Impact of obesity on the risk of heart failure and its prognosis. J. Cardiometab. Syndr. 2008, 3, 155–161. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef]
- Oreopoulos, A.; Padwal, R.; Kalantar-Zadeh, K.; Fonarow, G.C.; Norris, C.M.; McAlister, F.A. Body mass index and mortality in heart failure: A meta-analysis. Am. Heart J. 2008, 156, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.D.; Litwin, S.E.; Sweeney, G. Cardiac remodeling in obesity. Physiol. Rev. 2008, 88, 389–419. [Google Scholar] [CrossRef]
- Arena, R.; Lavie, C.J. The obesity paradox and outcome in heart failure: Is excess bodyweight truly protective? Future Cardiol. 2010, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Umemoto, T.; ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. Overweight, but not obesity, paradox on mortality following coronary artery bypass grafting. J. Cardiol. 2016, 68, 215–221. [Google Scholar] [CrossRef]
- Valentijn, T.M.; Galal, W.; Tjeertes, E.K.; Hoeks, S.E.; Verhagen, H.J.; Stolker, R.J. The obesity paradox in the surgical population. Surgeon 2013, 11, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Li, S.; Liao, Y.; Zhao, Z.; Che, G.; Chen, M.; Feng, Y. The ‘obesity paradox’ does exist in patients undergoing transcatheter aortic valve implantation for aortic stenosis: A systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 633–642. [Google Scholar] [CrossRef]
- Takagi, H.; Umemoto, T.; ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. “Obesity paradox” in transcatheter aortic valve implantation. J. Cardiovasc. Surg. 2017, 58, 113–120. [Google Scholar] [CrossRef]
- Chacon, M.M.; Cheruku, S.R.; Neuburger, P.J.; Lester, L.; Shillcutt, S.K. Perioperative Care of the Obese Cardiac Surgical Patient. J. Cardiothorac. Vasc. Anesth. 2018, 32, 1911–1921. [Google Scholar] [CrossRef]
- Mariscalco, G.; Wozniak, M.J.; Dawson, A.G.; Serraino, G.F.; Porter, R.; Nath, M.; Klersy, C.; Kumar, T.; Murphy, G.J. Body Mass Index and Mortality among Adults Undergoing Cardiac Surgery: A Nationwide Study with a Systematic Review and Meta-Analysis. Circulation 2017, 135, 850–863. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, R.S.; Cohen, R.G.; Fleischman, F.; Bowdish, M.E. Acute Type A Aortic Dissection. Cardiol. Clin. 2017, 35, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, I.; Morocz, J.; Szlavi, J.; Schmidt, J.; Tornoci, L.; Nagy, L.; Szep, L. Epidemiology and clinicopathology of aortic dissection. Chest 2000, 117, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Clouse, W.D.; Hallett, J.W., Jr.; Schaff, H.V.; Spittell, P.C.; Rowland, C.M.; Ilstrup, D.M.; Melton, L.J., 3rd. Acute aortic dissection: Population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin. Proc. 2004, 79, 176–180. [Google Scholar] [CrossRef]
- Czerny, M.; Grabenwoger, M.; Berger, T.; Aboyans, V.; Della Corte, A.; Chen, E.P.; Desai, N.D.; Dumfarth, J.; Elefteriades, J.A.; Etz, C.D.; et al. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur. J. Cardio-Thorac. Surg. 2024, 65, ezad426. [Google Scholar] [CrossRef]
- Song, W.; Liu, J.; Tu, G.; Pan, L.; Hong, Y.; Qin, L.; Wei, L.; Chen, J. Impact of body mass index on perioperative mortality of acute stanford type A aortic dissection: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 531. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Kimura, N.; Mieno, M.; Hori, D.; Shiraishi, M.; Tashima, Y.; Yuri, K.; Itagaki, R.; Aizawa, K.; Kawahito, K.; et al. Effects of Obesity on Outcomes of Acute Type A Aortic Dissection Repair in Japan. Circ. Rep. 2020, 2, 639–647. [Google Scholar] [CrossRef]
- Kawahito, K.; Kimura, N.; Yamaguchi, A.; Aizawa, K.; Misawa, Y.; Adachi, H. Early and Late Surgical Outcomes of Acute Type A Aortic Dissection in Octogenarians. Ann. Thorac. Surg. 2018, 105, 137–143. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, T.; Chen, Q.; Min, H.; Nan, J.; Guo, Z. Development and evaluation of an early death risk prediction model after acute type A aortic dissection. Ann. Transl. Med. 2021, 9, 1442. [Google Scholar] [CrossRef]
- Lin, Y.J.; Lin, J.L.; Peng, Y.C.; Li, S.L.; Chen, L.W. TG/HDL-C ratio predicts in-hospital mortality in patients with acute type A aortic dissection. BMC Cardiovasc. Disord. 2022, 22, 346. [Google Scholar] [CrossRef]
- Lio, A.; Bovio, E.; Nicolo, F.; Saitto, G.; Scafuri, A.; Bassano, C.; Chiariello, L.; Ruvolo, G. Influence of Body Mass Index on Outcomes of Patients Undergoing Surgery for Acute Aortic Dissection: A Propensity-Matched Analysis. Tex. Heart Inst. J. 2019, 46, 7–13. [Google Scholar] [CrossRef]
- Kreibich, M.; Rylski, B.; Bavaria, J.E.; Branchetti, E.; Dohle, D.; Moeller, P.; Vallabhajosyula, P.; Szeto, W.Y.; Desai, N.D. Outcome After Operation for Aortic Dissection Type A in Morbidly Obese Patients. Ann. Thorac. Surg. 2018, 106, 491–497. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Liang, S.; Dun, Y.; Wang, L.; Gao, H.; Ren, J.; Guo, H.; Sun, X. Impact of body mass index on early and mid-term outcomes after surgery for acute Stanford type A aortic dissection. J. Cardiothorac. Surg. 2021, 16, 179. [Google Scholar] [CrossRef]
- Wang, M.; Fan, R.; Gu, T.; Zou, C.; Zhang, Z.; Liu, Z.; Qiao, C.; Sun, L.; Gong, M.; Li, H.; et al. Short-term outcomes of acute coronary involvement in type A aortic dissection without myocardial ischemia: A multiple center retrospective cohort study. J. Cardiothorac. Surg. 2021, 16, 107. [Google Scholar] [CrossRef]
- Luo, Z.R.; Chen, X.D.; Chen, L.W. Age-dependent differences in the prognostic relevance of body composition-related variables in type A aortic dissection patients. J. Cardiothorac. Surg. 2021, 16, 359. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. Circulation 2014, 129, 51. [Google Scholar] [CrossRef]
- Tsagakis, K.; Tossios, P.; Kamler, M.; Benedik, J.; Natour, D.; Eggebrecht, H.; Piotrowski, J.; Jakob, H. The DeBakey classification exactly reflects late outcome and re-intervention probability in acute aortic dissection with a slightly modified type II definition. Eur. J. Cardio-Thorac. Surg. 2011, 40, 1078–1084. [Google Scholar] [CrossRef]
- Augoustides, J.G.; Szeto, W.Y.; Desai, N.D.; Pochettino, A.; Cheung, A.T.; Savino, J.S.; Bavaria, J.E. Classification of acute type A dissection: Focus on clinical presentation and extent. Eur. J. Cardio-Thorac. Surg. 2011, 39, 519–522. [Google Scholar] [CrossRef]
- Dohle, D.S.; El Beyrouti, H.; Brendel, L.; Pfeiffer, P.; El-Mehsen, M.; Vahl, C.F. Survival and reinterventions after isolated proximal aortic repair in acute type A aortic dissection. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, P.; Brendel, L.; Rösch, R.M.; Probst, C.; Ghazy, A.; Zancanaro, E.; El Beyrouti, H.; Treede, H.; Dohle, D.-S. Sex Differences in Short- and Long-Term Survival after Acute Type A Aortic Dissection. Medicina 2024, 60, 443. [Google Scholar] [CrossRef] [PubMed]
- Czerny, M.; Siepe, M.; Beyersdorf, F.; Feisst, M.; Gabel, M.; Pilz, M.; Poling, J.; Dohle, D.S.; Sarvanakis, K.; Luehr, M.; et al. Prediction of mortality rate in acute type A dissection: The German Registry for Acute Type A Aortic Dissection score. Eur. J. Cardio-Thorac. Surg. 2020, 58, 700–706. [Google Scholar] [CrossRef]
- Pan, E.; Gudbjartsson, T.; Ahlsson, A.; Fuglsang, S.; Geirsson, A.; Hansson, E.C.; Hjortdal, V.; Jeppsson, A.; Jarvela, K.; Mennander, A.; et al. Low rate of reoperations after acute type A aortic dissection repair from The Nordic Consortium Registry. J. Thorac. Cardiovasc. Surg. 2018, 156, 939–948. [Google Scholar] [CrossRef]
- Evangelista, A.; Isselbacher, E.M.; Bossone, E.; Gleason, T.G.; Eusanio, M.D.; Sechtem, U.; Ehrlich, M.P.; Trimarchi, S.; Braverman, A.C.; Myrmel, T.; et al. Insights From the International Registry of Acute Aortic Dissection: A 20-Year Experience of Collaborative Clinical Research. Circulation 2018, 137, 1846–1860. [Google Scholar] [CrossRef]
- Okita, Y. Current surgical results of acute type A aortic dissection in Japan. Ann. Cardiothorac. Surg. 2016, 5, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Duan, W.; Xue, Y.; Wang, L.; Liu, J.; Yu, S.; Yi, D.; Registry of Aortic Dissection in China (Sino-RAD) Investigators. Clinical features of acute aortic dissection from the Registry of Aortic Dissection in China. J. Thorac. Cardiovasc. Surg. 2014, 148, 2995–3000. [Google Scholar] [CrossRef] [PubMed]
- Augoustides, J.G.; Geirsson, A.; Szeto, W.Y.; Walsh, E.K.; Cornelius, B.; Pochettino, A.; Bavaria, J.E. Observational study of mortality risk stratification by ischemic presentation in patients with acute type A aortic dissection: The Penn classification. Nat. Clin. Pract. Cardiovasc. Med. 2009, 6, 140–146. [Google Scholar] [CrossRef]
- Olsson, C.; Hillebrant, C.G.; Liska, J.; Lockowandt, U.; Eriksson, P.; Franco-Cereceda, A. Mortality in acute type A aortic dissection: Validation of the Penn classification. Ann. Thorac. Surg. 2011, 92, 1376–1382. [Google Scholar] [CrossRef]
- Kimura, N.; Ohnuma, T.; Itoh, S.; Sasabuchi, Y.; Asaka, K.; Shiotsuka, J.; Adachi, K.; Yuri, K.; Matsumoto, H.; Yamaguchi, A.; et al. Utility of the Penn classification in predicting outcomes of surgery for acute type a aortic dissection. Am. J. Cardiol. 2014, 113, 724–730. [Google Scholar] [CrossRef]
- Csige, I.; Ujvarosy, D.; Szabo, Z.; Lorincz, I.; Paragh, G.; Harangi, M.; Somodi, S. The Impact of Obesity on the Cardiovascular System. J. Diabetes Res. 2018, 2018, 3407306. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Poirier, P.; Despres, J.P. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation 2018, 137, 1391–1406. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jimenez, F.; Cortes-Bergoderi, M. Update: Systemic diseases and the cardiovascular system (i): Obesity and the heart. Rev. Esp. Cardiol. 2011, 64, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Sankhla, M.; Sharma, T.K.; Gahlot, S.; Rathor, J.S.; Vardey, S.K.; Sinha, M.; Kaushik, G.G.; Gadhok, A.K.; Ghalaut, V.S.; Mathur, K.; et al. The ominous link between obesity and abdominal adiposity with diabetes and diabetic dyslipidemia in diabetic population of developing country. Clin. Lab. 2013, 59, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Gawinecka, J.; Schonrath, F.; von Eckardstein, A. Acute aortic dissection: Pathogenesis, risk factors and diagnosis. Swiss Med. Wkly. 2017, 147, w14489. [Google Scholar] [CrossRef] [PubMed]
- Bays, H.E. Adiposopathy, diabetes mellitus, and primary prevention of atherosclerotic coronary artery disease: Treating “sick fat” through improving fat function with antidiabetes therapies. Am. J. Cardiol. 2012, 110, 4B–12B. [Google Scholar] [CrossRef] [PubMed]
- Zewari, S.; Vos, P.; van den Elshout, F.; Dekhuijzen, R.; Heijdra, Y. Obesity in COPD: Revealed and Unrevealed Issues. COPD 2017, 14, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Tien, M.; Ku, A.; Martinez-Acero, N.; Zvara, J.; Sun, E.C.; Cheung, A.T. The Penn Classification Predicts Hospital Mortality in Acute Stanford Type A and Type B Aortic Dissections. J. Cardiothorac. Vasc. Anesth. 2019, 34, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Xing, Z.; Yang, G.; Ding, N.; Zhou, Y.; Chai, X. Obesity Increases In-Hospital Mortality of Acute Type A Aortic Dissection Patients Undergoing Open Surgical Repair: A Retrospective Study in the Chinese Population. Front. Cardiovasc. Med. 2022, 9, 899050. [Google Scholar] [CrossRef]
- Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Mathur, S.; Rozenberg, D.; Verweel, L.; Orsso, C.E.; Singer, L.G. Chest computed tomography is a valid measure of body composition in individuals with advanced lung disease. Clin. Physiol. Funct. Imaging 2020, 40, 360–368. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | BMI 18.5–24.9 | BMI 25–29.9 | BMI 30–34.9 | BMI ≥ 35 | p Value |
---|---|---|---|---|---|---|
(n = 912) | (n = 332) | (n = 367) | (n = 146) | (n = 67) | ||
Sex | <0.001 | |||||
Male | 582 (63.8%) | 184 (55.4%) | 251 (68.4%) | 102 (69.9%) | 45 (67.2%) | |
Female | 330 (36.2%) | 148 (44.6%) | 116 (31.6%) | 44 (30.1%) | 22 (32.8%) | |
Age [years] | 64.5 ± 13.6 | 64.7 ± 14.9 | 66.0 ± 12.7 | 62.6 ± 12.5 | 59.7 ± 12.5 | 0.001 |
BMI [kg/m2] | 27.5 ± 5.1 | 23.2 ± 1.5 | 27.3 ± 1.3 | 31.9 ± 1.3 | 40.2 ± 5.9 | <0.001 |
BSA [m2] | 1.99 ± 0.25 | 1.82 ± 0.18 | 2.01 ± 0.17 | 2.16 ± 0.19 | 2.37 ± 0.27 | <0.001 |
Comorbidities | ||||||
Arterial Hypertension | 659 (72.3%) | 222 (66.9%) | 266 (72.5%) | 114 (78.1%) | 57 (85.1%) | 0.005 |
Diabetes mellitus | 83 (9.1%) | 16 (4.8%) | 32 (8.7%) | 19 (13.0%) | 16 (23.9%) | <0.001 |
Smoking history | 196 (21.5%) | 67 (20.2%) | 74 (20.2%) | 39 (26.7%) | 16 (23.9%) | 0.347 |
CAD | 164 (18.0%) | 58 (17.5%) | 70 (19.1%) | 28 (19.2%) | 8 (11.9%) | 0.541 |
COPD | 83 (9.1%) | 25 (7.5%) | 37 (10.1%) | 18 (12.3%) | 3 (4.5%) | 0.173 |
Previous cardiac surgery | 63 (6.9%) | 23 (6.9%) | 28 (7.6%) | 10 (6.8%) | 2 (3.0%) | 0.639 |
Median follow-up [years] | 4.4 [3.9–4.8] | 4.1 [3.5–4.7] | 4.7 [3.9–5.5] | 4.8 [3.7–5.9] | 3.5 [2.6–4.3] | 0.116 |
Variable | Total | BMI 18.5–24.9 | BMI 25–29.9 | BMI 30–34.9 | BMI ≥ 35 | p Value |
---|---|---|---|---|---|---|
(n = 912) | (n = 332) | (n = 367) | (n = 146) | (n = 67) | ||
DeBakey classification | 0.512 | |||||
Type I | 644 (70.6%) | 228 (68.7%) | 259 (70.6%) | 150 (71.9%) | 52 (77.6%) | |
Type II | 268 (29.4%) | 104 (31.3%) | 108 (29.4%) | 41 (28.1%) | 15 (22.4%) | |
Aortic valve | ||||||
Regurgitation | 629 (69.0%) | 228 (68.7%) | 254 (69.2%) | 103 (70.5%) | 44 (65.7%) | 0.911 |
Bicuspid valve | 37 (4.1%) | 17 (5.1%) | 13 (3.5%) | 5 (3.4%) | 2 (3.0%) | 0.723 |
CPR | 81 (8.9%) | 35 (10.5%) | 28 (7.6%) | 15 (10.3%) | 3 (4.5%) | 0.284 |
Shock | 218 (23.9%) | 75 (22.6%) | 91 (24.8%) | 41 (28.1%) | 11 (16.4%) | 0.268 |
True lumen collapse | 217 (23.8%) | 72 (21.7%) | 81 (22.1%) | 41 (28.1%) | 23 (34.3%) | 0.072 |
Intubated/Ventilated | 126 (13.8%) | 41 (12.3%) | 53 (14.4%) | 27 (18.5%) | 5 (7.5%) | 0.129 |
Malperfusion | 376 (41.2%) | 1439 (41.9%) | 147 (40.1%) | 62 (42.5%) | 28 (41.8%) | 0.947 |
Coronary | 118 (12.9%) | 549 (14.8%) | 39 (10.6%) | 22 (15.1%) | 8 (11.9%) | 0.339 |
Cerebral | 144 (15.8%) | 58 (17.5%) | 64 (17.4%) | 17 (11.6%) | 5 (7.5%) | 0.077 |
Spinal | 21 (2.3%) | 7 (2.1%) | 10 (2.7%) | 2 (1.4%) | 2 (3.0%) | 0.751 |
Renal | 89 (9.8%) | 24 (7.2%) | 35 (9.5%) | 20 (13.7%) | 10 (14.9%) | 0.071 |
Mesenteric | 106 (11.6%) | 34 (10.2%) | 33 (9.0%) | 24 (16.4%) | 15 (22.4%) | 0.003 |
Peripheral | 136 (14.9%) | 44 (13.3%) | 52 (14.2%) | 26 (17.8%) | 14 (20.9%) | 0.291 |
Penn classification | 0.423 | |||||
A | 445 (48.8%) | 168 (50.6%) | 180 (49.0%) | 64 (43.8%) | 33 (49.3%) | |
B | 249 (27.3%) | 89 (26.8%) | 96 (26.2%) | 41 (28.1%) | 23 (34.3%) | |
C | 91 (10.0%) | 25 (7.5%) | 40 (10.9%) | 20 (13.7%) | 6 (9.0%) | |
BC | 127 (13.9%) | 50 (15.1%) | 51 (13.9%) | 21 (14.4%) | 5 (7.5%) | |
Pericardial effusion | 0.633 | |||||
Pericardial effusion | 393 (43.1%) | 149 (44.9%) | 146 (39.8%) | 66 (45.2%) | 32 (47.8%) | |
Tamponade | 147 (16.1%) | 49 (14.8%) | 61 (16.6%) | 27 (18.5%) | 10 (14.9%) | |
Neurological status | 0.284 | |||||
No neurologic deficits | 714 (78.3%) | 260 (78.3%) | 282 (76.8%) | 113 (77.4%) | 59 (88.1%) | |
Neurologic deficits | 147 (16.1%) | 54 (16.6%) | 66 (18.0%) | 21 (14.4%) | 5 (7.5%) | |
Not obtainable | 51 (5.6%) | 17 (5.1%) | 19 (5.2%) | 12 (8.2%) | 3 (4.5%) |
Variable | Total | BMI 18.5–24.9 | BMI 25–29.9 | BMI 30–34.9 | BMI ≥ 35 | p Value |
---|---|---|---|---|---|---|
(n = 912) | (n = 332) | (n = 367) | (n = 146) | (n = 67) | ||
Aortic Repair | 0.535 | |||||
Isolated proximal repair | 262 (28.7%) | 86 (25.9%) | 106 (28.9%) | 51 (34.9%) | 19 (28.4%) | |
Ascending, hemiarch | 510 (55.9%) | 195 (58.7%) | 206 (56.1%) | 74 (50.7%) | 35 (52.2%) | |
Ascending, arch | 140 (15.4%) | 51 (15.4%) | 55 (15.0%) | 21 (14.4%) | 13 (19.4%) | |
Concomitant procedures | ||||||
Aortic valve | 0.025 | |||||
Repair | 636 (69.7%) | 225 (67.8%) | 266 (72.5%) | 108 (74.0%) | 37 (55.2%) | |
Replacement | 93 (10.2%) | 438 (11.4%) | 28 (7.6%) | 18 (12.3%) | 9 (13.4%) | |
Root replacement | 82 (9.0%) | 39 (11.7%) | 23 (6.3%) | 13 (8.9%) | 7 (10.4%) | 0.086 |
CABG | 118 (12.9%) | 46 (13.9%) | 47 (12.8%) | 16 (11.0%) | 9 (13.4%) | 0.855 |
Perfusion details | ||||||
CPB [min] | 187 ± 87 | 184 ± 80 | 189 ± 86 | 186 ± 99 | 202 ± 97 | 0.446 |
Cross-clamping [min] | 102 ± 48 | 102 ± 46 | 100 ± 44 | 104 ± 58 | 106 ± 49 | 0.682 |
HCA [min] | 25.1 ± 12.2 | 24.9 ± 11.5 | 24.7 ± 11.8 | 25.1 ± 13.2 | 28.9 ± 15.1 | 0.225 |
Lowest temperature [°C] | 23.2 ± 5.6 | 22.7 ± 5.6 | 23.4 ± 5.4 | 23.9 ± 5.7 | 23.5 ± 6.3 | 0.119 |
Variable | Total | BMI 18.5–24.9 | BMI 25–29.9 | BMI 30–34.9 | BMI ≥ 35 | p Value |
---|---|---|---|---|---|---|
(n = 912) | (n = 332) | (n = 367) | (n = 146) | (n = 67) | ||
Rethoracotomy | 107 (11.7%) | 42 (12.7%) | 44 (12.0%) | 14 (9.6%) | 7 (10.4%) | 0.790 |
Tracheotomy | 61 (6.7%) | 20 (6.0%) | 28 (7.6%) | 6 (4.1%) | 7 (10.4%) | 0.263 |
Dialysis | 147 (16.1%) | 42 (12.7%) | 65 (17.7%) | 21 (14.4%) | 19 (28.4%) | 0.010 |
Ventilation [hours] | 21.0 (52.5) | 19.0 (48.0) | 22.0 (54.3) | 24.0 (55.5) | 26.0 (97.0) | 0.345 |
Hospital stay [days] | 14.1 ± 12.2 | 13.7 ± 8.3 | 14.5 ± 10.8 | 12.7 ± 9.4 | 16.2 ± 29.1 | 0.202 |
Neurological status | 0.058 | |||||
No neurologic deficits | 702 (77.0%) | 251 (75.6%) | 283 (77.1%) | 116 (79.5%) | 52 (77.6%) | |
Neurologic deficits | 139 (15.2%) | 59 (17.8%) | 59 (16.1%) | 16 (11.0%) | 5 (7.5%) | |
Not obtainable | 71 (7.8%) | 22 (6.6%) | 25 (6.8%) | 14 (9.6%) | 10 (14.9%) |
Variable | Total | BMI 18.5–24.9 | BMI 25–29.9 | BMI 30–34.9 | BMI ≥ 35 | p Value |
---|---|---|---|---|---|---|
(n = 912) | (n = 332) | (n = 367) | (n = 146) | (n = 67) | ||
In-hospital mortality | 115 (12.6%) | 36 (10.8%) | 46 (12.5%) | 23 (15.8%) | 10 (14.9%) | 0.461 |
Median survival | 13.4 [10.8–16.0] | 13.4 [9.7–17.2] | 15.4 [8.7–22.1] | 12.1 [9.5–14.7] | n/a * | 0.894 |
1-Year Survival | 80.6% [77.8–83.0%] | 83.2% [78.6–86.9%] | 78.3% [73.7–82.3%] | 79.8% [72.2–85.4%] | 81.5% [69.7–89.1%] | |
5-Year Survival | 72.6% [69.2–75.6%] | 72.4% [66.5–77.4%] | 70.7% [65.1–75.5%] | 76.3% [68.2–82.6%] | 76.4% [62.9–85.6%] | |
10-Year Survival | 60.5% [55.3–65.2%] | 60.5% [51.0–68.7%] | 57.6% [49.3–65.0%] | 66.2% [54.6–75.5%] | 63.4% [41.1–79.2%] | |
15-Year-Survival | 46.4% [36.9–55.4%] | 42.2% [24.0–59.5%] | 51.6% [40.2–61.8%] | 39.2% [17.5–60.5%] | 63.4% [41.1–79.2%] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeiffer, P.; Wittemann, K.; Mattern, L.; Buchholz, V.; El Beyrouti, H.; Ghazy, A.; Oezkur, M.; Duerr, G.D.; Probst, C.; Treede, H.; et al. The Effect of Obesity on Short- and Long-Term Outcome after Surgical Treatment for Acute Type A Aortic Dissection. Life 2024, 14, 955. https://doi.org/10.3390/life14080955
Pfeiffer P, Wittemann K, Mattern L, Buchholz V, El Beyrouti H, Ghazy A, Oezkur M, Duerr GD, Probst C, Treede H, et al. The Effect of Obesity on Short- and Long-Term Outcome after Surgical Treatment for Acute Type A Aortic Dissection. Life. 2024; 14(8):955. https://doi.org/10.3390/life14080955
Chicago/Turabian StylePfeiffer, Philipp, Karen Wittemann, Leon Mattern, Vanessa Buchholz, Hazem El Beyrouti, Ahmed Ghazy, Mehmet Oezkur, Georg Daniel Duerr, Chris Probst, Hendrik Treede, and et al. 2024. "The Effect of Obesity on Short- and Long-Term Outcome after Surgical Treatment for Acute Type A Aortic Dissection" Life 14, no. 8: 955. https://doi.org/10.3390/life14080955
APA StylePfeiffer, P., Wittemann, K., Mattern, L., Buchholz, V., El Beyrouti, H., Ghazy, A., Oezkur, M., Duerr, G. D., Probst, C., Treede, H., & Dohle, D. -S. (2024). The Effect of Obesity on Short- and Long-Term Outcome after Surgical Treatment for Acute Type A Aortic Dissection. Life, 14(8), 955. https://doi.org/10.3390/life14080955