Start Strong, Finish Strong: A Review of Prehabilitation in Cardiac Surgery
Abstract
:1. Introduction
2. Frailty
3. Components of Prehabilitation Programs
3.1. Exercise Component
3.1.1. Aerobic Exercise
3.1.2. Strength Training
3.1.3. Inspiratory Muscle Training
3.2. Nutrition Component
3.3. Psychobehavioral Component
4. Prehabilitation in Cardiac Surgery
5. Enhanced Recovery after Cardiac Surgery
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prehabilitation, rehabilitation, and revocation in the Army. Br. Med. J. 1946, 1, 192–197.
- Steinmetz, C.; Bjarnason-Wehrens, B.; Baumgarten, H.; Walther, T.; Mengden, T.; Walther, C. Prehabilitation in patients awaiting elective coronary artery bypass graft surgery–effects on functional capacity and quality of life: A randomized controlled trial. Clin. Rehabil. 2020, 34, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, C.J.L.; Minnella, E.M.; Coca-Martinez, M.; Ten Cate, D.W.G.; Regis, M.; Awasthi, R.; Martínez-Palli, G.; López-Baamonde, M.; Sebio-Garcia, R.; Feo, C.V. Effect of multimodal prehabilitation on reducing postoperative complications and enhancing functional capacity following colorectal cancer surgery: The PREHAB randomized clinical trial. JAMA Surg. 2023, 158, 572–581. [Google Scholar] [CrossRef]
- Punnoose, A.; Claydon-Mueller, L.S.; Weiss, O.; Zhang, J.; Rushton, A.; Khanduja, V. Prehabilitation for patients undergoing orthopedic surgery: A systematic review and meta-analysis. JAMA Netw. Open 2023, 6, e238050. [Google Scholar] [CrossRef] [PubMed]
- Minnella, E.M.; Awasthi, R.; Loiselle, S.-E.; Agnihotram, R.V.; Ferri, L.E.; Carli, F. Effect of exercise and nutrition prehabilitation on functional capacity in esophagogastric cancer surgery: A randomized clinical trial. JAMA Surg. 2018, 153, 1081–1089. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Lee, J.A.; Yanagawa, B.; An, K.R.; Arora, R.C.; Verma, S.; Friedrich, J.O.; Canadian Cardiovascular Surgery Meta-Analysis Working Group. Frailty and pre-frailty in cardiac surgery: A systematic review and meta-analysis of 66,448 patients. J. Cardiothorac. Surg. 2021, 16, 184. [Google Scholar] [CrossRef] [PubMed]
- Peeler, A.; Moser, C.; Gleason, K.T.; Davidson, P.M. Frailty as a Predictor of Postoperative Outcomes in Invasive Cardiac Surgery: A Systematic Review of Literature. J. Cardiovasc. Nurs. 2022, 37, 231–247. [Google Scholar] [CrossRef]
- Doody, P.; Lord, J.M.; Greig, C.A.; Whittaker, A.C. Frailty: Pathophysiology, Theoretical and Operational Definition(s), Impact, Prevalence, Management and Prevention, in an Increasingly Economically Developed and Ageing World. Gerontology 2023, 69, 927–945. [Google Scholar] [CrossRef]
- Chang, S.F.; Lin, P.L. Frail phenotype and mortality prediction: A systematic review and meta-analysis of prospective cohort studies. Int. J. Nurs. Stud. 2015, 52, 1362–1374. [Google Scholar] [CrossRef]
- Dasgupta, M.; Rolfson, D.B.; Stolee, P.; Borrie, M.J.; Speechley, M. Frailty is associated with postoperative complications in older adults with medical problems. Arch. Gerontol. Geriatr. 2009, 48, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Gray, A.; Kim, E.; Bunton, R.W.; Davis, P.; Galvin, I.F.; Williams, M.J.A. Frailty in Elderly Patients Undergoing Cardiac Surgery Increases Hospital Stay and 12-Month Readmission Rate. Heart Lung Circ. 2020, 29, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Makary, M.A.; Segev, D.L.; Pronovost, P.J.; Syin, D.; Bandeen-Roche, K.; Patel, P.; Takenaga, R.; Devgan, L.; Holzmueller, C.G.; Tian, J.; et al. Frailty as a predictor of surgical outcomes in older patients. J. Am. Coll. Surg. 2010, 210, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Tsiouris, A.; Horst, H.M.; Paone, G.; Hodari, A.; Eichenhorn, M.; Rubinfeld, I. Preoperative risk stratification for thoracic surgery using the American College of Surgeons National Surgical Quality Improvement Program data set: Functional status predicts morbidity and mortality. J. Surg. Res. 2012, 177, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, M.; Mariani, S.; Scanziani, M.; Passolunghi, D.; Bruni, A.; Finazzi, A.; Lettino, M.; Foti, G.; Bellelli, G.; Marchetto, G. The frail patient undergoing cardiac surgery: Lessons learned and future perspectives. Front. Cardiovasc. Med. 2023, 10, 1295108. [Google Scholar] [CrossRef] [PubMed]
- Bandeen-Roche, K.; Seplaki, C.L.; Huang, J.; Buta, B.; Kalyani, R.R.; Varadhan, R.; Xue, Q.L.; Walston, J.D.; Kasper, J.D. Frailty in Older Adults: A Nationally Representative Profile in the United States. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Buth, K.J.; Martin, B.J.; Yip, A.M.; Hirsch, G.M. Frail patients are at increased risk for mortality and prolonged institutional care after cardiac surgery. Circulation 2010, 121, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Shanker, A.; Upadhyay, P.; Rangasamy, V.; Muralidhar, K.; Subramaniam, B. Impact of frailty in cardiac surgical patients-Assessment, burden, and recommendations. Ann. Card. Anaesth. 2021, 24, 133–139. [Google Scholar] [CrossRef]
- Skorupska, N.; Perry, R.; Collis, P.; Dawson, S.; Taylor, R.S.; Cleland, J.G.; Akowuah, E.; Gibbison, B.; Murphy, G.J.; Levett, D.Z. Prehabilitation for people undergoing cardiac surgery. Cochrane Database Syst. Rev. 2024, 2024, CD015336. [Google Scholar]
- Romero-Ortuño, R.; Martínez-Velilla, N.; Sutton, R.; Ungar, A.; Fedorowski, A.; Galvin, R.; Theou, O.; Davies, A.; Reilly, R.B.; Claassen, J. Network physiology in aging and frailty: The grand challenge of physiological reserve in older adults. Front. Netw. Physiol. 2021, 1, 712430. [Google Scholar] [CrossRef]
- Cabilan, C.; Hines, S.; Munday, J. The effectiveness of prehabilitation or preoperative exercise for surgical patients: A systematic review. JBI Evid. Synth. 2015, 13, 146–187. [Google Scholar] [CrossRef]
- Akowuah, E.F.; Wagnild, J.M.; Bardgett, M.; Prichard, J.G.; Mathias, A.; Harrison, S.L.; Ogundimu, E.O.; Hancock, H.C.; Maier, R.H. A randomised controlled trial of prehabilitation in patients undergoing elective cardiac surgery. Anaesthesia 2023, 78, 1120–1128. [Google Scholar] [CrossRef]
- Arora, R.C.; Brown IV, C.H.; Sanjanwala, R.M.; McKelvie, R. “NEW” prehabilitation: A 3-way approach to improve postoperative survival and health-related quality of life in cardiac surgery patients. Can. J. Cardiol. 2018, 34, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Nery, R.M.; Barbisan, J.N. Effect of leisure-time physical activity on the prognosis of coronary artery bypass graft surgery. Braz. J. Cardiovasc. Surg. 2010, 25, 73–78. [Google Scholar] [CrossRef]
- McCann, M.; Stamp, N.; Ngui, A.; Litton, E. Cardiac prehabilitation. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2255–2265. [Google Scholar] [CrossRef]
- Arthur, H.M.; Daniels, C.; McKelvie, R.; Hirsh, J.; Rush, B. Effect of a preoperative intervention on preoperative and postoperative outcomes in low-risk patients awaiting elective coronary artery bypass graft surgery: A randomized, controlled trial. Ann. Intern. Med. 2000, 133, 253–262. [Google Scholar] [CrossRef]
- Steinmetz, C.; Bjarnason-Wehrens, B.; Walther, T.; Schaffland, T.F.; Walther, C. Efficacy of prehabilitation before cardiac surgery: A systematic review and meta-analysis. Am. J. Phys. Med. Rehabil. 2023, 102, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Waite, I.; Deshpande, R.; Baghai, M.; Massey, T.; Wendler, O.; Greenwood, S. Home-based preoperative rehabilitation (prehab) to improve physical function and reduce hospital length of stay for frail patients undergoing coronary artery bypass graft and valve surgery. J. Cardiothorac. Surg. 2017, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Tanner, T.G.; Colvin, M.O. Pulmonary complications of cardiac surgery. Lung 2020, 198, 889–896. [Google Scholar] [CrossRef]
- Baghban, M.; Paknejad, O.; Yousefshahi, F.; Moghadam, K.G.; Bina, P.; Sadeh, S.S. Hospital-acquired pneumonia in patients undergoing coronary artery bypass graft; comparison of the center for disease control clinical criteria with physicians’ judgment. Anesthesiol. Pain Med. 2014, 4, e20733. [Google Scholar] [CrossRef]
- Pérez-Granda, M.J.; Barrio, J.M.; Cuerpo, G.; Valerio, M.; Muñoz, P.; Hortal, J.; Pinto, A.G.; Bouza, E. Infectious complications following major heart surgery from the day of the surgery to hospital discharge. BMC Infect. Dis. 2024, 24, 73. [Google Scholar] [CrossRef] [PubMed]
- Hulzebos, E.H.; van Meeteren, N.L.; van den Buijs, B.J.; de Bie, R.A.; De La Riviere, A.B.; Helders, P.J. Feasibility of preoperative inspiratory muscle training in patients undergoing coronary artery bypass surgery with a high risk of postoperative pulmonary complications: A randomized controlled pilot study. Clin. Rehabil. 2006, 20, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Balandiuk, A.; Kozlov, I. Incentive spirometry for preoperative preparation of cardiac patients: 036. Eur. J. Anaesthesiol. 2004, 21, 3–4. [Google Scholar] [CrossRef]
- Savci, S.; Degirmenci, B.; Saglam, M.; Arikan, H.; Inal-Ince, D.; Turan, H.N.; Demircin, M. Short-term effects of inspiratory muscle training in coronary artery bypass graft surgery: A randomized controlled trial. Scand. Cardiovasc. J. 2011, 45, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho, M.T.; Guirado, G.N.; de Moraes Silva, M.A. Preoperative therapy restores ventilatory parameters and reduces length of stay in patients undergoing myocardial revascularization. Braz. J. Cardiovasc. Surg. 2014, 29, 221–228. [Google Scholar]
- Rosenfeldt, F.; Braun, L.; Spitzer, O.; Bradley, S.; Shepherd, J.; Bailey, M.; van der Merwe, J.; Leong, J.-Y.; Esmore, D. Physical conditioning and mental stress reduction-a randomised trial in patients undergoing cardiac surgery. BMC Complement. Altern. Med. 2011, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Tung, H.-H.; Shen, S.-F.; Shih, C.-C.; Chiu, K.-M.; Lee, J.-Y.; Liu, C.-Y. Effects of a preoperative individualized exercise program on selected recovery variables for cardiac surgery patients: A pilot study. J. Saudi Heart Assoc. 2012, 24, 153–161. [Google Scholar] [CrossRef]
- Sawatzky, J.A.; Kehler, D.S.; Ready, A.E.; Lerner, N.; Boreskie, S.; Lamont, D.; Luchik, D.; Arora, R.C.; Duhamel, T.A. Prehabilitation program for elective coronary artery bypass graft surgery patients: A pilot randomized controlled study. Clin. Rehabil. 2014, 28, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, V.E. Impact of Nutrition on Cardiovascular Function. Curr. Probl. Cardiol. 2020, 45, 100391. [Google Scholar] [CrossRef]
- Brandhorst, S.; Longo, V.D. Dietary Restrictions and Nutrition in the Prevention and Treatment of Cardiovascular Disease. Circ. Res. 2019, 124, 952–965. [Google Scholar] [CrossRef]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Ji Kwak, M.; Batchelor, W.B.; Forman, D.E.; et al. Sarcopenia and Cardiovascular Diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef]
- He, N.; Zhang, Y.; Zhang, L.; Zhang, S.; Ye, H. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Front. Cardiovasc. Med. 2021, 8, 743710. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- van Venrooij, L.M.; van Leeuwen, P.A.; de Vos, R.; Borgmeijer-Hoelen, M.M.; de Mol, B.A. Preoperative protein and energy intake and postoperative complications in well-nourished, non-hospitalized elderly cardiac surgery patients. Clin. Nutr. 2009, 28, 117–121. [Google Scholar] [CrossRef]
- Thourani, V.H.; Keeling, W.B.; Kilgo, P.D.; Puskas, J.D.; Lattouf, O.M.; Chen, E.P.; Guyton, R.A. The impact of body mass index on morbidity and short- and long-term mortality in cardiac valvular surgery. J. Thorac. Cardiovasc. Surg. 2011, 142, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Izawa, K.P.; Satomi-Kobayashi, S.; Kitamura, A.; Ono, R.; Sakai, Y.; Okita, Y. Poor preoperative nutritional status is an important predictor of the retardation of rehabilitation after cardiac surgery in elderly cardiac patients. Aging Clin. Exp. Res. 2017, 29, 283–290. [Google Scholar] [CrossRef]
- van Venrooij, L.M.; de Vos, R.; Borgmeijer-Hoelen, M.M.; Haaring, C.; de Mol, B.A. Preoperative unintended weight loss and low body mass index in relation to complications and length of stay after cardiac surgery. Am. J. Clin. Nutr. 2008, 87, 1656–1661. [Google Scholar] [CrossRef]
- Engelman, D.T.; Adams, D.H.; Byrne, J.G.; Aranki, S.F.; Collins, J.J., Jr.; Couper, G.S.; Allred, E.N.; Cohn, L.H.; Rizzo, R.J. Impact of body mass index and albumin on morbidity and mortality after cardiac surgery. J. Thorac. Cardiovasc. Surg. 1999, 118, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.M.; McDonough, S.; Smith, J.M. Does an obese body mass index affect hospital outcomes after coronary artery bypass graft surgery? Ann. Thorac. Surg. 2009, 88, 1793–1800. [Google Scholar] [CrossRef]
- Ding, C.Y.; Qi, W.H.; An, Y.J.; Yuan, X.; Yao, Y.T.; Evidence in Cardiovascular Anesthesia, G. The effect of body mass index on short-term outcomes in patients undergoing off-pump coronary artery bypass grafting surgery: A retrospective study from a single cardiovascular center. J. Cardiothorac. Surg. 2024, 19, 86. [Google Scholar] [CrossRef]
- Shirzad, M.; Karimi, A.; Armadi, S.H.; Marzban, M.; Abbasi, K.; Alinejad, B.; Moshtaghi, N. Effects of body mass index on early outcome of coronary artery bypass surgery. Minerva Chir. 2009, 64, 17–23. [Google Scholar] [PubMed]
- Wiedemann, D.; Schachner, T.; Bonaros, N.; Weidinger, F.; Kolbitsch, C.; Friedrich, G.; Laufer, G.; Bonatti, J. Does obesity affect operative times and perioperative outcome of patients undergoing totally endoscopic coronary artery bypass surgery? Interact. Cardiovasc. Thorac. Surg. 2009, 9, 214–217. [Google Scholar] [CrossRef]
- Lv, M.; Gao, F.; Liu, B.; Pandey, P.; Feng, Y.; Wang, Y.; Zhang, Y.; Li, Z. The Effects of Obesity on Mortality Following Coronary Artery Bypass Graft Surgery: A Retrospective Study from a Single Center in China. Med. Sci. Monit. 2021, 27, e929912. [Google Scholar] [CrossRef]
- Mariscalco, G.; Wozniak, M.J.; Dawson, A.G.; Serraino, G.F.; Porter, R.; Nath, M.; Klersy, C.; Kumar, T.; Murphy, G.J. Body Mass Index and Mortality among Adults Undergoing Cardiac Surgery: A Nationwide Study with a Systematic Review and Meta-Analysis. Circulation 2017, 135, 850–863. [Google Scholar] [CrossRef]
- Gao, M.; Sun, J.; Young, N.; Boyd, D.; Atkins, Z.; Li, Z.; Ding, Q.; Diehl, J.; Liu, H. Impact of Body Mass Index on Outcomes in Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Grunkemeier, G.L.; Furnary, A.P.; Handy, J.R., Jr. Is obesity a risk factor for mortality in coronary artery bypass surgery? Circulation 2005, 111, 3359–3365. [Google Scholar] [CrossRef] [PubMed]
- van Bokhorst-de van der Schueren, M.A.; Guaitoli, P.R.; Jansma, E.P.; de Vet, H.C. Nutrition screening tools: Does one size fit all? A systematic review of screening tools for the hospital setting. Clin. Nutr. 2014, 33, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Engelman, D.T.; Ben Ali, W.; Williams, J.B.; Perrault, L.P.; Reddy, V.S.; Arora, R.C.; Roselli, E.E.; Khoynezhad, A.; Gerdisch, M.; Levy, J.H.; et al. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery after Surgery Society Recommendations. JAMA Surg. 2019, 154, 755–766. [Google Scholar] [CrossRef]
- Hartog, J.; Blokzijl, F.; Dijkstra, S.; DeJongste, M.J.L.; Reneman, M.F.; Dieperink, W.; van der Horst, I.C.C.; Fleer, J.; van der Woude, L.H.V.; van der Harst, P.; et al. Heart Rehabilitation in patients awaiting Open heart surgery targeting to prevent Complications and to improve Quality of life (Heart-ROCQ): Study protocol for a prospective, randomised, open, blinded endpoint (PROBE) trial. BMJ Open 2019, 9, e031738. [Google Scholar] [CrossRef]
- Hartog, J.; Mousavi, I.; Dijkstra, S.; Fleer, J.; van der Woude, L.H.V.; van der Harst, P.; Mariani, M.A. Prehabilitation to prevent complications after cardiac surgery—A retrospective study with propensity score analysis. PLoS ONE 2021, 16, e0253459. [Google Scholar] [CrossRef]
- Cheung, H.H.T.; Yau, D.K.W.; Chiu, L.C.S.; Wong, M.K.H.; Yeung, S.S.Y.; Underwood, M.J.; Wong, R.H.L.; Joynt, G.M.; Lee, A. Effect of prehabilitation-related DIETary protein intake on Quality of Recovery after elective cardiac surgery (DIETQoR) study: Protocol of a randomised controlled trial. BMJ Open 2023, 13, e069528. [Google Scholar] [CrossRef] [PubMed]
- West, M.A.; Wischmeyer, P.E.; Grocott, M.P.W. Prehabilitation and Nutritional Support to Improve Perioperative Outcomes. Curr. Anesthesiol. Rep. 2017, 7, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, F.; Gianotti, L.; Braga, M.; Di Carlo, V.; Mariani, L. Postoperative complications in gastrointestinal cancer patients: The joint role of the nutritional status and the nutritional support. Clin. Nutr. 2007, 26, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Drover, J.W.; Cahill, N.E.; Kutsogiannis, J.; Pagliarello, G.; Wischmeyer, P.; Wang, M.; Day, A.G.; Heyland, D.K. Nutrition therapy for the critically ill surgical patient: We need to do better! JPEN J. Parenter. Enter. Nutr. 2010, 34, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Carli, F.; Bousquet-Dion, G.; Awasthi, R.; Elsherbini, N.; Liberman, S.; Boutros, M.; Stein, B.; Charlebois, P.; Ghitulescu, G.; Morin, N.; et al. Effect of Multimodal Prehabilitation vs Postoperative Rehabilitation on 30-Day Postoperative Complications for Frail Patients Undergoing Resection of Colorectal Cancer: A Randomized Clinical Trial. JAMA Surg. 2020, 155, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.Y.; van der Merwe, J.; Pepe, S.; Bailey, M.; Perkins, A.; Lymbury, R.; Esmore, D.; Marasco, S.; Rosenfeldt, F. Perioperative metabolic therapy improves redox status and outcomes in cardiac surgery patients: A randomised trial. Heart Lung Circ. 2010, 19, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Clasen, K.C.; Wendt, S.; Majoros, A.G.; Stoppe, C.; Adhikari, N.K.J.; Heyland, D.K.; Benstoem, C. Effects of Vitamin C on Organ Function in Cardiac Surgery Patients: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2103. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.M.; Tang, X.S.; Yu, H.; Yu, H. The efficacy of intravenous iron for treatment of anemia before cardiac surgery: An updated systematic review and meta-analysis with trial sequential analysis. J. Cardiothorac. Surg. 2023, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Abrishami, A.; Matthew, T.; Chan, V.; Chung, F. Short-term preoperative smoking cessation and postoperative complications: A systematic review and meta-analysis. Can. J. Anesth. 2012, 59, 268. [Google Scholar] [CrossRef]
- Sepehripour, A.H.; Lo, T.T.; McCormack, D.J.; Shipolini, A.R. Is there benefit in smoking cessation prior to cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 2012, 15, 726–732. [Google Scholar] [CrossRef]
- Califf, R.M.; King, B.A. The need for a smoking cessation “care package”. JAMA 2023, 329, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Cserép, Z.; Losoncz, E.; Balog, P.; Szili-Török, T.; Husz, A.; Juhász, B.; Kertai, M.D.; Gál, J.; Székely, A. The impact of preoperative anxiety and education level on long-term mortality after cardiac surgery. J. Cardiothorac. Surg. 2012, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Rouleau, C.R.; Chirico, D.; Hauer, T.; Kidd, W.; Arena, R.; Aggarwal, S.G. An observational study examining utilization of prehabilitation and its association with postoperative cardiac rehabilitation participation and risk factors following coronary artery bypass grafting. Int. J. Cardiol. 2022, 362, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.K.; Youssef, N.A.; Armsworth, M.; Wear, E.; Papathopoulos, K.N.; Gopaldas, R. Randomized controlled trial of brief cognitive behavioral intervention for depression and anxiety symptoms preoperatively in patients undergoing coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg. 2011, 142, e109–e115. [Google Scholar] [CrossRef] [PubMed]
- Karkhanis, R.; Wijeysundera, H.C.; Tam, D.Y.; Oh, P.; Alter, D.A.; Yu, B.; Kiss, A.; Fremes, S.E. Cardiac rehabilitation is associated with improved long-term outcomes after coronary artery bypass grafting. CJC Open 2021, 3, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Akowuah, E.; Mathias, A.; Bardgett, M.; Harrison, S.; Kasim, A.S.; Loughran, K.; Ogundimu, E.; Trevis, J.; Wagnild, J.; Witharana, P.; et al. Prehabilitation in elective patients undergoing cardiac surgery: A randomised control trial (THE PrEPS TRIAL)—A study protocol. BMJ Open 2023, 13, e065992. [Google Scholar] [CrossRef] [PubMed]
- Preoperative Excercise Training for Patients Undergoing Coronary Artery Bypass Graft Surgery. Available online: https://clinicaltrials.gov/study/NCT04111744 (accessed on 3 March 2024).
- Kelava, M.; Alfirevic, A.; Bustamante, S.; Hargrave, J.; Marciniak, D. Regional anesthesia in cardiac surgery: An overview of fascial plane chest wall blocks. Anesth. Analg. 2020, 131, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.C.; Isada, T.; Ruzankin, P.; Gottschalk, A.; Whitman, G.; Lawton, J.S.; Dodd-o, J.; Barodka, V. Opioid-sparing cardiac anesthesia: Secondary analysis of an enhanced recovery program for cardiac surgery. Anesth. Analg. 2020, 131, 1852–1861. [Google Scholar] [CrossRef]
- Aguerreche, C.; Cadier, G.; Beurton, A.; Imbault, J.; Leuillet, S.; Remy, A.; Zaouter, C.; Ouattara, A. Feasibility and postoperative opioid sparing effect of an opioid-free anaesthesia in adult cardiac surgery: A retrospective study. BMC Anesthesiol. 2021, 21, 166. [Google Scholar] [CrossRef]
- Osawa, E.A.; Rhodes, A.; Landoni, G.; Galas, F.R.; Fukushima, J.T.; Park, C.H.; Almeida, J.P.; Nakamura, R.E.; Strabelli, T.M.; Pileggi, B. Effect of perioperative goal-directed hemodynamic resuscitation therapy on outcomes following cardiac surgery: A randomized clinical trial and systematic review. Crit. Care Med. 2016, 44, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Galindo, R.J.; Fayfman, M.; Umpierrez, G.E. Perioperative management of hyperglycemia and diabetes in cardiac surgery patients. Endocrinol. Metab. Clin. 2018, 47, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Najmaii, S.; Redford, D.; Larson, D.F. Hyperglycemia as an effect of cardiopulmonary bypass: Intra-operative glucose management. J. ExtraCorporeal Technol. 2006, 38, 168–173. [Google Scholar] [CrossRef]
- Omar, A.S.; Salama, A.; Allam, M.; Elgohary, Y.; Mohammed, S.; Tuli, A.K.; Singh, R. Association of time in blood glucose range with outcomes following cardiac surgery. BMC Anesthesiol. 2015, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Ascione, R.; Rogers, C.; Rajakaruna, C.; Angelini, G. Inadequate blood glucose control is associated with in-hospital mortality and morbidity in diabetic and nondiabetic patients undergoing cardiac surgery. Circulation 2008, 118, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wang, J.; Ma, Y.; Li, X.; An, P.; Wang, J.; Mao, W.; Mu, Y.; Chen, Y.; Chen, K. Association between perioperative glycemic control strategy and mortality in patients with diabetes undergoing cardiac surgery: A systematic review and meta-analysis. Front. Endocrinol. 2020, 11, 513073. [Google Scholar] [CrossRef]
- Choi, H.; Park, C.S.; Huh, J.; Koo, J.; Jeon, J.; Kim, E.; Jung, S.; Kim, H.W.; Lim, J.Y.; Hwang, W. Intraoperative Glycemic Variability and Mean Glucose are Predictors for Postoperative Delirium after Cardiac Surgery: A Retrospective Cohort Study. Clin. Interv. Aging 2022, 17, 79–95. [Google Scholar] [CrossRef]
- Windmann, V.; Spies, C.; Knaak, C.; Wollersheim, T.; Piper, S.K.; Vorderwülbecke, G.; Kurpanik, M.; Kuenz, S.; Lachmann, G. Intraoperative hyperglycemia increases the incidence of postoperative delirium. Minerva Anestesiol. 2019, 85, 1201–1210. [Google Scholar] [CrossRef]
- Giakoumidakis, K.; Eltheni, R.; Patelarou, E.; Theologou, S.; Patris, V.; Michopanou, N.; Mikropoulos, T.; Brokalaki, H. Effects of intensive glycemic control on outcomes of cardiac surgery. Heart Lung 2013, 42, 146–151. [Google Scholar] [CrossRef]
- Kaddoum, R.; Khalili, A.; Shebbo, F.M.; Ghanem, N.; Daher, L.A.; Ali, A.B.; Chehade, N.E.H.; Maroun, P.; Aouad, M.T. Automated versus conventional perioperative glycemic control in adult diabetic patients undergoing open heart surgery. BMC Anesthesiol. 2022, 22, 184. [Google Scholar] [CrossRef]
- Mondal, S.; Bergbower, E.A.; Cheung, E.; Grewal, A.S.; Ghoreishi, M.; Hollander, K.N.; Anders, M.G.; Taylor, B.S.; Tanaka, K.A. Role of cardiac anesthesiologists in intraoperative Enhanced Recovery After Cardiac Surgery (ERACS) Protocol: A retrospective single-center study analyzing preliminary results of a yearlong ERACS protocol implementation. J. Cardiothorac. Vasc. Anesth. 2023, 37, 2450–2460. [Google Scholar] [CrossRef] [PubMed]
- Obafemi, T.; Mullis, D.; Bajaj, S.; Krishna, P.; Boyd, J. Results following implementation of a cardiac surgery ERAS protocol. PLoS ONE 2023, 18, e0277868. [Google Scholar] [CrossRef] [PubMed]
- Yazdchi, F.; Hirji, S.; Harloff, M.; McGurk, S.; Morth, K.; Zammert, M.; Shook, D.; Varelmann, D.; Shekar, P.; Kaneko, T. Enhanced recovery after cardiac surgery: A propensity-matched analysis. In Seminars in Thoracic and Cardiovascular Surgery; WB Saunders: Philadelphia, PA, USA, 2022; pp. 585–594. [Google Scholar]
- Grant, M.C.; Crisafi, C.; Alvarez, A.; Arora, R.C.; Brindle, M.E.; Chatterjee, S.; Ender, J.; Fletcher, N.; Gregory, A.J.; Gunaydin, S. Perioperative Care in Cardiac Surgery: A Joint Consensus Statement by the Enhanced Recovery after Surgery (ERAS) Cardiac Society, ERAS International Society, and The Society of Thoracic Surgeons (STS). Ann. Thorac. Surg. 2024, 117, 669–689. [Google Scholar] [CrossRef] [PubMed]
Exercise Intervention | Author (Year) | Intervention Protocol | Outcome |
---|---|---|---|
Aerobic exercise (Cycle ergometer, treadmill, walking) | Arthur et al. (2000) [26] | Supervised aerobics, 40–70% max heart rate, 90 min 2×/week | Decreased hospital LOS, improved QoL |
Rosenfeldt et al. (2011) [36] | Aerobics, 50% VO2max, one hour, supervised 2×/week for ×2 weeks, then 30 min 4×/week at home | No difference in LOS or QoL | |
Tung et al. (2012) [37] | Supervised aerobics, 50–60% VO2max, one-hour 2×/week for 2 weeks | Decreased noninvasive ventilation and time to ambulation, improved QoL | |
Sawatzky et al. (2014) [38] | Supervised aerobics, 85% max capacity, one-hour 2×/week until surgery, mean of 8 weeks | Improved 6-min walk test and gait speed, no difference in LOS | |
Steinmetz et al. (2020) [2] | Supervised aerobics, 70% peak oxygen uptake, two 10-min workouts with 15 min of light gymnastics for 2 weeks | Improved 6-min walk test and Timed-Up-and-Go time, improved QoL | |
Akowuah et al. (2023) [22] * | Aerobic and respiratory muscle training, two supervised one-hour sessions/week ×4 weeks, home exercise 45 minutes daily, 2×/day incentive spirometer | No difference in 6-min walk test or postoperative mortality, improved maximal inspiratory pressure | |
Strength training (Rowing, wall push-ups, heel raises, bicep curls, sit-to-stand) | Waite et al. (2017) [28] | Strength and balance, home, 3×/week | Reduced frailty, improved 6-min walk test and functional capacity |
Respiratory muscle training (Incentive spirometry, deep breathing, forced expiration) | Hulzebos et al. (2006) [32] | Respiratory muscle, 20 min/day, supervised weekly, mean of 8 weeks | Reduced respiratory complications, reduced pneumonia, shorter LOS |
Savci et al. (2011) [34] | Respiratory muscle, 30 min 2×/day, 5 days prior and 5 days after surgery | Increased strength, improved 6-min walk test, decreased ICU LOS | |
Sobrinho et al. (2014) [35] | Respiratory muscle, supervised once daily until surgery | Shorter LOS, improved respiratory mechanics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bargnes, V., III; Davidson, S.; Talbot, L.; Jin, Z.; Poppers, J.; Bergese, S.D. Start Strong, Finish Strong: A Review of Prehabilitation in Cardiac Surgery. Life 2024, 14, 832. https://doi.org/10.3390/life14070832
Bargnes V III, Davidson S, Talbot L, Jin Z, Poppers J, Bergese SD. Start Strong, Finish Strong: A Review of Prehabilitation in Cardiac Surgery. Life. 2024; 14(7):832. https://doi.org/10.3390/life14070832
Chicago/Turabian StyleBargnes, Vincent, III, Steven Davidson, Lillian Talbot, Zhaosheng Jin, Jeremy Poppers, and Sergio D. Bergese. 2024. "Start Strong, Finish Strong: A Review of Prehabilitation in Cardiac Surgery" Life 14, no. 7: 832. https://doi.org/10.3390/life14070832
APA StyleBargnes, V., III, Davidson, S., Talbot, L., Jin, Z., Poppers, J., & Bergese, S. D. (2024). Start Strong, Finish Strong: A Review of Prehabilitation in Cardiac Surgery. Life, 14(7), 832. https://doi.org/10.3390/life14070832