Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maintenance of Cell Lines
2.2. Cloning of Constructs Encoding for Soluble HLA-B*57:01
2.3. Stable Transduction of LCL721.221 Cells with Lentivirus Encoding for sHLA-B*57:01
2.4. Mass Spectrometric Detection of ABC in Solution
2.5. Mass Spectrometric Analysis of ABC-Induced Modifications of the LCL721.221 Proteome
3. Results
3.1. Development of a Mass Spectrometric Method for the Detection of ABC in Solution
3.2. Recombinant B Cells Absorb ABC
3.3. Impact of ABC Treatment on Protein Expression of Recombinant B Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. International drug monitoring: The role of national centres. Report of a WHO meeting. World Health Organ. Tech. Rep. Ser. 1972, 498, 1–25. [Google Scholar]
- Simper, G.S.; Celik, A.A.; Kunze-Schumacher, H.; Blasczyk, R.; Bade-Doding, C. Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens. In Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens, Physiology and Pathology of Immunology; Rezaei, N., Ed.; IntechOpen: London, UK, 2017; pp. 55–74. [Google Scholar] [CrossRef] [Green Version]
- Pichler, W.J.; Hausmann, O. Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms. Int. Arch. Allergy Immunol. 2016, 171, 166–179. [Google Scholar] [CrossRef]
- Adam, J.; Pichler, W.J.; Yerly, D. Delayed drug hypersensitivity: Models of T-cell stimulation. Br. J. Clin. Pharmacol. 2011, 71, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, M.D. Clinical pharmacology. Adverse reactions to drugs. Br. Med. J. (Clin. Res. Ed.) 1981, 282, 974–976. [Google Scholar] [CrossRef] [Green Version]
- Edwards, I.R.; Aronson, J.K. Adverse drug reactions: Definitions, diagnosis, and management. Lancet 2000, 356, 1255–1259. [Google Scholar] [CrossRef]
- Uetrecht, J.; Naisbitt, D.J. Idiosyncratic adverse drug reactions: Current concepts. Pharmacol. Rev. 2013, 65, 779–808. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, P.; Hertzman, R.J.; Palubinsky, A.M.; Giles, J.B.; Karnes, J.H.; Gibson, A.; Phillips, E.J. Immunopharmacogenomics: Mechanisms of HLA-associated drug reactions. Clin. Pharmacol. Ther. 2021, 110, 2343. [Google Scholar] [CrossRef] [PubMed]
- Illing, P.T.; Purcell, A.W.; McCluskey, J. The role of HLA genes in pharmacogenomics: Unravelling HLA associated adverse drug reactions. Immunogenetics 2017, 69, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Pichler, W.J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 2003, 139, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.H.; Hung, S.I.; Hong, H.S.; Hsih, M.S.; Yang, L.C.; Ho, H.C.; Wu, J.Y.; Chen, Y.T. Medical genetics: A marker for Stevens-Johnson syndrome. Nature 2004, 428, 486. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.I.; Chung, W.H.; Liou, L.B.; Chu, C.C.; Lin, M.; Huang, H.P.; Lin, Y.L.; Lan, J.L.; Yang, L.C.; Hong, H.S.; et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl. Acad. Sci. USA 2005, 102, 4134–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, R.; Matz, H.; Orion, E.; Tuzun, B.; Tuzun, Y. Dapsone. Dermatol. Online J. 2002, 8, 2. [Google Scholar] [CrossRef]
- Nakkam, N.; Gibson, A.; Mouhtouris, E.; Konvinse, K.C.; Holmes, N.E.; Chua, K.Y.; Deshpande, P.; Li, D.; Ostrov, D.A.; Trubiano, J.; et al. Cross-reactivity between vancomycin, teicoplanin, and telavancin in patients with HLA-A *32:01-positive vancomycin-induced DRESS sharing an HLA class II haplotype. J. Allergy Clin. Immunol. 2021, 147, 403–405. [Google Scholar] [CrossRef]
- Hewitt, E.W. The MHC class I antigen presentation pathway: Strategies for viral immune evasion. Immunology 2003, 110, 163–169. [Google Scholar] [CrossRef]
- Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Zinkernagel, R.M.; Doherty, P.C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974, 248, 701–702. [Google Scholar] [CrossRef]
- Huyton, T.; Ladas, N.; Schumacher, H.; Blasczyk, R.; Bade-Doeding, C. Pocketcheck: Updating the HLA class I peptide specificity roadmap. Tissue Antigens 2012, 80, 239–248. [Google Scholar] [CrossRef]
- Redwood, A.J.; Pavlos, R.K.; White, K.D.; Phillips, E.J. HLAs: Key regulators of T-cell-mediated drug hypersensitivity. HLA 2018, 91, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetherington, S.; McGuirk, S.; Powell, G.; Cutrell, A.; Naderer, O.; Spreen, B.; Lafon, S.; Pearce, G.; Steel, H. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin. Ther. 2001, 23, 1603–1614. [Google Scholar] [CrossRef]
- Escaut, L.; Liotier, J.Y.; Albengres, E.; Cheminot, N.; Vittecoq, D. Abacavir rechallenge has to be avoided in case of hypersensitivity reaction. AIDS 1999, 13, 1419–1420. [Google Scholar] [CrossRef]
- Mallal, S.; Nolan, D.; Witt, C.; Masel, G.; Martin, A.M.; Moore, C.; Sayer, D.; Castley, A.; Mamotte, C.; Maxwell, D.; et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002, 359, 727–732. [Google Scholar] [CrossRef]
- Hetherington, S.; Hughes, A.R.; Mosteller, M.; Shortino, D.; Baker, K.L.; Spreen, W.; Lai, E.; Davies, K.; Handley, A.; Dow, D.J.; et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002, 359, 1121–1122. [Google Scholar] [CrossRef]
- Martin, A.M.; Nolan, D.; Gaudieri, S.; Almeida, C.A.; Nolan, R.; James, I.; Carvalho, F.; Phillips, E.; Christiansen, F.T.; Purcell, A.W.; et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc. Natl. Acad. Sci. USA 2004, 101, 4180–4185. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.A.; Kroetz, D.L. Abacavir pharmacogenetics--from initial reports to standard of care. Pharmacotherapy 2013, 33, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Illing, P.T.; Vivian, J.P.; Dudek, N.L.; Kostenko, L.; Chen, Z.; Bharadwaj, M.; Miles, J.J.; Kjer-Nielsen, L.; Gras, S.; Williamson, N.A.; et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 2012, 486, 554–558. [Google Scholar] [CrossRef]
- Norcross, M.A.; Luo, S.; Lu, L.; Boyne, M.T.; Gomarteli, M.; Rennels, A.D.; Woodcock, J.; Margulies, D.H.; McMurtrey, C.; Vernon, S.; et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: An autoimmune model for HLA-associated drug hypersensitivity. AIDS 2012, 26, F21–F29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrov, D.A.; Grant, B.J.; Pompeu, Y.A.; Sidney, J.; Harndahl, M.; Southwood, S.; Oseroff, C.; Lu, S.; Jakoncic, J.; de Oliveira, C.A.; et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc. Natl. Acad. Sci. USA 2012, 109, 9959–9964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chessman, D.; Kostenko, L.; Lethborg, T.; Purcell, A.W.; Williamson, N.A.; Chen, Z.; Kjer-Nielsen, L.; Mifsud, N.A.; Tait, B.D.; Holdsworth, R.; et al. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 2008, 28, 822–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, G.T.; Hiemisch, W.; Pich, A.; Matern, M.; Gräser, L.S.; Blasczyk, R.; Bade-Doding, C.; Simper, G.S. Small molecule/HLA complexes alter the cellular proteomic content. In New Insights into the Future of Pharmacoepidemiology and Drug Safety; Herdeiro, M.T., Roque, F., Figueiras, A., Silva, T.M., Eds.; IntechOpen: London, UK, 2021; pp. 91–108. [Google Scholar] [CrossRef]
- Mallal, S.; Phillips, E.; Carosi, G.; Molina, J.M.; Workman, C.; Tomazic, J.; Jagel-Guedes, E.; Rugina, S.; Kozyrev, O.; Cid, J.F.; et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 2008, 358, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Badrinath, S.; Kunze-Schumacher, H.; Blasczyk, R.; Huyton, T.; Bade-Doeding, C. A Micropolymorphism Altering the Residue Triad 97/114/156 Determines the Relative Levels of Tapasin Independence and Distinct Peptide Profiles for HLA-A(*)24 Allotypes. J. Immunol. Res. 2014, 2014, 298145. [Google Scholar] [CrossRef] [Green Version]
- Bade-Doding, C.; Theodossis, A.; Gras, S.; Kjer-Nielsen, L.; Eiz-Vesper, B.; Seltsam, A.; Huyton, T.; Rossjohn, J.; McCluskey, J.; Blasczyk, R. The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family. Haematologica 2011, 96, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Ho, G.T.; Heinen, F.J.; Huyton, T.; Blasczyk, R.; Bade-Doding, C. HLA-F*01:01 presents peptides with N-terminal flexibility and a preferred length of 16 residues. Immunogenetics 2019, 71, 353–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celik, A.A.; Simper, G.S.; Hiemisch, W.; Blasczyk, R.; Bade-Döding, C. HLA-G peptide preferences change in transformed cells: Impact on the binding motif. Immunogenetics 2018, 70, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Ho, G.T.; Heinen, F.J.; Blasczyk, R.; Pich, A.; Bade-Doeding, C. HLA-F Allele-Specific Peptide Restriction Represents an Exceptional Proteomic Footprint. Int. J. Mol. Sci. 2019, 20, 5572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simper, G.S.; Ho, G.T.; Celik, A.A.; Huyton, T.; Kuhn, J.; Kunze-Schumacher, H.; Blasczyk, R.; Bade-Doding, C. Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B *15:02. J. Immunol. Res. 2018, 2018, 5086503. [Google Scholar] [CrossRef] [Green Version]
- Yuen, B.T.; Knoepfler, P.S. Histone H3.3 mutations: A variant path to cancer. Cancer Cell 2013, 24, 567–574. [Google Scholar]
- Li, Y.; Deshpande, P.; Hertzman, R.J.; Palubinsky, A.M.; Gibson, A.; Phillips, E.J. Genomic Risk Factors Driving Immune-Mediated Delayed Drug Hypersensitivity Reactions. Front. Genet. 2021, 12, 641905. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Wang, P.; Lian, B.; Li, C.; Wang, J.; Li, X.; Jiang, W. Systematic analysis of the associations between adverse drug reactions and pathways. Biomed. Res. Int. 2015, 2015, 670949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jedema, I.; van der Werff, N.M.; Barge, R.M.; Willemze, R.; Falkenburg, J.H. New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood 2004, 103, 2677–2682. [Google Scholar] [CrossRef] [Green Version]
- Enevold, C.; Oturai, A.B.; Sorensen, P.S.; Ryder, L.P.; Koch-Henriksen, N.; Bendtzen, K. Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD1-2, DDX58, and IFIH1. J. Neuroimmunol. 2009, 212, 125–131. [Google Scholar] [CrossRef]
- Sheng, Y.; Jin, X.; Xu, J.; Gao, J.; Du, X.; Duan, D.; Li, B.; Zhao, J.; Zhan, W.; Tang, H.; et al. Sequencing-based approach identified three new susceptibility loci for psoriasis. Nat. Commun. 2014, 5, 4331. [Google Scholar] [CrossRef] [Green Version]
- Cunninghame Graham, D.S.; Morris, D.L.; Bhangale, T.R.; Criswell, L.A.; Syvanen, A.C.; Ronnblom, L.; Behrens, T.W.; Graham, R.R.; Vyse, T.J. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 2011, 7, e1002341. [Google Scholar] [CrossRef]
- Martinez, A.; Varade, J.; Lamas, J.R.; Fernandez-Arquero, M.; Jover, J.A.; de la Concha, E.G.; Fernandez-Gutierrez, B.; Urcelay, E. Association of the IFIH1-GCA-KCNH7 chromosomal region with rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 137–138. [Google Scholar] [CrossRef]
- Smyth, D.J.; Cooper, J.D.; Bailey, R.; Field, S.; Burren, O.; Smink, L.J.; Guja, C.; Ionescu-Tirgoviste, C.; Widmer, B.; Dunger, D.B.; et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 2006, 38, 617–619. [Google Scholar] [CrossRef]
- Nejentsev, S.; Walker, N.; Riches, D.; Egholm, M.; Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 2009, 324, 387–389. [Google Scholar] [CrossRef] [Green Version]
- Gorman, J.A.; Hundhausen, C.; Errett, J.S.; Stone, A.E.; Allenspach, E.J.; Ge, Y.; Arkatkar, T.; Clough, C.; Dai, X.; Khim, S.; et al. The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat. Immunol. 2017, 18, 744–752. [Google Scholar] [CrossRef]
- Downes, K.; Pekalski, M.; Angus, K.L.; Hardy, M.; Nutland, S.; Smyth, D.J.; Walker, N.M.; Wallace, C.; Todd, J.A. Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS ONE 2010, 5, e12646. [Google Scholar] [CrossRef] [Green Version]
- Lincez, P.J.; Shanina, I.; Horwitz, M.S. Reduced expression of the MDA5 Gene IFIH1 prevents autoimmune diabetes. Diabetes 2015, 64, 2184–2193. [Google Scholar] [CrossRef] [Green Version]
- Chasset, F.; Dayer, J.M.; Chizzolini, C. Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment. Front. Pharmacol. 2021, 12, 633821. [Google Scholar] [CrossRef]
- Yang, H.; Beutler, B.; Zhang, D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021. [Google Scholar] [CrossRef]
- Chitu, V.; Stanley, E.R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 2006, 18, 39–48. [Google Scholar] [CrossRef]
- Warren, M.K.; Ralph, P. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J. Immunol. 1986, 137, 2281–2285. [Google Scholar]
- Eda, H.; Zhang, J.; Keith, R.H.; Michener, M.; Beidler, D.R.; Monahan, J.B. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine 2010, 52, 215–220. [Google Scholar] [CrossRef]
- Lin, R.; Mamane, Y.; Hiscott, J. Structural and functional analysis of interferon regulatory factor 3: Localization of the transactivation and autoinhibitory domains. Mol. Cell Biol. 1999, 19, 2465–2474. [Google Scholar] [CrossRef] [Green Version]
- Jefferies, C.A. Regulating IRFs in IFN Driven Disease. Front. Immunol. 2019, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Petro, T.M. IFN Regulatory Factor 3 in Health and Disease. J. Immunol. 2020, 205, 1981–1989. [Google Scholar] [CrossRef]
Analyte | MRM [m/z] | Dwell [s] | Cone [V] | Collision [eV] |
---|---|---|---|---|
ABC | 287.2 → 191.1 | 0.05 | 36 | 20 |
287.2 → 78.9 | 0.05 | 36 | 31 | |
ABC-D4 | 291.3 → 195.1 | 0.05 | 37 | 29 |
191.3 → 78.9 | 0.05 | 37 | 20 |
Protein Name | Gene Code | Regulation | p-Value |
---|---|---|---|
Histone H3.3 | H3F3A | 25.63 | <0.001 |
Nucleoside diphosphate kinase A | NME1 | 8.69 | 0.003 |
Interferon-induced helicase C domain-containing protein 1 | IFIH1 | 4.75 | 0.002 |
Periphilin-1 | PPHLN1 | 3.92 | 0.001 |
Glucosylceramidase | GBA | 3.72 | 0.044 |
Ras-related protein Rab-35 | RAB35 | 3.71 | 0.008 |
Mitochondrial fission process protein 1 | MTFP1 | 3.61 | 0.045 |
Hermansky-Pudlak syndrome 5 protein | HPS5 | 3.14 | 0.021 |
Transcription factor A, mitochondrial | TFAM | 3.12 | 0.023 |
Prefoldin subunit 3 | VBP1 | 2.95 | 0.010 |
Protein Name of Upstream Regulator | Gene Code | Predicted Activation State | Activation Z-Score | Target Molecules |
---|---|---|---|---|
Macrophage colony-stimulating factor 1 | CSF1 | Activated | 3.411 | ACSL4, ATP1B1, CD36, CFL1, CPT2, DHCR7, ETFA, FASN, FDFT1, FDPS, HADHB, HSPD1, IDH3A, IDI1, IQGAP1, LCP1, MT-CO2, RPL5, RRM2, RUVBL2, SCP2, SLC30A1, TFAM, UHRF1 |
Histone acetyltransferase KAT2A | KAT2 | Activated | 2.236 | HSP90AA1, HSPD1, LDHA, PRKDC, SAE1, XPO1 |
Interferon regulatory factor 3 | IRF3 | Activated | 2.187 | AHNAK, ANXA4, CD58, IFI44L, IFIH1, PTMS, STAT1, TMPO |
Signal transducer and activator of transcription 6 | STAT6 | Inhibited | −2.228 | CDK6, G6PD, PFKL, PYGL |
DNA binding protein Ikaros | IKZF1 | Inhibited | −2.000 | AHNAK, ANXA1, CDK2, CTSS, FASN, FSCN1, IFI44L, IFIH1, RAB35, STAT5B, SYNGR2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haukamp, F.J.; Gall, E.; Hò, G.-G.T.; Hiemisch, W.; Stieglitz, F.; Kuhn, J.; Blasczyk, R.; Pich, A.; Bade-Döding, C. Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. J. Pers. Med. 2022, 12, 40. https://doi.org/10.3390/jpm12010040
Haukamp FJ, Gall E, Hò G-GT, Hiemisch W, Stieglitz F, Kuhn J, Blasczyk R, Pich A, Bade-Döding C. Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. Journal of Personalized Medicine. 2022; 12(1):40. https://doi.org/10.3390/jpm12010040
Chicago/Turabian StyleHaukamp, Funmilola Josephine, Eline Gall, Gia-Gia Toni Hò, Wiebke Hiemisch, Florian Stieglitz, Joachim Kuhn, Rainer Blasczyk, Andreas Pich, and Christina Bade-Döding. 2022. "Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication" Journal of Personalized Medicine 12, no. 1: 40. https://doi.org/10.3390/jpm12010040
APA StyleHaukamp, F. J., Gall, E., Hò, G. -G. T., Hiemisch, W., Stieglitz, F., Kuhn, J., Blasczyk, R., Pich, A., & Bade-Döding, C. (2022). Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. Journal of Personalized Medicine, 12(1), 40. https://doi.org/10.3390/jpm12010040