Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Identification
2.2. Protein Content Analysis
2.3. Total and Sulfur Amino Acid Analysis
Order | Family | Scientific Name (9) | Vernacular Name (9) | Number of Countries Reported | Selected Host (and/or Food) Plant Family Reported in the DRC |
---|---|---|---|---|---|
Lepidoptera | Saturniidae | Und. sp_1 | Bingubala jaune (1) “S” | n/d | n/d |
Und. sp_2 | Binkubala (2) | n/d | n/d | ||
Cirina forda Westwood 1849 (3) | Mikwati ”S” | 17 | Anacardiaceae, Apocynaceae, Combretaceae, Euphorbiaceae, Fabaceae. | ||
Imbrasia ertli Rebel 1904 (4) | Misati ”D” | 9 | Achariaceae, Apocynaceae, Dennstaedtiaceae, Euphorbiaceae, Fabaceae | ||
Imbrasia rectilineata Sonthonnax 1899 (5) | Mangaya ”D” | 7 | Annonaceae, Fabaceae, Myrtaceae, Ochnaceae, Phyllanthaceae | ||
Imbrasia sp. (6) | Makonzo ”D” | ±7 | |||
Notodontidae | Und. sp_3 | Mifwangi fwangi ”D” | n/d | n/d | |
Elaphrodes lactea Gaede 1932 (7) | Tunkubi ”D” | 3 | Apocynaceae, Burseraceae, Combretaceae, Dennstaedtiaceae, Dipterocarpaceae, Fabaceae, Hypericaceae, Loganiaceae, Ochnaceae, Rubiaceae | ||
Elaphrodes sp. (8) | Mingingi ”D” | ±3 | |||
Orthoptera | Gryllidae | Und. sp_4 | Makonki ”D” | ±11 | Field crops, vegetables |
2.4. Statistical Analysis
3. Results
3.1. Protein Content
3.2. Amino Acid Profiles
Saturniidae | Notodontidae | Gryllidae | ||||
---|---|---|---|---|---|---|
Amino acids (AAs) a | Cirina forda | Imbrasia ertli | “Binkubala” | Elaphrodes sp. | “Mifwangi fwangi” | “Makonki” |
Essential AAs (EAAs) | ||||||
Valine (Val) | 3.61 ± 0.093 | 4.12 ± 0.024 | 3.85 ± 0.103 | 3.31 ± 0.165 | 3.20 ± 0.067 # | 4.28 ± 0.083 * |
Isoleucine (Ile) | 2.69 ± 0.065 | 3.00 ± 0.034 * | 2.82 ± 0.076 | 2.32 ± 0.069 | 2.29 ± 0.081 # | 2.98 ± 0.036 |
Leucine (Leu) | 3.85 ± 0.105 | 4.30 ± 0.055 | 4.10 ± 0.110 | 3.70 ± 0.092 | 3.63 ± 0.084 # | 5.40 ± 0.093 * |
Lysine (Lys) | 4.39 ± 0.116 | 4.91 ± 0.035 * | 4.91 ± 0.132 * | 4.07 ± 0.090 | 3.62 ± 0.006 # | 4.34 ± 0.012 |
Threonine (Thr) | 3.05 ± 0.000 | 3.42 ± 0.014 * | 3.38 ± 0.091 | 2.59 ± 0.030 | 2.50 ± 0.050 # | 2.76 ± 0.004 |
Phenylalanine (Phe) | 2.75 ± 0.034 | 3.17 ± 0.153 * | 2.93 ± 0.078 | 2.57 ± 0.065 | 2.35 ± 0.079 | 2.26 ± 0.048 # |
Methionine (Met) | 0.95 ± 0.008 | 1.15 ± 0.011 | 1.08 ± 0.029 | 1.05 ± 0.006 | 0.82 ± 0.093 # | 1.17 ± 0.036 * |
Histidine (His) | 2.24 ± 0.008 | 2.19 ± 0.025 | 2.58 ± 0.069 * | 1.95 ± 0.040 | 1.29 ± 0.040 # | 2.08 ± 0.059 |
Tryptophan (Trp) | 0.71 ± 0.288 | 1.01 ± 0.027 * | 0.77 ± 0.021 | 0.99 ± 0.150 | 0.53 ± 0.010 # | 0.73 ± 0.012 |
EAAs | 24.24 | 27.27 | 26.42 | 22.53 | 20.23 | 26.01 |
Non-essential AAs (NEAAs) | ||||||
Tyrosine (Tyr) b | 3.55 ± 0.046 | 4.04 ± 0.071 | 4.23 ± 0.113 * | 3.62 ± 0.041 | 3.29 ± 0.107 # | 3.46 ± 0.086 |
Arginine (Arg) | 3.30 ± 0.110 | 3.56 ± 0.085 | 3.54 ± 0.095 | 3.12 ± 0.054 | 2.88 ± 0.101 # | 4.28 ± 0.142 * |
Aspartic acid (Asn) | 5.37 ± 0.045 | 5.87 ± 0.011 | 5.87 ± 0.157 * | 4.92 ± 0.089 | 4.76 ± 0.081 # | 5.19 ± 0.008 |
Glutamic acid (Gln) | 7.13 ± 0.081 | 7.65 ± 0.025 | 7.71 ± 0.207 | 6.63 ± 0.117 | 5.88 ± 0.161 # | 7.53 ± 0.064 * |
Serine (Ser) | 3.21 ± 0.036 | 3.72 ± 0.034 * | 3.37 ± 0.09 | 2.62 ± 0.010 | 2.60 ± 0.077 # | 3.02 ± 0.036 |
Glycine (Gly) | 2.82 ± 0.037 | 3.11 ± 0.021 | 3.04 ± 0.081 | 2.38 ± 0.026 | 2.22 ± 0.004 # | 3.78 ± 0.192 * |
Alanine (Ala) | 2.98 ± 0.063 | 3.24 ± 0.048 | 3.31 ± 0.089 | 2.90 ± 0.038 # | 2.90 ± 0.003 # | 5.63 ± 0.401 * |
Cysteine (Cys) | 1.01 ± 0.008 | 1.07 ± 0.028 | 1.14 ± 0.030 * | 0.61 ± 0.014 # | 0.83 ± 0.022 | 0.69 ± 0.006 |
Proline (Pro) | 2.87 ± 0.161 | 3.16 ± 0.137 | 2.86 ± 0.077 | 2.39 ± 0.085 | 2.26 ± 0.072 # | 3.97 ± 0.170 * |
NEAAs | 32.19 | 35.41 | 35.05 | 29.18 | 27.59 | 37.55 |
Total AAs | 56.43 | 62.68 | 61.47 | 51.71 | 47.82 | 63.56 |
Ratio EAAs/NEAAs | 0.75 | 0.77 | 0.75 | 0.77 | 0.73 | 0.69 |
EAAI c | 1.11 | 1.36 | 1.22 | 1.04 | 0.90 | 1.15 |
Edible Insects | Saturniidae | Notodontidae | Gryllidae | ||||
---|---|---|---|---|---|---|---|
EAAs | C. forda | I. ertli | “Binkubala” | Elaphrodes sp. | “Mifwangi fwangi” | “Makonki” | |
Valine | 1.00 | 1.14 | 1.07 | 0.92 | 0.89 | 1.19 | |
Tryptophan | 1.10 | 1.58 | 1.20 | 1.54 | 0.83 | 1.15 | |
Isoleucine | 1.00 | 1.11 | 1.04 | 0.86 | 0.85 | 1.10 | |
Leucine | 0.71 | 0.80 | 0.76 | 0.68 | 0.67 | 1.00 | |
Lysine | 0.97 | 1.09 | 1.09 | 0.90 | 0.80 | 0.96 | |
Threonine | 1.33 | 1.49 | 1.47 | 1.13 | 1.09 | 1.20 | |
Phenylalanine + Tyrosine | 1.57 | 1.80 | 1.79 | 1.43 | 1.41 | 1.43 | |
Methionine + Cysteine | 0.89 | 1.93 | 1.01 | 0.75 | 0.75 | 0.85 | |
Histidine | 1.49 | 1.46 | 1.72 | 1.30 | 0.86 | 1.38 | |
AA score a | 0.71 | 0.80 | 0.76 | 0.68 | 0.67 | 0.85 | |
Limiting AA | Leu | Leu | Leu | Leu | Leu | Met + Cys |
3.3. EAA Profiles Compared to Data Derived from Literature
4. Discussion
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Responding to COVID-19 Food Disruptions in Africa: Update for the Period of 1 July 2020–14 July 2020. Available online: https://www.fao.org/3/cb0551en/CB0551EN.pdf (accessed on 6 June 2022).
- Zurayk, R. Pandemic and food security. J. Agric. Food Syst. Community Dev. 2020, 9, 17–21. [Google Scholar] [CrossRef]
- Adegboye, A.R.A.; Bawa, M.; Keith, R.; Twefik, S.; Tewfik, I. Edible Insects: Sustainable nutrient-rich foods to tackle food insecurity and malnutrition. World Nutr. 2021, 12, 176–189. [Google Scholar] [CrossRef]
- United Nations (UN). World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 28 June 2022).
- Nchanji, E.; Lutomia, C.; Karanja, D. Immediate impacts of COVID-19 measures on bean production, distribution, and food security in eastern Africa. J. Agric. Food Syst. Community Dev. 2021, 10, 259–263. [Google Scholar] [CrossRef]
- World Economic Forum (WEF). Why Sub-Saharan Africa Needs a Unique Response to COVID-19. Available online: https://www.weforum.org/agenda/2020/03/why-sub-saharan-africa-needs-a-unique-response-to-covid-19/ (accessed on 26 November 2021).
- Food and Agriculture Organization of the United Nations (FAO). COVID-19 and the Role of Local Food Production in Building More Resilient Local Food Systems. Available online: https://www.fao.org/3/cb1020en/CB1020EN.pdf (accessed on 6 June 2022).
- United Nations Development Program (UNDP). Impacts Sanitaires et Socio-Économiques de la COVID-19 en République Démocratique du Congo. Analyse Prospective et Orientations de la Riposte Multisectorielle. Available online: https://www1.undp.org/content/dam/rba/docs/COVID-19-CO-Response/UNDP-rba-Covid-RDC-DRC_2020.pdf (accessed on 16 September 2022).
- Van Huis, A. Importance of insects as food in Africa. In African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components; Mariod, A.A., Ed.; Springer: Cham, Switzerland, 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- DeFoliart, G.R. The Human Use of Insects as a Food Resource: A Bibliographic Account in Progress. Available online: https://insectsasfood.russell.wisc.edu/the-human-use-of-insects-as-a-food-resource/ (accessed on 19 September 2022).
- Malaisse, F. Se Nourrir en Forêt Claire Africaine: Approche Écologique et Nutritionnelle; Les Presses Agronomiques de Gembloux: Wageningen, The Netherlands, 1997; ISBN 978-92-9081-156-5. [Google Scholar]
- Malaisse, F. Human consumption of Lepidoptera, termites, Orthoptera and ants in Africa. In Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails for Sustainable Development; Paoletti, M.G., Ed.; Science Publishers Inc.: Rawalpindi, Pakistan, 2005; pp. 175–230. [Google Scholar] [CrossRef]
- Malaisse, F.; Parent, G. Chemical composition and energetic value of some edible products provided by hunting or gathering in the open forest (Miombo). Geo-Eco-Trop 1997, 21, 65–71. [Google Scholar]
- Malaisse, F.; Demesmaecker, A.; Matera, J.; Wathelet, B.; Lognay, G. Enfin “Tubambe” dévoile son identité! Hadraphe ethiopica (Bethune-Baker) (Limacodidae), une chenille comestible des forêts claires zambéziennes. BASE 2003, 7, 67–77. [Google Scholar]
- Nsevolo, M.P.; Kiatoko, S.N.; Kambashi, B.M.; Francis, F.; Caparros Megido, R. COVID-19 and entomophagy in DRC: Contribution of edible insects to a more resilient local food system. J. Insects Food Feed 2022, 8 (Suppl. 1), S115. [Google Scholar]
- Balinga, M.; Monzambe, M.P.; Moussa, J.B.; N’Gasse, G. Contribution des Insectes de la Forêt à la Sécurité Alimentaire. L’exemple des Chenilles d’Afrique Centrale; FAO: Rome, Italy, 2004. [Google Scholar]
- Detilleux, L.; Poligui, R.N.; Iannello, L.; Dogot, T.; Francis, F.; Megido, R.C. Entomophagy in Gabon across the African context. J. Insects Food Feed 2021, 8, 711–720. [Google Scholar] [CrossRef]
- Djouffa, K.M.L.; Saïdou, C.; Ali, A.; Mohammadou, B.A.; Tchiegang, C. Edible insects in the Adamawa and eastern regions of Cameroon: Collection, processing and consumption. J. Insects Food Feed 2021, 7, 483–494. [Google Scholar] [CrossRef]
- Roulon-Doko, P. Chasse, Cueillette et Culture Chez les Gbaya de Centrafrique; Editions L’Harmattan: Paris, France, 1998; pp. 247–342. ISBN 2-7384-6290-1. [Google Scholar]
- Nsevolo, M.P.; Kambashi, B.M.; Kiatoko, S.N.; Francis, F.; Caparros Megido, R. Reviewing entomophagy in the Democratic Republic of Congo: Species and host plant diversity, seasonality, patterns of consumption and challenges of the edible insect sector. J. Insects Food Feed, 2022; in press. [Google Scholar] [CrossRef]
- Kelemu, S.; Niassy, S.; Torto, B.; Fiaboe, K.; Affognon, H.; Tonnang, H.; Maniania, N.K.; Ekesi, S. African edible insects for food and feed: Inventory, diversity, commonalities and contribution to food security. J. Insects Food Feed 2015, 1, 103–119. [Google Scholar] [CrossRef]
- Fraqueza, M.J.R.; da Silva Coutinho Patarata, L.A. Constraints of HACCP Application on Edible Insect for Food and Feed. 2017. Available online: https://doi.org/10.5772/intechopen.69300 (accessed on 16 September 2022).
- Murefu, T.R.; Macheka, L.; Musundire, R.; Manditsera, F.A. Safety of wild harvested and reared edible insects: A review. Food Control 2019, 101, 209–224. [Google Scholar] [CrossRef]
- Saeed, T.; Dagga, F.A.; Saraf, M. Analysis of residual pesticides present in edible locusts captured in Kuwait. Arab Gulf J. Sci. Res. 1993, 11, 1–5. [Google Scholar]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Belluco, S.; Mantovani, A.; Ricci, A. Edible insects in a food safety perspective. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 109–126. [Google Scholar] [CrossRef]
- Delvare, G.; Aberlenc, H. Les Insectes d’Afrique et d’Amérique Tropicale—Clés Pour la Reconnaissance des Familles; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD): Montpellier, France, 1989; ISBN 2-87614-023-3. [Google Scholar]
- Francis, F.; Haubruge, E. Le Conservatoire entomologique de Gembloux: Lieu de conservation et de valorisation du patrimoine wallon. Entomol. Faun. 2012, 65, 35–40. [Google Scholar]
- A.O.A.C. Official Methods of Analysis of AOAC International, 18th ed.; Method 968.06 and 992.15; The Association of Official Analytical Chemists (AOAC International): Gaithersburg, MD, USA, 2005. [Google Scholar]
- Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.M.; Fogliano, V.; Catriona, M.M.; Lakemond, C.M.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Rickert, D.A.; Deak, N.A.; Aldin, E.D.; Recknor, J.; Johnson, L.A.; Murphy, P.A. Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products. J. Am. Oil Chem. Soc. 2003, 80, 1169–1173. [Google Scholar] [CrossRef]
- Thompson, M.; Owen, L.; Wilkinson, K.; Wood, R.; Damant, A. A comparison of the Kjeldahl and Dumas methods for the determination of protein in foods, using data from a proficiency testing scheme. Analyst 2002, 127, 1666–1668. [Google Scholar] [CrossRef] [PubMed]
- Nsevolo, M.P.; Taofic, A.; Caparros, M.R.; Sablon, L.; Haubruge, E.; Francis, F. La biodiversité entomologique comme source d’aliments à Kinshasa (République Démocratique du Congo). Ann. Société Entomol. Fr. 2016, 52, 57–64. [Google Scholar] [CrossRef]
- McCusker, S.; Buff, P.; Yu, Z.; Fascetti, A. Amino acid content of selected plant, algae and insect species: A search for alternative protein sources for use in pet foods. J. Nutr. Sci. 2014, 3, e39. [Google Scholar] [CrossRef] [Green Version]
- Latham, P.; Malaisse, F.; Konda, K.M.A.; Oberprieler, R. Some Caterpillars and Pupae Eaten in Africa; Paul Latham: Scotland, UK, 2021; pp. 1–282.
- INFOODS. Food Composition Table for Western Africa. 2019. User Guide & Condensed Food Composition Table. Available online: https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/ (accessed on 6 June 2022).
- Wu, G. Amino Acids: Biochemistry and Nutrition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 7–9. ISBN 9781003092742. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Dietary Protein Quality Evaluation in Human Nutrition—Report of an FAO Expert Consultation; Food and Nutrition Paper No. 92; FAO: Rome, Italy, 2013. [Google Scholar]
- Nielsen, N.S. Food Analysis Laboratory Manual, 5th ed.; Springer Cham: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Nielsen, S.S. Correction to: Food Analysis Fifth Edition. In Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Oibiokpa, F.I.; Akanya, H.O.; Jigam, A.A.; Saidu, A.N.; Egwim, E.C. Protein quality of four indigenous edible insect species in Nigeria. Food Sci. Hum. Wellness 2018, 7, 175–183. [Google Scholar] [CrossRef]
- Payne, C.L.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Anim. Front. 2015, 5, 20–24. [Google Scholar]
- Halloran, A.; Capparos Megido, R.; Oloo, J.; Weigel, T.; Nsevolo, P.; Francis, F. Comparative aspects of cricket farming in Thailand, Cambodia, Lao People’s Democratic Republic, Democratic Republic of the Congo and Kenya. J. Insects Food Feed 2018, 4, 101–114. [Google Scholar] [CrossRef]
- Vantomme, P.; Munke, C.; Van Huis, A.; Van Itterbeeck, J.; Hakman, A. Insects to Feed the World: Summary Report; Wageningen University and Research Center: Wageningen, The Netherlands, 2014; Available online: http://www.fao.org/forestry/edibleinsects/86385/en/ (accessed on 21 June 2022).
- Chen, X.; Feng, Y.; Zhang, H.; Chen, Z. Review of the nutritive value of edible insects. In Forest Insects as Food: Humans Bite Back. Proceedings of a Workshop on Asia-Pacific Resources and Their Potential for Development, Chiang Mai, Thailand, 19–21 February 2008; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010; pp. 85–92. [Google Scholar]
- Bukkens, S.G. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Joyce, I. Protein digestibility of cereal products. Foods 2019, 8, 199. [Google Scholar]
- Temba, M.C.; Njobeh, P.B.; Adebo, O.A.; Olugbile, A.O.; Kayitesi, E. The role of compositing cereals with legumes to alleviate protein energy malnutrition in Africa. Int. J. Food Sci. Technol. 2016, 51, 543–554. [Google Scholar] [CrossRef]
- Malasi, F.M.; Malaisse, F.; Latham, P.; Francis, F.; Megido, R.C. Caterpillars consumed in Masi-Manimba territory (Kwilu), Democratic Republic of the Congo. J. Insects Food Feed, 2022; in press. [Google Scholar] [CrossRef]
- Rose, A.J. Amino acid nutrition and metabolism in health and disease. Nutrients 2019, 11, 2623. [Google Scholar] [CrossRef] [Green Version]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. J. Food Process. Preserv. 2020, 44, e14601. [Google Scholar] [CrossRef]
- Köhler, R.; Kariuki, L.; Lambert, C.; Biesalski, H.K. Protein, amino acid and mineral composition of some edible insects from Thailand. J. Asia-Pac. Entomol. 2019, 22, 372–378. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; Moreno, J.M.P.; Prado, E.E.; Perez, M.A.; Otero, J.L.; De Guevara, O.L. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compos. Anal. 1997, 10, 142–157. [Google Scholar] [CrossRef]
- Mathijs, E. Exploring future patterns of meat consumption. Meat Sci. 2015, 109, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Krüger, R.F.; de Carvalho, C.J.; Ribeiro, P.B. Assembly rules in muscid fly assemblages in the grasslands biome of Southern Brazil. Neotrop. Entomol. 2010, 39, 345–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricini) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Kodonki, K.K.; Leclercq, M.; Bourgeay-Causse, M.; Pascaud, A.; Gaudin-Harding, F. Intérêt nutritionnel de chenilles d’Attacidés du Zaïre: Composition et valeur nutritionnelle. Cah. Nutr. Diététique 1987, 22, 473–477. [Google Scholar]
- Mabossy-Mobouna, G.; Malaisse, F.; Richel, A.; Maesen, P.; Latham, P.; Roulon-Doko, P.; Madamo, F. Imbrasia obscura, an Edible Caterpillar of Tropical Africa: Chemical Composition and Nutritional Value. Tropicultura 2018, 36, 798–811. [Google Scholar]
- Banjo, A.D.; Lawal, O.A.; Songonuga, E.A. The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr. J. Biotechnol. 2006, 5, 298–301. [Google Scholar]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef]
- Ramos-Elorduy Blásquez, J.; Pino Moreno, J.M.; Martinez Camacho, V.H. Could grasshoppers be a nutritive meal. Food Nutr. Sci. 2012, 3, 164–175. [Google Scholar]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia-Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Mba, A.R.F.; Kansci, G.; Viau, M.; Rougerie, R.; Genot, C. Edible caterpillars of Imbrasia truncata and Imbrasia epimethea contain lipids and proteins of high potential for nutrition. J. Food Compos. Anal. 2019, 79, 70–79. [Google Scholar]
- Mahmud, A.; Girmatsion, M.; Abraha, B.; Mohammed, J.K.; Yang, F.; Xia, W. Fatty acid and amino acid profiles and digestible indispensable amino acid score of grass carp (Ctenopharyngodon idella) protein concentrate supplemented noodles. J. Food Meas. Charact. 2020, 14, 2370–2379. [Google Scholar] [CrossRef]
- Nsevolo, M.P. Citizen science, a tool for enhancing knowledge and management of edible insect biodiversity in the Democratic Republic of the Congo. In Proceedings of the Biodiversity Information Science and Standards (TDWG) 2016 Annual Conference, Santa Clara de San Carlos, Costa Rica, 5–9 December 2016. [Google Scholar]
- Nsevolo, M.P. Authoritative Taxonomic Databases for Progress in Edible Insect and Host Plant Inventories. Biodivers. Inf. Sci. Stand. 2021, 5, e75908. [Google Scholar] [CrossRef]
- Lautenschläger, T.; Neinhuis, C.; Monizi, M.; Mandombe, J.L.; Förster, A.; Henle, T.; Nuss, M. Edible insects of northern Angola. Afr. Invertebr. 2017, 58, 55. [Google Scholar] [CrossRef]
- Malaisse, F.; Lognay, G. Les chenilles comestibles d’Afrique tropicale. In Les Insectes Dans la Tradition Orale; Motte-Florac, E., Thomas, J.M.C., Eds.; Peeters: Leuven, Belgium, 2003; pp. 279–304. [Google Scholar]
Animal Protein Sources | Description | Edible Portion (EP) | % Protein (DM) * | INFOODS _Code |
---|---|---|---|---|
Egg | Egg, chicken, local breed, raw | 0.87 | 50.0 | 08_005 |
Trachurus trachurus | Atlantic horse mackerel, wild, fillet without skin, grilled (without salt or fat) | 0.48 | 72.4 | 09_071 |
Bos taurus | Beef meat, lean, ca. 5% fat, grilled (without salt or fat) | 1.00 | 78.8 | 07_011 |
Sus domesticus | Pork meat, moderately fat, ca. 20% fat, grilled (without salt or fat) | 1.00 | 43.9 | 07_058 |
G. gallus domesticus | Chicken, light meat with skin, grilled (without salt or fat) | 1.00 | 69.7 | 07_038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nsevolo Miankeba, P.; Taofic, A.; Kiatoko, N.; Mutiaka, K.; Francis, F.; Caparros Megido, R. Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa. Insects 2022, 13, 994. https://doi.org/10.3390/insects13110994
Nsevolo Miankeba P, Taofic A, Kiatoko N, Mutiaka K, Francis F, Caparros Megido R. Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa. Insects. 2022; 13(11):994. https://doi.org/10.3390/insects13110994
Chicago/Turabian StyleNsevolo Miankeba, Papy, Alabi Taofic, Nkoba Kiatoko, Kambashi Mutiaka, Frédéric Francis, and Rudy Caparros Megido. 2022. "Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa" Insects 13, no. 11: 994. https://doi.org/10.3390/insects13110994
APA StyleNsevolo Miankeba, P., Taofic, A., Kiatoko, N., Mutiaka, K., Francis, F., & Caparros Megido, R. (2022). Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa. Insects, 13(11), 994. https://doi.org/10.3390/insects13110994