Effectiveness of Different Modalities of Remote Online Training in Young Healthy Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Procedure
2.2.1. Anthropometric Variables
2.2.2. Muscle Fitness
2.2.3. Cardiovascular Variables
2.2.4. Physical Activity Level
2.3. Training Program
2.4. Statistical Analysis
3. Results
3.1. Changes after Remote Training on the Whole Sample
3.1.1. Anthropometric Variables
3.1.2. Muscle Fitness
3.1.3. Cardiovascular Variables and Physical Activity Level
3.2. Changes after Remote Training According to the Division into Groups LS, VR, and WP
- -
- waist circumference (LS: baseline 85.5 ± 3.6 cm, post 84.2 ± 3.5 cm, p = 0.012; VR: baseline 85.6 ± 7.1 cm, post 84.6 ± 6.9 cm, p = 0.080; WP: baseline 79.6 ± 5.5 cm, post 79.1 ± 5.3 cm, p = 1)
- -
- sit and reach (LS: baseline 25.7 ± 9.5 cm, post 29.1 ± 6.8 cm, p = 0.134; VR: baseline 23.3 ± 10.3 cm, post 26.9 ± 9.4 cm, p = 0.097; WP: baseline 29.4 ± 5.3 cm, post 31.1 ± 5.1 cm, p = 1)
- -
- shoulder internal rotation (LS: baseline 56.4° ± 17.9, post 71.4° ± 10.1, p = 0.011; VR: baseline 60.0° ± 19.1, post 69.6° ± 10.4, p = 0.445; WP: baseline 52.9° ± 15.6, post 66.8° ± 10.8, p = 0.025)
- -
- one leg test (LS: baseline 16.2 ± 9.5 s, post 49.0 ± 39.4 s, p = 0.274; VR: baseline 24.3 ± 19.0 s, post 43.9 ± 29.1 s, p = 1; WP: baseline 31.2 ± 22.3 s, post 73.7 ± 67.2 s, p = 0.033)
- -
- IPAQ (LS: baseline 1427.1 ± 1849.6 METs, post 2731.4 ± 1966.9 METs, p = 0.055; VR: baseline 1695.7 ± 1410.1 METs, post 3212.1 ± 1972.5 METs, p = 0.011; WP: baseline 1796.1 ± 1525.0 METs, post 3030.7 ± 1382.0 METs; p = 0.09)
4. Discussion
Practical Implications
- Remote online training has effectively become a way to deliver exercise. Therefore, the practitioner should consider this delivery model as an option for their clients.
- The three training methods proved to be effective. Therefore, the choice of delivery method should be based on the individual characteristics of the subjects and their preference.
- The livestreaming mode with the supervision of an experienced trainer was the most effective. Therefore, it should be preferred in the case of physical exercise on a single subject.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Italian Ministry of Health. COVID-19—Situazione in Italia. Available online: http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioContenutiNuovoCoronavirus.jsp?lingua=italiano&id=5351&area=nuovoCoronavirus&menu=vuoto (accessed on 30 July 2021).
- Tomovic, M.; Krzman, L. Sport and exercise participation in time of COVID-19—A narrative review of medical and health perspective. Transl. Sport. Med. 2021, 4, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, B.; Sun, Y.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Trends in Adherence to the Physical Activity Guidelines for Americans for Aerobic Activity and Time Spent on Sedentary Behavior Among US Adults, 2007 to 2016. JAMA Netw. Open 2019, 2, e197597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Neto, L.; Elsangedy, H.M.; Tavares, V.D.O.; Teixeira, C.V.L.S.; Behm, D.G.; Da Silva-Grigoletto, M.E. TreineEmCasa—Treinamento físico em casa durante a pandemia do COVID-19 (SARS-CoV-2): Abordagem fisiológica e comportamental. Rev. Bras. Fisiol. Exerc. 2020, 19 (Suppl. 2), S9–S19. [Google Scholar] [CrossRef]
- McNamara, J.M.; Swalm, R.L.; Stearne, D.J.; Covassin, T.M. Online weight training. J. Strength Cond. Res. 2008, 22, 1164–1168. [Google Scholar] [CrossRef]
- Winters-Stone, K.M.; Boisvert, C.; Li, F.; Lyons, K.S.; Beer, T.M.; Mitri, Z.; Meyers, G.; Eckstrom, E.; Campbell, K.L. Delivering exercise medicine to cancer survivors: Has COVID-19 shifted the landscape for how and who can be reached with supervised group exercise? Support. Care Cancer 2022, 30, 1903–1906. [Google Scholar] [CrossRef]
- Matysiak, M.; Siger, M.; Walczak, A.; Ciach, A.; Jonakowski, M.; Stasiołek, M. The influence of COVID-19 pandemic lockdown on the physical activity of people with multiple sclerosis. The role of online training. Mult. Scler. Relat. Disord. 2022, 63, 103843. [Google Scholar] [CrossRef]
- Thompson, W.R. Worldwide Survey of Fitness Trends for 2022. ACSM’s Health Fit. J. 2022, 26, 11–20. [Google Scholar] [CrossRef]
- da Cunha de Sá-Caputo, D.; Taiar, R.; Seixas, A.; Sanudo, B.; Sonza, A.; Bernardo-Filho, M. A Proposal of Physical Performance Tests Adapted as Home Workout Options during the COVID-19 Pandemic. Appl. Sci. 2020, 10, 4755. [Google Scholar] [CrossRef]
- WHO. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.who.int/publications/i/item/9789241501491 (accessed on 30 July 2021).
- American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med. Sci. Sports Exerc. 1998, 30, 975–991. [Google Scholar] [CrossRef]
- Gibson, A.L.; Wagner, D.; Heyward, H.V. Assessing flexibility. In Advanced Fitness Assessment and Exercise Prescription; Human Kinetics: Champaign, IL, USA, 2010; pp. 274–275. [Google Scholar]
- Jain, N.B.; Wilcox, R.B.; Katz, J.N.; Higgins, L.D. Clinical examination of the rotator cuff. PM&R 2013, 5, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, C.; Müller, L.; Zisch, B.; Huber, R.; Fink, C.; Raschner, C. Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part I: Development of a new test battery. Knee Surg. Sport. Traumatol. Arthrosc. 2015, 23, 1273–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canadian Society for Exercise Physiology. The Canadian Physical Activity, Fitness and Lifestyle Approach: CSEP-Health and Fitness Program’s Health-Related Appraisal and Counseling Strategy, 3rd ed.; Canadian Society for Exercise Physiology: Ottawa, ON, Canada, 2003; pp. 7–40. [Google Scholar]
- Byrne, J.M.; Bishop, N.S.; Caines, A.M.; Crane, K.A.; Feaver, A.M.; Pearcey, G.E. Effect of using a suspension training system on muscle activation during the performance of a front plank exercise. J. Strength Cond. Res. 2014, 28, 3049–3055. [Google Scholar] [CrossRef] [PubMed]
- Reimers, A.K.; Knapp, G.; Reimers, C.D. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef] [Green Version]
- Piquet, L.; Dalmay, F.; Ayoub, J.; Vandroux, J.C.; Menier, R.; Antonini, M.T.; Pourcelot, L. Study of blood flow parameters measured in femoral artery after exercise: Correlation with maximum oxygen uptake. Ultrasound Med. Biol. 2000, 26, 1001–1007. [Google Scholar] [CrossRef]
- Mannocci, A.; Masala, D.; Mei, D.; Tribuzio, A.M.; Villari, P.; LA Torre, G. International Physical Activity Questionnaire for Adolescents (IPAQ A): Reliability of an Italian version. Minerva Pediatr. 2021, 73, 383–390. [Google Scholar] [CrossRef]
- American College of Sports Medicine (Ed.) ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Dijkstra, H.P.; Ergen, E.; Holtzhausen, L.; Beasley, I.; Alonso, J.M.; Geertsema, L.; Geertsema, C.; Nelis, S.; Ngai, A.; Stankovic, I.; et al. Remote assessment in sport and exercise medicine (SEM): A narrative review and teleSEM solutions for and beyond the COVID-19 pandemic. Br. J. Sports Med. 2020, 54, 1162–1167. [Google Scholar] [CrossRef]
- Hwang, R.; Fan, T.; Bowe, R.; Louis, M.; Bertram, M.; Morris, N.R.; Adsett, J. Home-based and remote functional exercise testing in cardiac conditions, during the COVID-19 pandemic and beyond: A systematic review. Physiotherapy 2022, 115, 27–35. [Google Scholar] [CrossRef]
- D’Oliveira, A.; De Souza, L.C.; Langiano, E.; Falese, L.; Diotaiuti, P.; Vilarino, G.T.; Andrade, A. Home Physical Exercise Protocol for Older Adults, Applied Remotely During the COVID-19 Pandemic: Protocol for Randomized and Controlled Trial. Front. Psychol. 2022, 13, 828495. [Google Scholar] [CrossRef]
- Kercher, V.M.; Kercher, K.; Bennion, T.; Levy, P.; Alexander, C.; Amaral, P.C.; Li, Y.M.; Liu, Y.; Wang, R.; Huang, H.Y.; et al. 2022 Fitness Trends from Around the Globe. ACSM’s Health Fit. J. 2022, 26, 21–37. [Google Scholar] [CrossRef]
- Cronshaw, S. Web workouts and consumer well-being: The role of digital-physical activity during the UK COVID-19 lockdown. J. Consum. Aff. 2022, 56, 449–464. [Google Scholar] [CrossRef] [PubMed]
PRE | POST | ∆ | C.I. (95%) | E.S. | p Value | ||
---|---|---|---|---|---|---|---|
Anthropometric variables | Weight (kg) | 73.4±8.7 | 73.2±8.6 | −0.29 | −1.4|0.8 | 0.023 | 0.579 |
BMI (Kg/m2) | 22.6 ± 2.3 | 22.5 ± 2.2 | −0.10 | −0.4|0.2 | 0.044 | 0.539 | |
Waist Circumference (cm) | 83.6 ± 6.0 | 82.3 ± 5.7 | −1.29 | −2.1|−0.5 | 0.170 | 0.004 | |
Muscle fitness | Sit and Reach (cm) | 26.1 ± 8.6 | 29.0 ± 7.2 | 3.4 | 0.7|6.2 | 0.365 | 0.018 |
Shoulder Flexion (°) | 174.2 ± 7.0 | 185.5 ± 5.0 | 11.0 | 5.6|16.6 | 1.858 | 0.000 | |
Shoulder Extension (°) | 60.5 ± 9.7 | 66.8 ± 8.8 | 4.6 | −0.9|10.2 | 0.680 | 0.097 | |
Shoulder Internal Rotation (°) | 56.4 ± 16.9 | 69.3 ± 10.1 | 15.0 | 5.7|24.3 | 0.926 | 0.003 | |
One Leg Test (s) | 23.9 ± 18.0 | 55.5 ± 47.4 | 32.8 | 3.6|61.9 | 0.881 | 0.030 | |
Handgrip (kg) | 88.7 ± 21.3 | 95.6 ± 19.3 | 5.9 | 0.4|11.5 | 0.339 | 0.036 | |
Maximal Push-up (rep.) | 26.3 ± 10.1 | 34.0 ± 7.9 | 8.7 | 5.0|12.4 | 0.849 | 0.000 | |
Maximal Plank (s) | 90.8 ± 26.7 | 117.4 ± 30.4 | 29.1 | 17.2|41.1 | 0.930 | 0.000 | |
Cardiovascular variables | Rest HR (bpm) | 69.0 ± 7.2 | 66.3 ± 4.1 | −7.3 | −10.6|−3.9 | 0.461 | 0.000 |
Ruffier Index (bpm) | 9.0 ± 2.2 | 7.9 ± 1.6 | −2.1 | −3.1|−1.2 | 0.572 | 0.000 | |
Physical activity level | IPAQ (METs) | 1639.6 ± 1531.6 | 2991.4 ± 1715.3 | 1304.3 | 360.4|2248.2 | 0.831 | 0.009 |
LS | |||||||
---|---|---|---|---|---|---|---|
PRE | POST | ∆ | C.I. (95%) | E.S. | p Value | ||
Muscle fitness | Shoulder Flexion (°) | 175.4 ± 6.8 | 186.4 ± 6.4 | 11.1 | 3.4|18.7 | 1.666 | 0.000 |
Handgrip (kg) | 85.9 ± 22.0 | 91.8 ± 23.3 | 5.9 | −1.8|13.7 | 0.260 | 0.358 | |
Maximal Push-up (rep.) | 23.1 ± 12.1 | 31.9 ± 8.7 | 8.7 | 3.6|13.9 | 0.835 | 0.000 | |
Maximal Plank (s) | 85.4 ± 27.3 | 114.6 ± 26.3 | 29.1 | 12.4|45.9 | 1.089 | 0.000 | |
Cardiovascular variables | Rest HR (bpm) | 73.4 ± 7.0 | 66.1 ± 3.8 | −7.3 | −11.9|−2.7 | 1.296 | 0.000 |
Ruffier Index (bpm) | 9.8 ± 2.1 | 7.7 ± 1.7 | −2.1 | −3.5|−0.8 | 1.099 | 0.000 |
VR | |||||||
---|---|---|---|---|---|---|---|
PRE | POST | ∆ | C.I. (95%) | E.S. | p Value | ||
Muscle fitness | Shoulder Flexion (°) | 173.9 ± 8.3 | 185.7 ± 4.5 | 11.7 | 4.1|19.4 | 1.767 | 0.000 |
Handgrip (kg) | 90.8 ± 23.6 | 101.0 ± 17.7 | 10.16 | 2.4|17.9 | 0.489 | 0.002 | |
Maximal Push-up (rep.) | 25.4 ± 10.5 | 33.0 ± 8.1 | 7.57 | 2.4|12.7 | 0.810 | 0.000 | |
Maximal Plank (s) | 89.6± 27.1 | 111.1 ± 24.9 | 21.57 | 4.8|38.3 | 0.826 | 0.002 | |
Cardiovascular variables | Rest HR (bpm) | 68.6 ± 8.6 | 65.7 ± 5.7 | −2.9 | −7.5|1.8 | 0.397 | 1.000 |
Ruffier Index (bpm) | 9.8 ± 1.4 | 8.2 ± 1.2 | −1.6 | −2.3|−0.3 | 1.227 | 0.006 |
WP | |||||||
---|---|---|---|---|---|---|---|
PRE | POST | ∆ | C.I. (95%) | E.S. | p Value | ||
Muscle fitness | Shoulder Flexion (°) | 173.2 ± 6.9 | 184.3 ± 4.5 | 11.1 | 3.4|18.7 | 1.905 | 0.000 |
Handgrip (kg) | 89.3 ± 21.4 | 94.0 ± 18.2 | 4.7 | −3.1|12.4 | 0.236 | 1.000 | |
Maximal Push-up (rep.) | 30.3 ± 7.3 | 37.0 ± 7.1 | 6.7 | 1.6|11.9 | 0.930 | 0.002 | |
Maximal Plank (s) | 97.4 ± 28.3 | 126.6 ± 40.2 | 29.1 | 12.4|45.9 | 0.840 | 0.000 | |
Cardiovascular variables | Rest HR (bpm) | 65.0 ± 2.4 | 67.1 ± 3.0 | 2.14 | −2.5|6.8 | 0.773 | 1.000 |
Ruffier Index (bpm) | 7.5 ± 2.4 | 7.9 ± 2.1 | 0.46 | −0.9|1.8 | 0.177 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daveri, M.; Fusco, A.; Cortis, C.; Mascherini, G. Effectiveness of Different Modalities of Remote Online Training in Young Healthy Males. Sports 2022, 10, 170. https://doi.org/10.3390/sports10110170
Daveri M, Fusco A, Cortis C, Mascherini G. Effectiveness of Different Modalities of Remote Online Training in Young Healthy Males. Sports. 2022; 10(11):170. https://doi.org/10.3390/sports10110170
Chicago/Turabian StyleDaveri, Michael, Andrea Fusco, Cristina Cortis, and Gabriele Mascherini. 2022. "Effectiveness of Different Modalities of Remote Online Training in Young Healthy Males" Sports 10, no. 11: 170. https://doi.org/10.3390/sports10110170
APA StyleDaveri, M., Fusco, A., Cortis, C., & Mascherini, G. (2022). Effectiveness of Different Modalities of Remote Online Training in Young Healthy Males. Sports, 10(11), 170. https://doi.org/10.3390/sports10110170