Multidimensional Analysis of Physiological Entropy during Self-Paced Marathon Running
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design: Marathon Race
2.3. Data Collection
2.4. Statistical Analysis
2.4.1. Shannon Entropy
2.4.2. Multivariate Data Analysis
2.4.3. Principal Component Analysis
2.4.4. Agglomerative Hierarchical Clustering
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marathon Statistics Every Runner Should Know. Available online: https://www.livestrong.com/article/13763749-marathon-statistics/ (accessed on 3 September 2024).
- Smyth, B. How recreational marathon runners hit the wall: A large-scale data analysis of late-race pacing collapse in the marathon. PLoS ONE 2021, 16, e0251513. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Oliván, J.; Bravo, J.; Gonzalez-Freire, M.; Foster, C. The key to top-level endurance running performance: A unique example. Br. J. Sports Med. 2008, 42, 172–174. [Google Scholar] [CrossRef]
- Joyner, M.J. Modeling: Optimal marathon performance on the basis of physiological factors. J. Appl. Physiol. 1991, 70, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.; Noakes, T.D. The physiological regulation of pacing strategy during exercise: A critical review. Br. J. Sports Med. 2009, 43, e1. [Google Scholar] [CrossRef] [PubMed]
- Smyth, B. Fast starters and slow finishers: A large-scale data analysis of pacing at the beginning and end of the marathon for recreational runners. J. Sports Anal. 2018, 4, 229–242. [Google Scholar] [CrossRef]
- Foster, C.; Schrager, M.; Snyder, A.C.; Thompson, N.N. Pacing strategy and athletic performance. Sports Med. 1994, 17, 77–85. [Google Scholar] [CrossRef]
- Santos-Lozano, A.; Collado, P.S.; Foster, C.; Lucia, A.; Garatachea, N. Influence of sex and level on marathon pacing strategy. Insights from the New York City race. Int. J. Sports Med. 2014, 35, 933–938. [Google Scholar] [CrossRef]
- Billat, V.L.; Carbillet, T.; Correa, M.; Pycke, J.R. Detecting the marathon asymmetry with a statistical signature. Phys. Stat. Mech. Appl. 2019, 515, 240–247. [Google Scholar] [CrossRef]
- Pycke, J.R.; Billat, V.L. Marathon Performance Depends on Pacing Oscillations between Non-Symmetric Extreme Values. Int. J. Environ. Res. Public Health 2022, 19, 2463. [Google Scholar] [CrossRef]
- Abbiss, C.R.; Laursen, P.B. Describing and Uderstanding pacing strategies during athletic competition. Sports Med. 2008, 38, 239–252. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Costa, M.; Ary, L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O.; Tononi, G.; Edelman, G.M. Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 2000, 10, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.J.; Sorensen, L.B.; Ojemann, J.G.; den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 2009, 5, e1000609. [Google Scholar] [CrossRef]
- Cover, T.M.; Joy, A.T. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Silva, P.; Duarte, R.; Sampaio, J.; Aguiar, P.; Davids, K.; Araújo, D.; Garganta, J. Field dimension and skill level constrain team tactical behaviours in small-sided and conditioned games in football. J. Sports Sci. 2014, 32, 1888–1896. [Google Scholar] [CrossRef]
- Silva, P.; Duarte, R.; Esteves, P.; Travassos, B.; Vilar, L. Application of entropy measures to analysis of performance in team sports. Int. J. Perform. Anal. Sport 2016, 16, 753–768. [Google Scholar] [CrossRef]
- Maćkiewicz, A.; Waldemar, R. Principal components analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- Palacin, F.; Poinsard, L.; Pycke, J.R.; Billat, V.L. A Pilot Study Using Entropy for Optimizing Self-Pacing during a Marathon. Entropy 2023, 25, 1119. [Google Scholar] [CrossRef]
- Bam, J.; Noakes, T.D.; Juritz, J.; Dennis, S.C. Could women outrun men in ultramarathon races? Med. Sci. Sports Exerc. 1997, 29, 244–247. [Google Scholar] [CrossRef]
- Hunter, S.K.; Stevens, A.A. Sex differences in marathon running with advanced age: Physiology or participation? Med. Sci. Sports Exerc. 2013, 45, 148–156. [Google Scholar] [CrossRef]
- Namazi, H.; Krejcar, O.; Subasi, A. Complexity and information-based analysis of the variations of the SARS-CoV-2 genome in the United States of America. Fractals 2020, 28, 2150023. [Google Scholar] [CrossRef]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Schroeder, M.A. Diagnosing and dealing with multicollinearity. West. J. Nurs. Res. 1990, 12, 175–184. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Coyle, E.F. Physiological determinants of endurance exercise performance. J. Sci. Med. Sport. 1999, 2, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Whipp, B.J.; Wasserman, K. The relation of ventilation to metabolic rate during moderate exercise in man. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 44, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F.; Coggan, A.R. Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Med. 1984, 1, 446–458. [Google Scholar] [CrossRef]
- Bosch, A.N.; Dennis, S.C.; Noakes, T.D. Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J. Appl. Physiol. 1993, 74, 1921–1927. [Google Scholar] [CrossRef]
- Molinari, C.A.; Edwards, J.; Billat, V. Maximal Time Spent at VO2max from Sprint to the Marathon. Int. J. Environ. Res. Public Health 2020, 17, 9250. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T. The standardization of hyperventilation on EEG recording in childhood. I. The quantity of hyperventilation activation. Brain Dev. 1987, 9, 16–20. [Google Scholar] [CrossRef]
- St Clair Gibson, A.; Noakes, T.D. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br. J. Sports Med. 2004, 38, 797–806. [Google Scholar] [CrossRef]
- Noakes, T.D. The central governor model of exercise regulation applied to the marathon. Sports Med. 2007, 37, 374–377. [Google Scholar] [CrossRef]
- Molinari, C.A.; Palacin, F.; Poinsard, L.; Billat, V.L. Determination of Submaximal and Maximal Training Zones From a 3-Stage, Variable-Duration, Perceptually Regulated Track Test. Int. J. Sports Physiol. Perform. 2020, 15, 853–861. [Google Scholar] [CrossRef]
- Giovanelli, N.; Scaini, S.; Billat, V.L.; Lazzer, S. A new field test to estimate the aerobic and anaerobic thresholds and maximum parameters. Eur. J. Sport. Sci. 2020, 20, 437–443. [Google Scholar] [CrossRef]
- Laursen, P.B.; Rhodes, E.C. Factors affecting performance in an ultra-endurance triathlon. Sports Med. 2001, 31, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F. Physiological regulation of marathon performance. Sports Med. 2007, 37, 306–311. [Google Scholar] [CrossRef]
- Nybo, L.; Nielsen, B. Hyperthermia and central fatigue during prolonged exercise in humans. J. Appl. Physiol. 2001, 91, 1055–1060. [Google Scholar] [CrossRef]
- Daries, H.N.; Noakes, T.D.; Dennis, S.C. Effect of fluid intake volume on 2-h running performances in a 25 degrees C environment. Med. Sci. Sports Exerc. 2000, 32, 1783–1789. [Google Scholar] [CrossRef]
- Shi, X.; Horn, M.K.; Osterberg, K.L.; Stofan, J.R.; Zachwieja, J.J.; Horswill, C.A.; Passe, D.H.; Murray, R. Gastrointestinal discomfort during intermittent high-intensity exercise: Effect of carbohydrate-electrolyte beverage. Int. J. Sport. Nutr. Exerc. Metab. 2004, 14, 673–683. [Google Scholar] [CrossRef]
- Noakes, T.D.; St Clair Gibson, A.; Lambert, E.V. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans: Summary and conclusions. Br. J. Sports Med. 2005, 39, 120–124. [Google Scholar] [CrossRef]
- Lambert, E.V.; St Clair Gibson, A.; Noakes, T.D. Complex systems model of fatigue: Integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br. J. Sports Med. 2005, 39, 52–62. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The bioenergetics of World Class Cycling. J. Sci. Med. Sport. 2000, 3, 414–433. [Google Scholar] [CrossRef]
- Noakes, T.D. Linear relationship between the perception of effort and the duration of constant load exercise that remains. J. Appl. Physiol. 2004, 96, 1571–1572. [Google Scholar] [CrossRef]
- Hosang, L.; Mouchlianitis, E.; Guérin, S.M.R.; Karageorghis, C.I. Effects of exercise on electroencephalography-recorded neural oscillations: A systematic review. Int. Rev. Sport Exerc. Psychol. 2022, 1–54. [Google Scholar] [CrossRef]
- Palacin, F.; Poinsard, L.; Mattei, J.; Berthomier, C.; Billat, V. Brain, Metabolic, and RPE Responses during a Free-Pace Marathon: A Preliminary Study. Int. J. Environ. Res. Public Health 2024, 21, 1024. [Google Scholar] [CrossRef] [PubMed]
- Salenius, S.; Salmelin, R.; Neuper, C.; Pfurtscheller, G.; Hari, R. Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neurosci. Lett. 1996, 213, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Salenius, S.; Portin, K.; Kajola, M.; Salmelin, R.; Hari, R. Cortical control of human motoneuron firing during isometric contraction. J. Neurophysiol. 1997, 77, 3401–3405. [Google Scholar] [CrossRef] [PubMed]
- Schoffelen, J.M.; Oostenveld, R.; Fries, P. Imaging the human motor system’s beta-band synchronization during isometric contraction. Neuroimage 2008, 41, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Gwin, J.T.; Gramann, K.; Makeig, S.; Ferris, D.P. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage 2011, 54, 1289–1296. [Google Scholar] [CrossRef]
- Noakes, T.D. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand. J. Med. Sci. Sports 2000, 10, 123–145. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Nybo, L.; Nielsen, B. Perceived exertion is associated with an altered brain activity during exercise with progressive hyperthermia. J. Appl. Physiol. 2001, 91, 2017–2023. [Google Scholar] [CrossRef]
- Hunter, A.M.; St Clair Gibson, A.; Lambert, M.I.; Nobbs, L.; Noakes, T.D. Effects of supramaximal exercise on the electromyographic signal. Br. J. Sports Med. 2003, 37, 296–299. [Google Scholar] [CrossRef]
- St Clair Gibson, A.; Lambert, E.V.; Rauch, L.H.; Tucker, R.; Baden, D.A.; Foster, C.; Noakes, T.D. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006, 36, 705–722. [Google Scholar] [CrossRef]
Runners id | Age (Years) | Fastest Marathon Times (Years) | Sénart Marathon Times (2019) |
---|---|---|---|
1 | 58 | 03h27′32″ (2013) | 04h30′34″ |
2 | 47 | 02h59′22″ (2016) | 03h32′07″ |
3 | 29 | 02h57′03″ (2015) | 03h14′13″ |
4 | 36 | 03h27′58″ (2017) | 03h51′13″ |
5 | 43 | 02h44′00″ (2015) | 03h13′42″ |
6 | 23 | 03h22′40″ (2019) | 03h22′40″ * |
7 | 44 | 03h34′57″ (2017) | 03h34′57″ * |
8 | 47 | 03h12′48″ (2016) | 03h31′34″ |
9 | 34 | 02h50′00″ (2019) | 02h50′00″ * |
id | Variable | Wall (km) | 0–5 | 5–10 | 10–15 | 15–20 | 20–25 | 25–30 | 30–35 | 35–40 | 40–42 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Speed | 27 | 10.96 ± 0.34 | 11.07 ± 0.21 | 10.77 ± 0.21 | 10.72 ± 0.34 | 10.36 ± 0.28 | 9.83 ± 0.42 | 9.57 ± 0.39 | 8.85 ± 0.87 | 9.71 ± 0.45 |
HR | 155.30 ± 3.29 | 159.80 ± 1.60 | 156.30 ± 1.57 | 157.70 ± 1.30 | 160.40 ± 1.85 | 159.80 ± 1.10 | 159.80 ± 0.84 | 151.90 ± 8.43 | 161.50 ± 2.83 | ||
Cadence | 87.80 ± 0.76 | 88.20 ± 0.45 | 88.00 ± 0.79 | 86.60 ± 0.65 | 86.20 ± 1.44 | 86.10 ± 0.89 | 84.30 ± 0.97 | 82.40 ± 5.86 | 81.00 ± 2.12 | ||
2 | Speed | 33 | 13.96 ± 0.28 | 13.76 ± 0.47 | 13.47 ± 0.39 | 13.44 ± 0.36 | 13.29 ± 0.33 | 12.87 ± 0.27 | 12.33 ± 0.30 | 11.67 ± 0.84 | 13.41 ± 1.25 |
HR | 159.50 ± 2.09 | 163.10 ± 0.55 | 158.60 ± 1.85 | 158.50 ± 1.46 | 159.60 ± 2.04 | 158.20 ± 1.60 | 158.00 ± 1.12 | 158.30 ± 0.84 | 162.50 ± 2.12 | ||
Cadence | 89.00 ± 0.61 | 88.00 ± 0.71 | 88.10 ± 1.29 | 87.90 ± 0.82 | 88.40 ± 0.82 | 87.30 ± 1.44 | 87.50 ± 0.35 | 87.80 ± 0.45 | 90.00 ± 1.41 | ||
3 | Speed | 30 | 13.78 ± 0.71 | 14.41 ± 0.32 | 14.63 ± 0.30 | 14.28 ± 0.28 | 14.07 ± 0.21 | 13.23 ± 0.39 | 12.32 ± 0.80 | 11.02 ± 0.32 | 13.55 ± 0.76 |
HR | 152.10 ± 9.77 | 161.50 ± 2.29 | 166.10 ± 2.53 | 163.30 ± 1.60 | 162.70 ± 0.91 | 160.00 ± 2.45 | 156.00 ± 1.27 | 151.60 ± 1.29 | 161.00 ± 0.71 | ||
Cadence | 82.90 ± 0.55 | 84.00 ± 0.50 | 83.80 ± 0.67 | 83.40 ± 0.65 | 84.10 ± 0.65 | 82.80 ± 0.27 | 81.70 ± 0.27 | 80.20 ± 0.91 | 81.75 ± 1.06 | ||
4 | Speed | 26 | 11.03 ± 0.28 | 11.07 ± 0.31 | 10.77 ± 0.24 | 10.62 ± 0.15 | 10.52 ± 0.34 | 9.78 ± 0.26 | 9.59 ± 0.31 | 8.30 ± 1.36 | 9.96 ± 0.97 |
HR | 155.49 ± 2.95 | 159.63 ± 1.41 | 156.50 ± 1.08 | 157.97 ± 1.57 | 160.21 ± 1.46 | 160.80 ± 0.74 | 159.90 ± 0.58 | 151.51 ± 9.80 | 162.19 ± 1.24 | ||
Cadence | 87.92 ± 0.44 | 88.00 ± 0.42 | 87.96 ± 0.54 | 86.42 ± 0.75 | 86.47 ± 1.09 | 85.40 ± 0.99 | 85.03 ± 0.78 | 77.83 ± 8.76 | 84.17 ± 0.87 | ||
5 | Speed | 30 | 16.76 ± 0.46 | 16.09 ± 0.52 | 13.80 ± 0.19 | 13.76 ± 0.43 | 14.05 ± 0.47 | 12.90 ± 1.19 | 13.15 ± 0.50 | 12.94 ± 0.56 | 12.53 ± 0.31 |
HR | 156.60 ± 4.20 | 160.90 ± 0.89 | 162.70 ± 1.40 | 166.30 ± 0.97 | 168.70 ± 0.97 | 167.90 ± 1.34 | 169.60 ± 0.96 | 172.20 ± 2.75 | 177.00 ± 1.41 | ||
Cadence | 88.10 ± 0.96 | 86.00 ± 0.35 | 85.50 ± 0.35 | 85.50 ± 1.06 | 84.90 ± 0.42 | 85.50 ± 0.94 | 84.90 ± 0.55 | 84.60 ± 0.65 | 84.25 ± 0.35 | ||
6 | Speed | 34 | 12.93 ± 0.19 | 13.22 ± 0.11 | 12.98 ± 0.21 | 12.97 ± 0.21 | 12.98 ± 0.22 | 12.58 ± 0.42 | 12.24 ± 0.55 | 11.05 ± 0.21 | 11.58 ± 0.13 |
HR | 148.90 ± 4.55 | 157.40 ± 1.14 | 159.40 ± 0.74 | 161.60 ± 0.65 | 163.40 ± 1.39 | 163.60 ± 1.14 | 162.90 ± 1.56 | 158.80 ± 1.35 | 161.25 ± 2.47 | ||
Cadence | 93.00 ± 0.35 | 92.40 ± 0.42 | 92.30 ± 0.91 | 92.50 ± 0.61 | 92.60 ± 0.96 | 91.50 ± 0.50 | 91.70 ± 0.57 | 92.10 ± 0.22 | 92.50 ± 0.71 | ||
7 | Speed | 27 | 12.57 ± 0.23 | 12.76 ± 0.20 | 12.17 ± 0.54 | 12.12 ± 0.43 | 12.04 ± 0.24 | 11.57 ± 0.43 | 11.13 ± 0.45 | 10.75 ± 0.38 | |
HR | 157.70 ± 3.35 | 161.90 ± 2.22 | 162.50 ± 0.35 | 163.10 ± 1.52 | 164.00 ± 3.46 | 162.10 ± 2.82 | 155.60 ± 2.82 | 152.00 ± 5.68 | |||
Cadence | 86.30 ± 0.27 | 86.30 ± 0.45 | 85.80 ± 0.57 | 85.70 ± 0.57 | 85.70 ± 0.27 | 85.80 ± 0.27 | 85.70 ± 0.27 | 85.83 ± 0.29 | |||
8 | Speed | 34 | 13.17 ± 0.72 | 13.45 ± 0.26 | 12.84 ± 0.33 | 12.82 ± 0.31 | 12.52 ± 0.46 | 12.03 ± 0.26 | 11.81 ± 0.28 | 11.51 ± 0.27 | 11.40 ± 0.33 |
HR | 163.00 ± 7.90 | 167.20 ± 1.04 | 166.60 ± 0.96 | 167.40 ± 2.51 | 170.10 ± 0.22 | 169.90 ± 1.56 | 169.00 ± 1.46 | 169.70 ± 1.57 | 170.25 ± 2.47 | ||
Cadence | 92.60 ± 0.22 | 92.60 ± 0.42 | 92.50 ± 0.79 | 92.20 ± 0.45 | 91.50 ± 1.06 | 91.80 ± 0.27 | 91.90 ± 0.82 | 92.50 ± 0.79 | 92.50 ± 0.00 | ||
9 | Speed | 27 | 15.38 ± 0.35 | 15.40 ± 0.22 | 15.10 ± 0.21 | 14.82 ± 0.30 | 15.14 ± 0.43 | 14.64 ± 0.51 | 14.74 ± 0.14 | 14.15 ± 0.20 | 14.86 ± 0.11 |
HR | 137.30 ± 11.83 | 147.70 ± 0.57 | 146.80 ± 3.31 | 150.00 ± 2.62 | 146.50 ± 2.24 | 149.00 ± 1.41 | 151.30 ± 1.15 | 150.10 ± 1.95 | 154.25 ± 1.77 | ||
Cadence | 87.00 ± 0.61 | 86.80 ± 0.27 | 86.10 ± 0.22 | 85.30 ± 1.10 | 85.00 ± 0.35 | 83.90 ± 0.74 | 85.00 ± 0.61 | 84.90 ± 0.55 | 85.00 ± 0.71 |
id | Variable | Wall (km) | 0–5 | 5–10 | 10–15 | 15–20 | 20–25 | 25–30 | 30–35 | 35–40 | 40–42 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Speed | 27 | 1.16 ± 1.24 | 0.96 ± 0.69 | 1.6 ± 0.6 | 2.41 ± 0.46 | 2.1 ± 0.49 | 2.31 ± 0.33 | 1.84 ± 0.56 | 1.32 ± 0.9 | 2.01 ± 0.8 |
HR | 1.23 ± 0.79 | 1.78 ± 0.57 | 1.63 ± 0.4 | 1.84 ± 0.6 | 1.8 ± 0.64 | 1.13 ± 0.71 | 1.72 ± 0.83 | 1.45 ± 1.06 | 1.16 ± 1.03 | ||
Cadence | 1.51 ± 0.86 | 0.82 ± 0.69 | 1.47 ± 0.68 | 1.53 ± 0.45 | 2 ± 0.48 | 2.11 ± 0.67 | 2.72 ± 0.55 | 2.38 ± 0.37 | 2.97 ± 0.48 | ||
2 | Speed | 33 | 1.49 ± 0.63 | 1.26 ± 0.75 | 1.59 ± 0.7 | 1.91 ± 0.73 | 1.63 ± 0.71 | 1.7 ± 0.42 | 1.29 ± 0.5 | 0.75 ± 0.74 | 0.88 ± 1.2 |
HR | 2.79 ± 0.16 | 0.69 ± 0.97 | 1.63 ± 1.03 | 1.86 ± 0.45 | 1.57 ± 0.32 | 1.59 ± 0.74 | 1.93 ± 0.58 | 1.87 ± 0.51 | 1.55 ± 1.34 | ||
Cadence | 2.12 ± 0.67 | 2.57 ± 0.63 | 2.91 ± 0.39 | 2.98 ± 0.25 | 2.38 ± 1.02 | 2.45 ± 0.58 | 2.79 ± 0.42 | 2.56 ± 0.4 | 2.31 ± 1.07 | ||
3 | Speed | 30 | 1.48 ± 0.67 | 1.28 ± 0.55 | 1.29 ± 0.57 | 1.3 ± 0.47 | 1.56 ± 0.36 | 1.08 ± 0.64 | 1.13 ± 0.58 | 0.15 ± 0.25 | 1.23 ± 1.08 |
HR | 1.14 ± 0.71 | 1.91 ± 0.17 | 1.18 ± 0.78 | 1.68 ± 0.48 | 1.71 ± 0.38 | 1.34 ± 0.72 | 0.88 ± 0.67 | 1.02 ± 0.82 | 1.26 ± 1.09 | ||
Cadence | 2.63 ± 0.44 | 1.89 ± 0.57 | 1.65 ± 0.75 | 2.92 ± 0.16 | 2.08 ± 0.73 | 1.95 ± 0.75 | 1.42 ± 0.29 | 1.36 ± 0.77 | 1.63 ± 0.59 | ||
4 | Speed | 26 | 1.69 ± 1 | 1.33 ± 0.67 | 1.48 ± 0.59 | 1.56 ± 0.74 | 1.89 ± 0.87 | 2.23 ± 0.5 | 1.86 ± 0.79 | 0.87 ± 0.99 | 0.2 ± 0.34 |
HR | 1.1 ± 1.02 | 2.15 ± 0.53 | 1.3 ± 0.85 | 1.48 ± 0.86 | 1.92 ± 0.6 | 1.79 ± 1.05 | 1.14 ± 0.68 | 1.06 ± 0.99 | 1.12 ± 1 | ||
Cadence | 2.05 ± 1.08 | 0.45 ± 0.43 | 1.24 ± 0.79 | 1.03 ± 1.14 | 2.18 ± 0.48 | 2.21 ± 0.58 | 2.56 ± 0.74 | 2.24 ± 0.85 | 1.79 ± 1.55 | ||
5 | Speed | 30 | 0 ± 0 | 0.74 ± 1.15 | 1.79 ± 0.36 | 1.79 ± 0.4 | 1.58 ± 0.22 | 1.37 ± 0.79 | 1.69 ± 0.73 | 1.4 ± 1.02 | 0 ± 0 |
HR | 0.47 ± 0.51 | 1.54 ± 0.27 | 0.89 ± 0.85 | 0.69 ± 0.65 | 2.05 ± 0.31 | 2.1 ± 0.41 | 1.31 ± 0.69 | 0 ± 0 | 0 ± 0 | ||
Cadence | 0.28 ± 0.31 | 1.4 ± 0.54 | 1.61 ± 0.5 | 2.33 ± 0.48 | 2.1 ± 0.52 | 2.23 ± 0.28 | 2.49 ± 0.24 | 1.22 ± 0.88 | 0 ± 0 | ||
6 | Speed | 34 | 1.87 ± 0.66 | 1.22 ± 0.35 | 1.7 ± 0.42 | 2.09 ± 0.26 | 2.05 ± 0.64 | 1.55 ± 0.5 | 1.1 ± 0.73 | 0.24 ± 0.37 | 1.31 ± 1.34 |
HR | 0 ± 0 | 1.22 ± 0.76 | 2.15 ± 0.49 | 1.3 ± 0.65 | 0.94 ± 0.69 | 0.84 ± 0.77 | 0.9 ± 0.77 | 1.87 ± 0.3 | 1.98 ± 0.49 | ||
Cadence | 1.56 ± 0.91 | 2.14 ± 0.29 | 2.41 ± 0.77 | 2.57 ± 0.37 | 2.49 ± 0.42 | 2.25 ± 0.29 | 2.43 ± 0.25 | 2.41 ± 0.31 | 2.57 ± 0.68 | ||
7 | Speed | 27 | 2.76 ± 0.39 | 1.9 ± 0.66 | 2.63 ± 0.72 | 2.05 ± 0.62 | 2.58 ± 0.34 | 2.47 ± 0.37 | 2.17 ± 0.58 | 0.83 ± 0.45 | |
HR | 1.72 ± 1.03 | 1.67 ± 0.72 | 1.94 ± 0.79 | 1.5 ± 0.39 | 1.04 ± 1.05 | 1.38 ± 0.83 | 1.49 ± 1.13 | 1.35 ± 1.17 | |||
Cadence | 2.15 ± 0.46 | 2.16 ± 0.37 | 2.15 ± 0.31 | 2.26 ± 0.2 | 2.32 ± 0.32 | 2.39 ± 0.32 | 1.21 ± 0.31 | 1.08 ± 0.3 | |||
8 | Speed | 34 | 1.12 ± 1.14 | 0.52 ± 0.81 | 1.48 ± 0.85 | 1.72 ± 0.92 | 1.57 ± 0.4 | 1.63 ± 0.46 | 1.98 ± 0.52 | 1.29 ± 0.88 | 0.84 ± 1.12 |
HR | 1.06 ± 1.09 | 2.09 ± 0.7 | 2.08 ± 0.52 | 1.73 ± 0.56 | 1.68 ± 0.31 | 1.5 ± 0.98 | 1.57 ± 0.89 | 1.95 ± 1.12 | 1.61 ± 1.64 | ||
Cadence | 2.17 ± 0.3 | 2.42 ± 0.28 | 2.41 ± 0.42 | 2.84 ± 0.26 | 2.84 ± 0.13 | 2.82 ± 0.14 | 2.92 ± 0.17 | 2.95 ± 0.16 | 2.86 ± 0.17 | ||
9 | Speed | 27 | 1.39 ± 1.33 | 1.2 ± 0.6 | 2.02 ± 0.58 | 1.85 ± 0.36 | 2.14 ± 0.42 | 2.1 ± 0.86 | 1.62 ± 0.58 | 0.68 ± 0.67 | 1.42 ± 1.04 |
HR | 1.03 ± 1.12 | 1.43 ± 0.77 | 2.22 ± 0.61 | 2.44 ± 0.78 | 2.19 ± 1.2 | 1.99 ± 1 | 1.48 ± 0.81 | 1.95 ± 0.6 | 0.87 ± 0.98 | ||
Cadence | 0.31 ± 0.35 | 0.14 ± 0.33 | 1.09 ± 1.12 | 2.71 ± 0.44 | 2.91 ± 0.38 | 2.44 ± 0.75 | 2.34 ± 0.38 | 2.7 ± 0.32 | 2.51 ± 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacin, F.; Poinsard, L.; Billat, V. Multidimensional Analysis of Physiological Entropy during Self-Paced Marathon Running. Sports 2024, 12, 252. https://doi.org/10.3390/sports12090252
Palacin F, Poinsard L, Billat V. Multidimensional Analysis of Physiological Entropy during Self-Paced Marathon Running. Sports. 2024; 12(9):252. https://doi.org/10.3390/sports12090252
Chicago/Turabian StylePalacin, Florent, Luc Poinsard, and Véronique Billat. 2024. "Multidimensional Analysis of Physiological Entropy during Self-Paced Marathon Running" Sports 12, no. 9: 252. https://doi.org/10.3390/sports12090252
APA StylePalacin, F., Poinsard, L., & Billat, V. (2024). Multidimensional Analysis of Physiological Entropy during Self-Paced Marathon Running. Sports, 12(9), 252. https://doi.org/10.3390/sports12090252