Association of VDR Polymorphisms with Muscle Mass Development in Elite Young Soccer Players: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. DNA Analyses
- ApaI: forward 5′-CAGAGCATGGACAGGGAGCAAG-3′; reverse 5′-CAACTCCTCATGGCTGAGGTCT-3′;
- BsmI: forward 5′-CAACAAGACTACAAGTACCGCGTCAGTGA-3′; reverse 5′-AACCAGCGGAAGAGGTCAAGGG-3′;
- FokI: forward 5′-GATGCCAGCTGGCCCTGGCACTG-3′; reverse 5′-ATGGAAACACCTTGCTTCTTCTCCCTC-3′.
2.3. Body Composition Determination
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saponaro, F.; Saba, A.; Zucchi, R. An Update on Vitamin D Metabolism. Int. J. Mol. Sci. 2020, 21, 6573. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, M.; Pacini, S. Chronic kidney disease and vitamin D: How much is adequate? Kidney Int. 2009, 76, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, A.; Tsugawa, N.; Kondo, H.; Ao, M.; Fujiwara, H.; Hosokawa, N.; Matsumoto, S.; Tanaka, K.; Nakano, T. Associations between serum 25-hydroxyvitamin D3 level and skeletal muscle mass and lower limb muscle strength in Japanese middle-aged subjects. Osteoporos. Sarcopenia 2017, 3, 53–58. [Google Scholar] [CrossRef]
- Pfeifer, M.; Begerow, B.; Minne, H.W. Vitamin D and Muscle Function. Osteoporos. Int. 2002, 13, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Bulgay, C.; Bayraktar, I.; Kazan, H.H.; Yıldırım, D.S.; Zorba, E.; Akman, O.; Ergun, M.A.; Cerit, M.; Ulucan, K.; Eken, Ö.; et al. Evaluation of the Association of VDR rs2228570 Polymorphism with Elite Track and Field Athletes’ Competitive Performance. Healthcare 2023, 11, 681. [Google Scholar] [CrossRef]
- Rabon-Stith, K.M.; Hagberg, J.M.; Phares, D.A.; Kostek, M.C.; Delmonico, M.J.; Roth, S.M.; Ferrell, R.E.; Conway, J.M.; Ryan, A.S.; Hurley, B.F. Vitamin D receptor FokI genotype influences bone mineral density response to strength training, but not aerobic training. Exp. Physiol. 2005, 90, 653–661. [Google Scholar] [CrossRef]
- Massidda, M.; Corrias, L.; Bachis, V.; Cugia, P.; Piras, F.; Scorcu, M.; Calò, C.M. Vitamin D receptor gene polymorphisms and musculoskeletal injuries in professional football players. Exp. Therap. Med. 2015, 9, 1974–1978. [Google Scholar] [CrossRef]
- Bass, J.J.; Nakhuda, A.; Deane, C.S.; Brook, M.S.; Wilkinson, D.J.; Phillips, B.E.; Philp, A.; Tarum, J.; Kadi, F.; Andersen, D.; et al. Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol. Metab. 2020, 42, 101059. [Google Scholar] [CrossRef]
- Krasniqi, E.; Boshnjaku, A.; Wagner, K.-H.; Wessner, B. Association between Polymorphisms in Vitamin D Pathway-Related Genes, Vitamin D Status, Muscle Mass and Function: A Systematic Review. Nutrients 2001, 13, 3109. [Google Scholar] [CrossRef]
- Arai, H.; Miyamoto, K.-I.; Taketani, Y.; Yamamoto, H.; Iemori, Y.; Morita, K.; Tonai, T.; Nishisho, T.; Mori, S.; Takeda, E. A Vitamin D Receptor Gene Polymorphism in the Translation Initiation Codon: Effect on Protein Activity and Relation to Bone Mineral Density in Japanese Women. J. Bone Min. Res. 1997, 12, 915–921. [Google Scholar] [CrossRef]
- Colin, E.M.; Weel, A.E.A.M.; Uitterlinden, A.G.; Buurman, C.J.; Birkenhäger, J.C.; Pols, H.A.P.; Van Leeuwen, J.P.T.M. Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1,25-dihydroxyvitamin D3. Clin. Endocrinol. 2000, 52, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.; Krishnan, A.V.; Malloy, P.J.; Eccleshall, T.R.; Zhao, X.-Y.; Feldman, D. The Vitamin D Receptor Gene Start Codon Polymorphism: A Functional Analysis of Fok I Variants. J. Bone Min. Res. 1998, 13, 1691–1699. [Google Scholar] [CrossRef]
- Roth, S.M.; Zmuda, J.M.; Cauley, J.A.; Shea, P.R.; Ferrell, R.E. Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, N.S.; Li, K.W.; Kehoe, A.; Humphries, S.E.; Roughton, M.; Moxham, J.; Montgomery, H.; Polkey, M.I. Vitamin D receptor genotypes influence quadriceps strength in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2008, 87, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Man, Q.; Li, L.; Song, P.; Jia, S.; Song, S.; Meng, L.; Zhang, J. Vitamin D receptor gene polymorphisms modify the association of serum 25-hydroxyvitamin D levels with handgrip strength in the elderly in Northern China. Nutrition 2019, 57, 202–207. [Google Scholar] [CrossRef]
- Gussago, C.; Arosio, B.; Guerini, F.R.; Ferri, E.; Costa, A.S.; Casati, M.; Bollini, E.M.; Ronchetti, F.; Colombo, E.; Bernardelli, G.; et al. Impact of vitamin D receptor polymorphisms in centenarians. Endocrine 2016, 53, 558–564. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.; Pols, H.A.; Van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef]
- Jia, F.; Sun, R.-F.; Li, Q.-H.; Wang, D.-X.; Zhao, F.; Li, J.-M.; Pu, Q.; Zhang, Z.-Z.; Jin, Y.; Liu, B.-L.; et al. Vitamin D Receptor Bsm I Polymorphism and Osteoporosis Risk: A Meta-Analysis from 26 Studies. Genet. Test. Mol. Biomark. 2013, 17, 30–34. [Google Scholar] [CrossRef]
- Qin, G.; Dong, Z.; Zeng, P.; Liu, M.; Liao, X. Association of vitamin D receptor BsmI gene polymorphism with risk of osteoporosis: A meta-analysis of 41 studies. Mol. Biol. Rep. 2013, 40, 497–506. [Google Scholar] [CrossRef]
- Bahat, G.; Saka, B.; Erten, N.; Ozbek, U.; Coskunpinar, E.; Yildiz, S.; Sahinkaya, T.; Akif Karan, M. BsmI polymorphism in the vitamin D receptor gene is associated with leg extensor muscle strength in elderly men. Aging Clin. Exp. Res. 2010, 22, 198–205. [Google Scholar] [CrossRef]
- Grundberg, E.; Brandstrom, H.; Ribom, E.; Ljunggren, O.; Mallmin, H.; Kindmark, A. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur. J. Endocrinol. 2004, 150, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Oono, F.; Iida, K.; Wang, P.-L.; Tachi, Y. Relationship between vitamin D receptor gene polymorphisms (BsmI, TaqI, ApaI, and FokI) and calcium intake on bone mass in young Japanese women. BMC Women’s Health 2021, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Liu, B.; Chen, B.; Zhu, W.; Ye, X.-H.; Li, H.; He, X. Evaluation of Association Studies and an Updated Meta-Analysis of VDR Polymorphisms in Osteoporotic Fracture Risk. Front. Genet. 2022, 12, 791368. [Google Scholar] [CrossRef]
- Pakpahan, C.; Wungu, C.D.K.; Agustinus, A.; Darmadi, D. Do Vitamin D receptor gene polymorphisms affect bone mass density in men? A meta-analysis of observational studies. Ageing Res Rev. 2022, 75, 101571. [Google Scholar] [CrossRef]
- Iki, M.; Saito, Y.; Dohi, Y.; Kajita, E.; Nishino, H.; Yonemasu, K.; Kusaka, Y. Greater Trunk Muscle Torque Reduces Postmenopausal Bone Loss at the Spine Independently of Age, Body Size, and Vitamin D Receptor Genotype in Japanese Women. Calcified Tissue Intern. 2002, 71, 300–307. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Liu, C.-S.; Liao, L.-N.; Li, C.-I.; Lin, C.-H.; Yang, C.-W.; Meng, N.-H.; Lin, W.-Y.; Chang, C.-K.; Hsiao, J.-H.; et al. Vitamin D receptor variability and physical activity are jointly associated with low handgrip strength and osteoporosis in community-dwelling elderly people in Taiwan: The Taichung Community Health Study for Elders (TCHS-E). Osteoporosis Int. 2014, 25, 1917–1929. [Google Scholar] [CrossRef]
- Wang, P.; Ma, L.; Wang, H.; Zhang, W.; Tian, Q.; Cao, D.; Zheng, G.; Sun, Y. Association between Polymorphisms of Vitamin D Receptor Gene ApaI, BsmI and TaqI and Muscular Strength in Young Chinese Women. Int. J. Sports Med. 2005, 27, 182–186. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar] [PubMed]
- Reilly, T.; George, K.; Marfell-Jones, M.; Scott, M.; Sutton, L.; Wallace, J. How Well do Skinfold Equations Predict Percent Body Fat in Elite Soccer Players? Int. J. Sports Med. 2009, 30, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Núñez, F.J.; Munguía-Izquierdo, D.; Suárez-Arrones, L. Validity of Field Methods to Estimate Fat-Free Mass Changes Throughout the Season in Elite Youth Soccer Players. Front. Physiol. 2020, 11, 16. [Google Scholar] [CrossRef]
- Frisancho, A. Anthropometric Standards for the Assessment of Growth and Nutritional Status, 1st ed.; University of Michigan Press: Ann Arbor, MI, USA, 1990. [Google Scholar] [CrossRef]
- Chomtho, S.; Fewtrell, M.; Jaffe, A.; Williams, J.E.; Wells, J.C.K. Evaluation of Arm Anthropometry for Assessing Pediatric Body Composition: Evidence from Healthy and Sick Children. Pediatr. Res. 2006, 59, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Correa, C.H.; Caicedo-Eraso, J.C.; Varon-Serna, D.R. Comparison between handgrip strength, upper limb fat free mass by segmental bioelectrical impedance analysis (SBIA) and anthropometric measurements in young males. J. Phys. Conf. Ser. 2013, 434, 012067. [Google Scholar] [CrossRef]
- Kuriyan, R.; Thomas, T.; Kurpad, A.V. Total body muscle mass estimation from bioelectrical impedance analysis & simple anthropometric measurements in Indian men. Indian J. Med. Res. 2008, 127, 441–446. [Google Scholar] [PubMed]
- Yi, X.; Liang, Y.; Huerta-Sanchez, E.; Jin, X.; Cuo, Z.X.P.; Pool, J.E.; Xu, X.; Jiang, H.; Vinckenbosch, N.; Korneliussen, T.S.; et al. Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude. Science 2010, 329, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 9 April 2024).
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef]
- Dawson-Hughes, B. Vitamin D and muscle function. J. Steroid Biochem. Mol. Biol. 2017, 173, 313–316. [Google Scholar] [CrossRef]
- Yao, X.; Yang, L.; Li, M.; Xiao, H. Relationship of vitamin D receptor gene polymorphism with sarcopenia and muscle traits based on propensity score matching. J. Clin. Lab. Anal. 2020, 34, e23485. [Google Scholar] [CrossRef]
- Kerr Whitfield, G.; Remus, L.S.; Jurutka, P.W.; Zitzer, H.; Oza, A.K.; Dang, H.T.L.; Haussler, C.A.; Galligan, M.A.; Thatcher, M.L.; Dominguez, C.E.; et al. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol. Cell. Endocrinol. 2001, 177, 145–159. [Google Scholar] [CrossRef]
- Micheli, M.L.; Gulisano, M.; Morucci, G.; Punzi, T.; Ruggiero, M.; Ceroti, M.; Marella, M.; Castellini, E.; Pacini, S. Angiotensin-Converting Enzyme/Vitamin D Receptor Gene Polymorphisms and Bioelectrical Impedance Analysis in Predicting Athletic Performances of Italian Young Soccer Players. J. Strength Cond. Res. 2011, 25, 2084–2091. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, L.; Di Somma, C.; Faggiano, A.; Colao, A. Vitamin D and Cancer. Front. Endocrinol. 2012, 3, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, L.-J.; Zhou, Y.; Badr, R.; Watson, P.; Ye, A.; Zhou, B.; Zhang, J.; Deng, H.-W.; Recker, R.R.; et al. SNP rs11185644 of RXRA gene is identified for dose-response variability to vitamin D3 supplementation: A randomized clinical trial. Sci. Rep. 2017, 7, 40593. [Google Scholar] [CrossRef] [PubMed]
VDR ApaI rs7975232 (N = 55) | ||||
A | C | AA | AC | CC |
58.18 | 41.82 | 30.91 (17) | 54.54 (30) | 14.55 (8) |
VDR BsmI rs1544410 (N = 54) | ||||
G | A | GG | AG | AA |
55.56 | 44.44 | 35.18 (19) | 40.74 (22) | 24.08 (13) |
VDR FokI rs2228570 (N = 54) | ||||
A | G | AA | AG | GG |
25.93 | 74.07 | 3.71 (2) | 44.44 (24) | 51.85 (28) |
ApaI | BsmI | FokI | ||||
---|---|---|---|---|---|---|
F Value | p | F Value | p | F Value | p | |
FFM Slaughter | 0.997484 | 0.375752 | 0.105224 | 0.900317 | 1.016038 | 0.369237 |
FFM Reilly | 0.538281 | 0.586968 | 0.046829 | 0.954292 | 0.290343 | 0.749235 |
AMA | 1.022569 | 0.366788 | 0.08582 | 0.917892 | 1.449376 | 0.244221 |
CMA | 1.132188 | 0.330143 | 2.263845 | 0.1143 | 0.100998 | 0.904115 |
TMA | 0.536284 | 0.588118 | 1.382144 | 0.260282 | 0.536284 | 0.588118 |
Model | Genotype AMA | N | Response Means (s.e.) | Difference (95% CI) | p-Value | AIC | BIC |
---|---|---|---|---|---|---|---|
Codominant | GG | 19 | 48.96 (2.32) | 0 | 0.78 | 386 | 396 |
AG | 22 | 49.93 (1.83) | 1.46 (−3.59–6.51) | ||||
AA | 13 | 51.95 (1.92) | 1.85 (−3.99–7.69) | ||||
Dominant | GG | 19 | 48.96 (2.32) | 0 | 0.49 | 384 | 392 |
AG–AA | 35 | 50.68 (1.34) | 1.60 (−2.94–6.14) | ||||
Recessive | GG–AG | 41 | 49.48 (1.44) | 0 | 0.68 | 385 | 393 |
AA | 13 | 51.95 (1.92) | 1.09 (−4.08–6.26) | ||||
Overdominant | GG–AA | 32 | 50.18 (1.58) | 0 | 0.75 | 385 | 393 |
AG | 22 | 49.93 (1.83) | 0.73 (−3.74–5.20) | ||||
Log-additive | 0.97 (−1.89–3.84) | 0.51 | 385 | 392 | |||
Genotype CMA | |||||||
Codominant | GG | 19 | 89.04 (2.58) | 0 | 0.11 | 420 | 430 |
AG | 22 | 95.37 (2.93) | 6.93 (0.03–13.82) | ||||
AA | 13 | 97.18 (2.34) | 6.79 (−1.18–14.77) | ||||
Dominant | GG | 19 | 89.04 (2.58) | 0 | 0.034 | 418 | 426 |
AG–AA | 35 | 96.05 (2.02) | 6.88 (0.68–13.08) | ||||
Recessive | GG–AG | 41 | 92.44 (2.02) | 0 | 0.4 | 422 | 430 |
AA | 13 | 97.18 (2.34) | 3.16 (−4.15–10.46) | ||||
Overdominant | GG–AA | 32 | 92.34 (1.92) | 0 | 0.19 | 421 | 429 |
AG | 22 | 95.37 (2.93) | 4.26 (−1.99–10.52) | ||||
Log-additive | 3.71 (−0.25–7.67) | 0.072 | 419 | 427 | |||
Genotype TMA | |||||||
Codominant | GG | 19 | 188.85 (6.23) | 0 | 0.15 | 508 | 518 |
AG | 22 | 202.72 (6.18) | 15.21 (−0.32–30.74) | ||||
AA | 13 | 196.35 (5.79) | 4.42 (−13.54–22.38) | ||||
Dominant | GG | 19 | 188.85 (6.23) | 0 | 0.13 | 507 | 515 |
AG–AA | 35 | 200.35 (4.42) | 11.23 (−2.93–25.39) | ||||
Recessive | GG–AG | 41 | 196.29 (4.48) | 0 | 0.67 | 510 | 518 |
AA | 13 | 196.35 (5.79) | −3.56 (−19.98–12.86) | ||||
Overdominant | GG–AA | 32 | 191.9 (4.37) | 0 | 0.06 | 506 | 514 |
AG | 22 | 202.72 (6.18) | 13.48 (−0.26–27.21) | ||||
Log-additive | 3.37 (−5.73–12.46) | 0.47 | 509 | 517 |
ApaI | BsmI | Frequency | Difference (95% CI) | p-Value |
---|---|---|---|---|
A | A | 0.4138 | 0.00 | --- |
C | G | 0.3807 | −3.68 (−8.74–1.39) | 0.16 |
A | G | 0.168 | −6.49 (−12.59–−0.4) | 0.04 |
C | A | 0.0375 | −11.09 (−27.62–5.45) | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flore, L.; Robledo, R.; Dettori, L.; Scorcu, M.; Francalacci, P.; Tocco, F.; Massidda, M.; Calò, C.M. Association of VDR Polymorphisms with Muscle Mass Development in Elite Young Soccer Players: A Pilot Study. Sports 2024, 12, 253. https://doi.org/10.3390/sports12090253
Flore L, Robledo R, Dettori L, Scorcu M, Francalacci P, Tocco F, Massidda M, Calò CM. Association of VDR Polymorphisms with Muscle Mass Development in Elite Young Soccer Players: A Pilot Study. Sports. 2024; 12(9):253. https://doi.org/10.3390/sports12090253
Chicago/Turabian StyleFlore, Laura, Renato Robledo, Laura Dettori, Marco Scorcu, Paolo Francalacci, Filippo Tocco, Myosotis Massidda, and Carla Maria Calò. 2024. "Association of VDR Polymorphisms with Muscle Mass Development in Elite Young Soccer Players: A Pilot Study" Sports 12, no. 9: 253. https://doi.org/10.3390/sports12090253
APA StyleFlore, L., Robledo, R., Dettori, L., Scorcu, M., Francalacci, P., Tocco, F., Massidda, M., & Calò, C. M. (2024). Association of VDR Polymorphisms with Muscle Mass Development in Elite Young Soccer Players: A Pilot Study. Sports, 12(9), 253. https://doi.org/10.3390/sports12090253