Production of Rare-Earth-Free Iron Nitride Magnets (α″-Fe16N2)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, G.; Mancheri, N.; Van Acker, K. Sustainability of permanent rare earth magnet motors in (H)EV industry. J. Sustain. Metall. 2017, 3, 611–626. [Google Scholar] [CrossRef]
- Sreenivasulu, K.V.; Srikanth, V.V.S.S. Fascinating magnetic energy storage nanomaterials: A brief review. Recent Pat. Nanotechnol. 2017, 11, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Zhang, X.Y.; Liu, J.P. Fabrication of bulk nanostructured permanent magnets with high energy density: Challenges and approaches. Nanoscale 2017, 9, 3674–3697. [Google Scholar] [CrossRef]
- Néel, L.; Pauleve, J.; Pauthenet, R.; Laugier, J.; Dautreppe, D. Magnetic properties of an iron—Nickel single crystal ordered by neutron bombardment. J. Appl. Phys. 1964, 35, 873–876. [Google Scholar] [CrossRef]
- Kim, T.K.; Takahashi, M. New magnetic material having ultrahigh magnetic moment. Appl. Phys. Lett. 1972, 20, 492–494. [Google Scholar] [CrossRef]
- Sagawa, M.; Horosawa, S.; Yamamoto, H.; Fujimura, S.; Matsuura, Y. Nd-Fe-B permanent magnet materials. Jpn. J. Appl. Phys. 1987, 6, 785–800. [Google Scholar] [CrossRef]
- Kotsugi, M.; Mitsumata, C.; Maruyama, H.; Wakita, T.; Taniuchi, T.; Ono, K.; Suzuki, M.; Kawamura, N.; Ishimatsu, N.; Oshima, M.; et al. Novel magnetic domain structure in iron meteorite induced by the presence of L10-FeNi. Appl. Phys. Express 2010, 3, 013001. [Google Scholar] [CrossRef]
- Woodgate, C.D.; Patrick, C.E.; Lewis, L.H.; Staunton, J.B. Revisiting Néel 60 years on: The magnetic anisotropy of L10 FeNi (tetrataenite). J. Appl. Phys. 2023, 134, 163905. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Pan, D.; Zhang, Z.; Cho, C.J. Prospect and status of iron-based rare-earth-free permanent magnetic materials. J. Magn. Magn. Mater. 2019, 469, 535–544. [Google Scholar] [CrossRef]
- Goto, S.; Kura, H.; Watanabe, E.; Hayashi, Y.; Yanagihara, H.; Shimada, Y.; Mizuguchi, M.; Takanashi, K.; Kita, E. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction. Sci. Rep. 2017, 7, 13216. [Google Scholar] [CrossRef]
- Hlova, I.Z.; Dolotko, O.; Abramchuk, M.; Biswas, A.; Mudryk, Y.; Pecharsky, V.K. Enhancement of hard magnetism and chemical order of synthetic L10-FeNi. J. Alloys Compd. 2024, 981, 173619. [Google Scholar] [CrossRef]
- Bhattacharyya, S. Iron nitride family at reduced dimensions: A review of their synthesis protocols and structural and magnetic properties. J. Phys. Chem. C 2015, 119, 1601–1622. [Google Scholar] [CrossRef]
- Sugita, Y.; Mitsuoka, K.; Komuro, M.; Hoshiya, H.; Kozono, Y.; Hanazono, M. Giant magnetic moment and other magnetic properties of epitaxially grown Fe16N2 single-crystal films. J. Appl. Phys. 1991, 70, 5977–5982. [Google Scholar] [CrossRef]
- Coey, J.M.D. Hard magnetic materials: A perspective. IEEE Trans. Magn. 2011, 47, 4671–4681. [Google Scholar] [CrossRef]
- Jack, K.H. The synthesis and characterization of bulk α″-Fe16N2. J. Alloys Compd. 1995, 222, 160–166. [Google Scholar] [CrossRef]
- Nakajima, K.; Okamoto, S. Nitrogen-implantation-induced transformation of iron to crystalline Fe16N2 in epitaxial iron films. Appl. Phys. Lett. 1989, 54, 2536–2538. [Google Scholar] [CrossRef]
- Sun, D.C.; Jiang, E.Y.; Tian, M.B.; Lin, C.; Zhang, X.X. Epitaxial single crystal Fe16N2 films grown by facing targets sputtering. J. Appl. Phys. 1996, 79, 5440–5442. [Google Scholar] [CrossRef]
- Sugita, Y.; Takahashi, H.; Komuro, M.; Mitsuoka, K.; Sakuma, A. Magnetic and mössbauer studies of single-crystal Fe16N2, and Fe-N martensite films epitaxially grown by molecular beam epitaxy. J. Appl. Phys. 1994, 76, 6637–6641. [Google Scholar] [CrossRef]
- Shinno, H.; Saito, K. Effects of film thickness on formation processes of Fe16N2 in nitrogen ion-implanted Fe films. Surf. Coat. Technol. 1998, 103, 129–134. [Google Scholar] [CrossRef]
- Ogawa, T.; Ogata, Y.; Gallage, R.; Kobayashi, N.; Hayashi, N.; Kusano, Y.; Yamamoto, S.; Kohara, K.; Doi, M.; Takano, M.; et al. Challenge to the synthesis of α″-Fe16N2 phase compound nanoparticle with high saturation magnetization for rare earth free new permanent magnetic material. Appl. Phys. Express 2013, 6, 073007. [Google Scholar] [CrossRef]
- Dirba, I.; Schwöbel, C.A.; Diop, L.V.B.; Duerrschnabel, M.; Molina-Luna, L.; Hofmann, K.; Komissinskiy, P.; Kleebe, H.-J.; Gutfleisch, O. Synthesis, morphology, thermal stability and magnetic properties of α″-Fe16N2 nanoparticles obtained by hydrogen reduction of γ-Fe2O3 and subsequent nitrogenation. Acta Mater. 2017, 123, 214. [Google Scholar] [CrossRef]
- Saito, T.; Yamamoto, H. Hard magnetic properties of Fe16N2 magnets. AIP Adv. 2024, 14, 015149. [Google Scholar] [CrossRef]
- Tokita, M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Saito, T. Structures and magnetic properties of Sm-Fe-N bulk magnets produced by spark plasma sintering method. J. Mater. Res. 2007, 22, 3130–3136. [Google Scholar] [CrossRef]
- Takagi, K.; Nakayama, H.; Ozaki, K. Microstructural behavior on particle surfaces and interfaces in Sm2Fe17N3 powder compacts during low-temperature sintering. J. Magn. Magn. Mater. 2012, 324, 2336–2341. [Google Scholar] [CrossRef]
- Prabhu, D.; Sepehri-Amin, H.; Mendis, C.L.; Ohkubo, T.; Hono, K.; Sugimoto, S. Enhanced coercivity of spark plasma sintered Zn-bonded Sm–Fe–N magnets. Scr. Mater. 2012, 67, 153–156. [Google Scholar] [CrossRef]
- Saito, T.; Kikuchi, K. Production of Sm-Fe-N bulk magnets by the spark plasma sintering with dynamic compression. J. Alloys Compd. 2016, 673, 195–198. [Google Scholar] [CrossRef]
- Herbst, J.F. R2Fe14B Materials: Intrinsic Properties and Technological Aspects. Rev. Mod. Phys. 1991, 63, 819–898. [Google Scholar] [CrossRef]
- Coey, J.M.D. Permanent magnets: Plugging the gap. Scr. Mater. 2012, 67, 524–529. [Google Scholar] [CrossRef]
- Peltzer y Blanca, E.L.; Christensen, N.E.; Emmerich, H.; Cottenier, S. The magnetization of γ′-Fe4N: Theory vs. experiment. Phys. Status Solidi 2009, 246, 909–928. [Google Scholar] [CrossRef]
- German, R. Powder Metallurgy Science, 2nd ed.; Metal Powder Industries Federation: Princeton, NJ, USA, 1994; p. 308. [Google Scholar]
- Liao, X.F.; Aubert, A.; Maccari, F.; Riegg, S.; Ener, S.; Adabifiroozjaei, E.; Jiang, T.; Molina-Luna, L.; Skokov, K.; Gutfleisch, O. Grain boundary engineering in Nd-based ThMn12 magnets and their nitrides: A comprehensive study of challenges and limitations. J. Alloys Compd. 2023, 950, 16993. [Google Scholar] [CrossRef]
Phase | Saturation Magnetization Is (T) | Anisotropy Constant K1 (MJm−3) | Curie Temperature Tc (K) |
---|---|---|---|
Nd2Fe14B | 1.6 | 4.5 | 586 |
L10-FeNi | 1.6 | 1.0 | 773 |
α″-Fe16N2 | 2.4 | 1.0 | 810 |
Temperature | Phenomenon |
---|---|
T1 (539 K) | Decomposition temperature (α″-Fe16N2 → α-Fe + Fe4N) |
T2 (743 K) | Curie temperature (Tc of γ-Fe4N phase) |
T3 (885 K) | Eutectoid reaction temperature (γ-Fe → α-Fe + γ-Fe4N) |
T4 (1043 K) | Curie temperature (Tc of α-Fe phase) |
Sintering | Saturation Magnetization Is (T) | Coercivity Hc (MA/m) |
---|---|---|
373 K | 1.07 | 0.20 |
473 K | 1.12 | 0.17 |
573 K | 1.06 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, T.; Yamamoto, H.; Nishio-Hamane, D. Production of Rare-Earth-Free Iron Nitride Magnets (α″-Fe16N2). Metals 2024, 14, 734. https://doi.org/10.3390/met14060734
Saito T, Yamamoto H, Nishio-Hamane D. Production of Rare-Earth-Free Iron Nitride Magnets (α″-Fe16N2). Metals. 2024; 14(6):734. https://doi.org/10.3390/met14060734
Chicago/Turabian StyleSaito, Tetsuji, Hitoshi Yamamoto, and Daisuke Nishio-Hamane. 2024. "Production of Rare-Earth-Free Iron Nitride Magnets (α″-Fe16N2)" Metals 14, no. 6: 734. https://doi.org/10.3390/met14060734
APA StyleSaito, T., Yamamoto, H., & Nishio-Hamane, D. (2024). Production of Rare-Earth-Free Iron Nitride Magnets (α″-Fe16N2). Metals, 14(6), 734. https://doi.org/10.3390/met14060734