Superplastic Behavioral Characteristics of Fine-Grained 5A70 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Initial Microstructures
3.2. Superplastic Deformation Behaviors
3.2.1. Elongation-to-Failure
3.2.2. True Strain-True Stress
3.2.3. Strain Rate Sensitivity
3.2.4. Activation Energy for Flow
3.3. Superplastic Fracture Surface Morphologies
4. Discussion
4.1. Influence of Plastic Flow during Superplastic Deformation
4.2. Effect of Temperature on the Grain Growth and Superplastic Behavior
4.3. Influence of Mg-Rich Phase Particles on Superplastic Tensile and Fracture Process
5. Conclusions
- (1)
- Static recrystallization at 340 °C for 20 min showed an average grain size of 8.48 μm for the 2 mm thick 5A70 alloy sheet, which was due to the pinning effect from the dispersion of the second phase particles.
- (2)
- The 5A70 aluminum alloy exhibited reasonable δ values at 400 °C (205%) and 450 °C (321%) with a moderate strain rate (1 × 10−3 s−1), while the corresponding coefficients for the strain rate sensitivity, m, were 0.42 and 0.40, respectively. However, excellent δ values were obtained with a low strain rate of 5 × 10−4 s−1 at 500 (398%) and 550 °C (437%) with m = 0.47 and 0.46, respectively.
- (3)
- The strain hardening of the 5A70 alloy preferentially occurred at high temperatures (500 and 550 °C) with low strain rates (5 × 10−4 s−1). This was due to the decreased Mg-rich phase particles, and the abnormal grain growth weakened the pinning effect during dynamic recrystallization.
- (4)
- The activation energy at 400–550 °C ranged from 135 to 139 kJ/mol, which is close to the lattice diffusion activation energy of pure aluminum (143.4 kJ/mol). Therefore, lattice diffusion dominated the GBS mechanism of the 5A70 alloy during superplastic deformation.
- (5)
- Massive second phase particles played a significant effect in suppressing the dynamic recrystallization during superplastic tensile and promoted the cavity nucleation, growth, interlinkage, and coalescence during superplastic deformation.
- (6)
- The formation of submicrometer filaments at the fraction surfaces were due to the Mg-rich phase particles that precipitated along the grain boundaries in the GBS and from the growth of MgO and MgAl2O4 that formed at high temperatures during superplastic formation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolt, P.J.; Lamboo, N.A.P.M.; Rozier, P.J.C.M. Feasibility of warm drawing of aluminium products. J. Mater. Process. Technol. 2001, 115, 118–121. [Google Scholar] [CrossRef]
- Naka, T.; Torikai, G.; Hino, R.; Yoshida, F. The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum–magnesium alloy sheet. J. Mater. Process. Technol. 2001, 113, 648–653. [Google Scholar] [CrossRef]
- Lin, S.P.; Nie, Z.R.; Huang, H.; Li, B.L. Annealing behavior of a modified 5083 aluminum alloy. Mater. Des. 2010, 31, 1607–1612. [Google Scholar] [CrossRef]
- Popović, M.; Romhanji, E. Stress corrosion cracking susceptibility of Al–Mg alloy sheet with high Mg content. J. Mater. Process. Technol. 2002, 125–126, 275–280. [Google Scholar] [CrossRef]
- Tokuda, M.; Inaba, T.; Ohigashi, H.; Kurakake, A. Discussions on constitutive equations of superplastic 5083 aluminum alloy. Int. J. Mech. Sci. 2001, 43, 2035–2046. [Google Scholar] [CrossRef]
- Langdon, T.G. Seventy-five years of superplasticity: Historic developments and new opportunities. J. Mater. Sci. 2009, 44, 5998–6010. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T.G. Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg additions to aluminum. Metall. Mater. Trans. A 1998, 29, 2503–2510. [Google Scholar] [CrossRef]
- Portnoy, V.K.; Rylov, D.S.; Levchenko, V.S.; Mikhaylovskaya, A.V. The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys. J. Alloys Compd. 2013, 581, 313–317. [Google Scholar] [CrossRef]
- Woo, S.S.; Kim, Y.R.; Shin, D.H.; Kim, W.J. Effects of Mg concentration on the quasi-superplasticity of coarse-grained Al-Mg alloys. Scr. Mater. 1997, 37, 1351–1358. [Google Scholar] [CrossRef]
- Kishchik, A.A.; Mikhaylovskaya, A.V.; Levchenko, V.S.; Portnoy, V.K. Formation of microstructure and the superplasticity of Al–Mg-based alloys. Phys. Met. Metallogr. 2017, 118, 96–103. [Google Scholar] [CrossRef]
- Chang, S.Y.; Lee, J.G.; Park, K.T.; Shin, D.H. Microstructures and Mechanical Properties of Equal Channel Angular Pressed 5083 Al Alloy. Mater. Trans. 2001, 42, 1074–1080. [Google Scholar] [CrossRef]
- Patlan, V.; Higashi, K.; Kitagawa, K.; Vinogradov, A.; Kawazoe, M. Cyclic Response of Fine Grain 5056 Al-Mg Alloy Produced by Equal Channel Angular Pressing. Mater. Sci. Eng. A 2001, 319–321, 587–591. [Google Scholar] [CrossRef]
- Patlan, V.; Vinogradov, A.; Higashi, K.; Kitagawa, K. Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal channel angular pressing. Mater. Sci. Eng. A 2001, 300, 171–182. [Google Scholar] [CrossRef]
- Yamashita, A.; Yamaguchi, D.; Horita, Z.; Langdon, T.G. Influence of pressing temperature on microstructural development in equal-channel angular pressing. Mater. Sci. Eng. A 2000, 287, 100–106. [Google Scholar] [CrossRef]
- Fakhar, N.; Saniee, F.F.; Mahmudi, R. Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion. Trans. Nonferrous Met. Soc. China 2016, 26, 3081–3090. [Google Scholar] [CrossRef]
- Park, K.T.; Hwang, D.Y.; Lee, Y.K.; Kim, Y.K.; Shi, D.H. High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation. Mater. Sci. Eng. A 2003, 341, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Charit, I.; Mishra, R.S. Evaluation of microstructure and superplasticity in friction stir processed 5083 Al alloy. J. Mater. Res. 2004, 19, 3329–3342. [Google Scholar] [CrossRef]
- Charit, I.; Mishra, R.S. High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing. Mater. Sci. Eng. A 2003, 359, 290–296. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Mishra, R.S.; Mahoney, M.W. Superplastic deformation behaviour of friction stir processed 7075Al alloy. Acta Mater. 2002, 50, 4419–4430. [Google Scholar] [CrossRef]
- Mahoney, M.W.; Barnes, A.J.; Bingel, W.H.; Fuller, C.B. Superplastic Forming of 7475 Al Sheet after Friction Stir Processing (FSP). Mater. Sci. Forum 2004, 447–448, 505–512. [Google Scholar] [CrossRef]
- Salem, H.G.; Reynolds, A.P.; Lyons, J.S. Structural evolution and superplastic formability of friction stir welded AA 2095 sheets. J. Mater. Eng. Perform. 2004, 13, 24–31. [Google Scholar] [CrossRef]
- Sato, E.; Itoh, G.; Takayama, Y.; Kitazono, K.; Morita, K.; Itoi, T.; Kobayashi, J. Superplastic Behavior of Friction Stir Welded Joints of an Al-Mg-Sc Alloy with Ultrafine Grained Microstructure. Mater. Sci. Forum 2016, 838–839, 338–343. [Google Scholar] [CrossRef]
- Mironov, S.; Malopheyev, S.; Vysotskiy, I.; Kaibyshev, R. Superplasticity of Friction-Stir Welds of Zr-Modified 5083 Aluminum Alloy with Ultrafine-Grained Structure. Defect Diffus. Forum 2018, 385, 15–20. [Google Scholar] [CrossRef]
- Beijing Institute of Aeronautical Materials Group. Materials Technology of Aeronautics; Aviation Industry Press: Beijing, China, 2014; pp. 131–143. ISBN 978-7-5165-0298-3. [Google Scholar]
- Nieh, T.G.; Wadsworth, J.; Sherby, O.D. Superplasticity in Metals and Ceramics; Cambridge University Press: Cambridge, UK, 1997; pp. 22–30. ISBN 978-0-521-02034-3. [Google Scholar]
- Yuzbekova, D.; Mogucheva, A.; Kaibyshev, R. Superplasticity of ultrafine-grained Al–Mg–Sc–Zr alloy. Mater. Sci. Eng. A 2016, 675, 228–242. [Google Scholar] [CrossRef]
- Ota, S.; Akamatsu, H.; Neishi, K.; Furukawa, M.; Horita, Z.; Langdon, T.G. Low-Temperature Superplasticity in Aluminum Alloys Processed by Equal-Channel Angular Pressing. Mater. Trans. 2002, 43, 2364–2369. [Google Scholar] [CrossRef] [Green Version]
- Xun, Y.W.; Mohamed, F.A. Superplastic behavior of Zn–22%Al containing nanoscale dispersion particles. Acta Mater. 2004, 52, 4401–4412. [Google Scholar] [CrossRef]
- Prabu, S.B.; Padmanabhan, K.A. Superplasticity in and Superplastic Forming of Aluminum–Lithium Alloys. In Aluminum-Lithium Alloy, Processing, Properties, and Applications; Prasad, N.E., Gokhale, A.A., Wanhill, R.J., Eds.; Elsevier: Oxford, UK, 2014; Volume 8, pp. 221–258. ISBN 978-0-12-401698-9. [Google Scholar]
- Lee, S.W.; Yeh, J.W. Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion. Mater. Sci. Eng. A 2007, 460–461, 409–419. [Google Scholar] [CrossRef]
- Langdon, T.G. A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 1994, 42, 2437–2443. [Google Scholar] [CrossRef]
- Stato, Y.S.; Park, S.H.C.; Michiuchi, M.; Kokawa, H. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr. Mater. 2004, 50, 1233–1236. [Google Scholar] [CrossRef]
- Li, S.; Huang, Z.G.; Jin, S.Y.; Wang, B.Y.; Liu, X.Q.; Lei, K. Heat Treatment Process of Cold Rolled 5A70 Aluminum alloy Superplastic Sheet. Chin. J. Rare Met. 2018, 42, 283–288. [Google Scholar] [CrossRef]
- Horita, Z.; Furukawa, M.; Nemoto, M.; Barnes, A.J.; Langdon, T.G. Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 2000, 48, 3633–3640. [Google Scholar] [CrossRef]
- Smolej, A.; Klobčar, D.; Skaza, B.; Nagode, A.; Slaček, E.; Dragojević, V.; Smolej, S. Superplasticity of the rolled and friction stir processed Al–4.5 Mg–0.35Sc–0.15Zr alloy. Mater. Sci. Eng. A 2014, 590, 239–245. [Google Scholar] [CrossRef]
- Lee, S.; Utsunomiya, A.; Akamatsu, H.; Neishi, K.; Furukawa, M.; Horita, Z.; Langdon, T.G. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Mater. 2002, 50, 553–564. [Google Scholar] [CrossRef]
- Mikhaylovskaya, A.V.; Yakovtseva, O.A.; Golovin, I.S.; Pozdniakov, A.V.; Portnoy, V.K. Superplastic deformation mechanisms in fine-grained Al–Mg based alloys. Mater. Sci. Eng. A 2015, 627, 31–41. [Google Scholar] [CrossRef]
- Kulas, M.A.; Green, W.P.; Taleff, E.M.; Krajewski, P.E.; Mcnelley, T.R. Deformation mechanisms in superplastic AA5083 materials. Metall. Mater. Trans. A 2005, 36, 1249–1261. [Google Scholar] [CrossRef] [Green Version]
- Yavari, P.; Langdon, T.G. An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels. Acta Mater. 1982, 30, 2181–2196. [Google Scholar] [CrossRef]
- McNalley, T.R.; Michel, D.J.; Salama, A. The Mg-concentration dependence of the strength of Al–Mg alloys during glide-controlled deformation. Scr. Metall. 1989, 23, 1657–1662. [Google Scholar] [CrossRef]
- Gali, O.A.; Riahi, A.R.; Alpas, A.T. The effect of surface conditions on the elevated temperature sliding contact deformation of AA5083 alloy. Wear 2015, 330–331, 309–319. [Google Scholar] [CrossRef]
- Cao, F.R.; Li, Z.L.; Zhang, N.X.; Ding, H.; Yu, F.X.; Zuo, L. Superplasticity, flow and fracture mechanism in an Al–12.7Si–0.7Mg alloy. Mater. Sci. Eng. A 2013, 571, 167–183. [Google Scholar] [CrossRef]
- Shin, D.H.; Park, K.T. Directional cavity stringer formation in a superplastic 7075 Al alloy. Mater. Sci. Eng. A 1999, 268, 55–62. [Google Scholar] [CrossRef]
- Blandin, J.J.; Hong, B.; Varloteaux, A.; Suery, M.; L’Esperance, G. Effect of the nature of grain boundary regions on cavitation of a superplastically deformed aluminium alloy. Acta Mater. 1996, 44, 2317–2326. [Google Scholar] [CrossRef]
- Zelin, M.G. On micro-superplasticity. Acta Mater. 1997, 45, 3533–3542. [Google Scholar] [CrossRef]
- Tan, J.C.; Tan, M.J. Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng. A 2003, 399, 81–89. [Google Scholar] [CrossRef]
- Ritchie, I.M.; Sanders, J.V.; Weickhardt, P.L. Oxidation of a dilute aluminum magnesium alloy. Oxid. Met. 1971, 3, 91–101. [Google Scholar] [CrossRef]
- Chang, J.K.; Taleff, E.M.; Krajewski, P.E.; Ciulik, J.R. Effects of atmosphere in filament formation on a superplastically deformed aluminum–magnesium alloy. Scr. Mater. 2009, 60, 459–462. [Google Scholar] [CrossRef]
- Dirras, G. Filament formation during elevated temperature deformation of high purity ultrafine-grained aluminum. Mater. Lett. 2010, 64, 1163–1165. [Google Scholar] [CrossRef]
- Das, S.; Riahi, A.R.; Meng-Burany, X.; Morales, A.T.; Alpas, A.T. High temperature deformation and fracture of tribo-layers on the surface of AA5083 sheet aluminum–magnesium alloy. Mater. Sci. Eng. A 2012, 531, 76–83. [Google Scholar] [CrossRef]
- Taleff, E.M.; Nevland, P.J.; Krajewski, P.E. Tensile ductility of several commercial aluminum alloys at elevated temperatures. Metall. Mater. Trans. A 2001, 32, 1119–1130. [Google Scholar] [CrossRef]
- Kaibyshev, R.; Sakai, T.; Nikulin, I.; Musin, F.; Goloborodko, A. Superplasticity in a 7055 aluminum alloy subjected to intense plastic deformation. Mater. Sci. Technol. 2003, 19, 1491–1497. [Google Scholar] [CrossRef]
- Valiev, R.Z. Structure and mechanical properties of ultrafine-grained metals. Mater. Sci. Eng. A 1997, 234–236, 59–66. [Google Scholar] [CrossRef]
- Mohamed, F.A. Interpretation of superplastic flow in terms of a threshold stress. J. Mater. Sci. 1983, 8, 582–592. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Liu, F.C.; Mishra, R.S. Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Mater. 2010, 58, 4693–4704. [Google Scholar] [CrossRef]
- Watanabe, H.; Mukai, T.; Kohzu, M.; Tanabe, S.; Higashi, K. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy. Acta Mater. 1999, 47, 3753–3758. [Google Scholar] [CrossRef]
- Sakai, T.; Miura, H.; Goloborodko, A.; Sitdikov, O. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475. Acta Mater. 2009, 57, 153–162. [Google Scholar] [CrossRef]
- Mao, W.; Yu, Y. Effect of elastic reaction stress on plastic behaviors of grains in polycrystalline aggregate during tensile deformation. Mater. Sci. Eng. A 2004, 367, 277–281. [Google Scholar] [CrossRef]
- Sato, E.; Kuribayashi, K. Superplasticity and Deformation Induced Grain Growth. ISIJ Int. 1993, 33, 825–832. [Google Scholar] [CrossRef]
- Cao, F.R.; Lei, F.; Cui, J.Z.; Wen, J.L. Modification of a deformation induced grain growth model of superplasticity and its experimental verification. Acta Metall. Sin. 1999, 35, 770–772. [Google Scholar]
- Cao, F.R.; Ding, H.; Li, Y.L.; Zhou, G.; Cui, J.Z. Superplasticity, dynamic grain growth and deformation mechanism in ultra-light two-phase magnesium–lithium alloys. Mater. Sci. Eng. A 2010, 527, 2335–2341. [Google Scholar] [CrossRef]
- Malopheyev, S.; Kipelova, A.; Nikulin, I.; Kaibyshev, R. Mechanical Properties of an Al-5.4%Mg-0.5%Mn-0.1%Zr Alloy Subjected to ECAP and Rolling. Mater. Sci. Forum 2011, 667–669, 815–820. [Google Scholar] [CrossRef]
- Cao, F.R.; Cui, J.Z.; Wen, J.L.; Lei, F. Mechanical Behaviour and Microstructure Evolution of Superplastic Mg-8.4 wt pct Li Alloy and Effect of Grain Size and Phase Ratio on Its Elongation. J. Mater. Sci. Technol. 2000, 16, 55–58. [Google Scholar]
- Cao, F.R. Metal Superplasticity; Metallurgical Industry Press: Beijing, China, 2014; pp. 211–212. ISBN 978-7-5024-6690-9. [Google Scholar]
- Jie, J.C.; Zou, C.M.; Wang, H.W.; Li, B.; Wei, Z.J. Enhancement of mechanical properties of Al–Mg alloy with a high Mg content solidified under high pressures. Scr. Mater. 2011, 64, 588–591. [Google Scholar] [CrossRef]
- Wang, G.S.; Liu, K.; Wang, S.L. Evolution of Elevated-Temperature Strength and Creep Resistance during Multi-Step Heat Treatments in Al-Mn-Mg Alloy. Materials 2018, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Zandbergen, H.W.; Andersen, S.J.; Jansen, J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science 1997, 277, 1221–1225. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.K.; Chen, L.Q.; Wolverton, C. First-principles calculations of β″-Mg5Si6/α-Al interfaces. Acta Mater. 2007, 55, 5934–5947. [Google Scholar] [CrossRef]
- Zhang, J.C.; Ding, D.Y.; Zhang, W.L.; Kang, S.H.; Xu, X.L.; Gao, Y.J.; Chen, G.Z.; Chen, W.G.; You, X.H. Effect of Zr addition on microstructure and properties of Al–Mn–Si–Zn-based alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 3872–3878. [Google Scholar] [CrossRef]
- Seifeddine, S.; Svensson, I.L. Prediction of mechanical properties of cast aluminium components at various iron contents. Mater. Des. 2010, 31, 6–12. [Google Scholar] [CrossRef]
- Li, S.; Huang, Z.G.; Jin, S.Y. Cavity Behavior of Fine-Grained 5A70 Aluminum Alloy during Superplastic Formation. Metals 2018, 8, 1065. [Google Scholar] [CrossRef]
- Bae, D.H.; Ghosh, A.K. Cavity growth during superplastic flow in an Al–Mg alloy: I. Experimental study. Acta Mater. 2002, 50, 993–1009. [Google Scholar] [CrossRef]
- Takigawa, Y.; Aguirre, J.V.; Taleff, E.M.; Higashi, K. Cavitation during grain-boundary-sliding deformation in an AZ61 magnesium alloy. Mater. Sci. Eng. A 2008, 497, 139–146. [Google Scholar] [CrossRef]
- Kawasaki, M.; Xu, C.; Langdon, T.G. An investigation of cavity growth in a superplastic aluminum alloy processed by ECAP. Acta Mater. 2005, 53, 5353–5364. [Google Scholar] [CrossRef]
- Fan, G.J.; Choo, H.; Liaw, P.K.; Lavernia, E.J. Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution. Acta Mater. 2006, 54, 1759–1766. [Google Scholar] [CrossRef]
- Panin, V.E.; Egorushkin, V.E.; Derevyagina, L.S.; Deryugin, E.E. Nonlinear wave processes of crack propagation in brittle and brittle-ductile fracture. Phys. Mesomech. 2013, 16, 183–190. [Google Scholar] [CrossRef]
Temperature T/°C | Strain Rate /s−1 | Strain Hardening Coefficient/n1 | Standard Deviation/% | Temperature T/°C | Strain Rate /s−1 | Strain Hardening Coefficient /n1 | Standard Deviation /% |
---|---|---|---|---|---|---|---|
400 | 5 × 10−3 | 0.14 | 0.75 | 500 | 5 × 10−3 | 0.34 | 1.38 |
1 × 10−3 | 0.16 | 0.72 | 1 × 10−3 | 0.61 | 3.86 | ||
5 × 10−4 | 0.24 | 0.84 | 5 × 10−4 | 0.79 | 2.23 | ||
450 | 5 × 10−3 | 0.23 | 1.26 | 550 | 5 × 10−3 | 0.55 | 2.20 |
1 × 10−3 | 0.38 | 1.88 | 1 × 10−3 | 0.69 | 3.98 | ||
5 × 10−4 | 0.46 | 1.54 | 5 × 10−4 | 0.75 | 2.78 |
Temperature (°C) | 400 | 450 | 500 | 550 |
Threshold stress (MPa) | 5.56 | 3.35 | 0.15 | 0.83 |
Temperature T/°C | /s−1 | True Strain ε/MPa | Experimental Results d/μm | Proportional Constant α | Growth Rate Factor (×10−21) K/m3 s−1 |
---|---|---|---|---|---|
400 | 1 × 10−3 | 1.13 | 9.60 | 0.18 | 2.32 |
450 | 1.45 | 11.78 | 0.28 | 2.53 | |
500 | 1.60 | 13.32 | 0.33 | 2.58 | |
550 | 1.61 | 21.16 | 0.61 | 8.94 | |
500 | 5 × 10−4 | 1.76 | 14.35 | 0.34 | 3.42 |
550 | 1.71 | 24.26 | 0.66 | 3.47 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Huang, Z.; Jin, S. Superplastic Behavioral Characteristics of Fine-Grained 5A70 Aluminum Alloy. Metals 2019, 9, 62. https://doi.org/10.3390/met9010062
Li S, Huang Z, Jin S. Superplastic Behavioral Characteristics of Fine-Grained 5A70 Aluminum Alloy. Metals. 2019; 9(1):62. https://doi.org/10.3390/met9010062
Chicago/Turabian StyleLi, Sheng, Zhongguo Huang, and Shunyao Jin. 2019. "Superplastic Behavioral Characteristics of Fine-Grained 5A70 Aluminum Alloy" Metals 9, no. 1: 62. https://doi.org/10.3390/met9010062
APA StyleLi, S., Huang, Z., & Jin, S. (2019). Superplastic Behavioral Characteristics of Fine-Grained 5A70 Aluminum Alloy. Metals, 9(1), 62. https://doi.org/10.3390/met9010062