Application of Low-Cost Sensors for Building Monitoring: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods of Classifications
2.1. Research Question
- What are the preferred types of microcontrollers for low-cost monitoring?
- What are the chosen communication protocols?
- What are the most important parameters to be monitored in the field of building monitoring?
2.2. Data Processing of Low-Cost Monitoring Systems
3. Results
3.1. Indoor Monitoring of Buildings
3.1.1. Energy Efficiency of the Electrical Appliance (Category 1)
3.1.2. Controlling of the Air Quality and Pollution (Category 2)
3.1.3. Thermal Comfort and HVAC (Category 3)
3.1.4. Other Aspects of Indoor Monitoring of Buildings (Category 4)
3.2. Structural Building Monitoring
3.2.1. Vibration Monitoring (Category 5)
3.2.2. Strain Monitoring (Category 6)
4. Studying Microcontrollers and Communication Protocols in Literature
5. Integration of BIM and Low-Cost Sensors
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvalho, P.; Almeida, M. BIM-Based Energy Analysis and Sustainability. Buildings 2021, 11, 246. [Google Scholar] [CrossRef]
- Mathew, P.; Sanchez, L.; Lee, S.H.; Walter, T. Assessing the energy resilience of office buildings: Development and testing of a simplified metric for real estate stakeholders. Buildings 2021, 11, 96. [Google Scholar] [CrossRef]
- Lozano-Galant, J.A.; Nogal, M.; Castillo, E.; Turmo, J. Application of observability techniques to structural system identification. Comput. Civ. Infrastruct. Eng. 2013, 28, 434–450. [Google Scholar] [CrossRef]
- Tomàs, D.; Lozano-Galant, J.A.; Ramos, G.; Turmo, J. Structural system identification of thin web bridges by observability techniques considering shear deformation. Thin-Walled Struct. 2018, 123, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Nogal, M.; Lozano-Galant, J.A.; Xu, D.; Turmo, J. Constrained observability method in static structural system identification. Struct. Control Health Monit. 2018, 25, 1–15. [Google Scholar] [CrossRef]
- Mobaraki, B.; Ma, H.; Lozano Galant, J.A.; Turmo, J. Structural Health Monitoring of 2D Plane Structures. Appl. Sci. 2021, 11, 2000. [Google Scholar] [CrossRef]
- Santos, F.; Cismaşiu, C.; Cismaşiu, I.; Bedon, C. Dynamic characterisation and finite element updating of a RC stadium grandstand. Buildings 2018, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Mobaraki, B.; Vaghefi, M. Effect of the soil type on the dynamic response of a tunnel under surface detonation. Combust. Explos. Shock Waves 2016, 52, 363–370. [Google Scholar] [CrossRef]
- Vaghefi, M.; Mobaraki, B. Evaluation of the Effect of Explosion on the Concrete Bridge Deck Using LS-DYNA. Int. Rev. Civ. Eng. 2021, 12, 135. [Google Scholar]
- Mobaraki, B.; Vaghefi, M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion. Tunn. Undergr. Space Technol. 2015, 47, 114–122. [Google Scholar] [CrossRef]
- Lyapin, A.; Beskopylny, A.; Meskhi, B. Structural monitoring of underground structures in multi-layer media by dynamic methods. Sensors 2020, 20, 5241. [Google Scholar] [CrossRef] [PubMed]
- Sirca, G.F.; Adeli, H. System identification in structural engineering. Sci. Iran. 2012, 19, 1355–1364. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, F.; Salachoris, G.P.; Clementi, F.; Lenci, S. A genetic algorithm procedure for the automatic updating of fem based on ambient vibration tests. Sensors 2020, 20, 3315. [Google Scholar] [CrossRef]
- Markiewicz, J.; Łapiński, S.; Kot, P.; Tobiasz, A.; Muradov, M.; Nikel, J.; Shaw, A.; Al-Shamma, A. The quality assessment of different geolocalisation methods for a sensor system to monitor structural health of monumental objects. Sensors 2020, 20, 2915. [Google Scholar] [CrossRef]
- Anaf, W.; Cabal, A.; Robbe, M.; Schalm, O. Real-time wood behaviour: The use of strain gauges for preventive conservation applications. Sensors 2020, 20, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BBC Global Markets and Technologies for Sensors. 2016. Available online: https://www.bccresearch.com/market-research/instrumentation-and-sensors/sensors-ias006f.html (accessed on 20 January 2021).
- González-Galvez, O.; Morales, M.; Seefoó, C.; Morillón, D.; Valdés, H. Energy diagnosis of university buildings: Renewable energy institute from UNAM. Buildings 2018, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Bienvenido-Huertas, D.; Rodríguez-Álvaro, R.; Moyano, J.J.; Rico, F.; Marín, D. Determining the U-Value of fa ades using the thermometric method: Potentials and limitations. Energies 2018, 11, 360. [Google Scholar] [CrossRef] [Green Version]
- Teni, M.; Krstić, H.; Kosiński, P. Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance. Energy Build. 2019, 203, 109417. [Google Scholar] [CrossRef]
- Porras Soriano, R.; Mobaraki, B.; Lozano-Galant, J.A.; Sanchez-Cambronero, S.; Prieto Muñoz, F.; Gutierrez, J.J. New Image Recognition Technique for Intuitive Understanding in Class of the Dynamic Response of High-Rise Buildings. Sustainability 2021, 13, 3695. [Google Scholar] [CrossRef]
- 3D Design E and Entertainment Software. AUTODESK [Internet]. 2019. Available online: https://www.autodesk.com/products/revit/overview# (accessed on 20 January 2021).
- Garphisoft. Archicad (Internet). Available online: https://graphisoft.com/ (accessed on 20 January 2021).
- ALLPLAN [Internet]. 2021. Available online: https://www.allplan.com/es/ (accessed on 20 January 2021).
- Mattila, M.; Hyttinen, M.; Rantanen, E. Effective supervisory behaviour and safety at the building site. Int. J. Ind. Ergon. 1994, 13, 85–93. [Google Scholar] [CrossRef]
- Elahi, A.; Gschwender, A. ZigBee Wireless Sensor and Control Network; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Cheung, W.F.; Lin, T.H.; Lin, Y.C. A real-time construction safety monitoring system for hazardous gas integrating wireless sensor network and building information modeling technologies. Sensors 2018, 18, 436. [Google Scholar] [CrossRef] [Green Version]
- Bozdoğan, H. Species richness and composition of Neuroptera in the forests fregments of the Taurus Mountains Range, Turkey. Saudi J. Biol. Sci. 2020, 27, 1201–1207. [Google Scholar] [CrossRef]
- Baffa, M.D. Assessing Overall Thermal Conductance Value of Low-Rise Residential Home Exterior Above-Grade Walls Using Infrared Thermography Methods. Int. J. Civ. Environ. Eng. 2018, 12, 626–636. [Google Scholar]
- Quistin, P.; Fournely, E.; Bargy, J.M.; Cador, L.; Lamadon, T.; Romana, L. Impact of environment on timber structures, bois duramhen 971, the case of Guadeloupe (FWI). In Proceedings of the World Conference on Timber Engineering (WCTE), Seoul, Korea, 20–23 August 2019. [Google Scholar]
- Amini, M.; Pishevar, A.R.; Yaghoubi, M. Experimental study of frost formation on a fin-and-tube heat exchanger by natural convection. Int. J. Refrig. 2014, 46, 37–49. [Google Scholar] [CrossRef]
- Markal, B.; Aydin, O.; Avci, M. An experimental study on the effect of the valve angle of counter-flow Ranque-Hilsch vortex tubes on thermal energy separation. Exp. Therm. Fluid Sci. 2010, 34, 966–971. [Google Scholar] [CrossRef]
- Rapid-Tech Equipment Pty Ltd. Extech EN510. 2019. Available online: https://assets.thermofisher.com/TFS-Assets/ANZ/brochures/pcb-explosive-gun-impact-testing.pdf (accessed on 20 January 2021).
- Pandey, S.K.; Kim, K.H. The relative performance of NDIR-based sensors in the near real-time analysis of CO2 in air. Sensors 2007, 7, 1683–1696. [Google Scholar] [CrossRef] [Green Version]
- Briand, D.; Van Der Schoot, B.; De Rooij, N.F.; Sundgren, H.; Lundström, I. Low-power micromachined MOSFET gas sensor. J. Microelectromech. Syst. 2000, 9, 303–308. [Google Scholar] [CrossRef]
- Li, H.; Mu, X.; Yang, Y.; Mason, A.J. Low power multimode electrochemical gas sensor array system for wearable health and safety monitoring. IEEE Sens. J. 2014, 14, 3391–3399. [Google Scholar] [CrossRef]
- Lazarus, N.; Bedair, S.S.; Lo, C.; Fedder, G.K. CMOS-MEMS Capacitive Humidity Sensor. Micromachines 2010, 19, 183–191. [Google Scholar]
- Mohseni Kiasari, N.; Soltanian, S.; Gholamkhass, B.; Servati, P. Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sens. Actuators A Phys. 2012, 182, 101–105. [Google Scholar] [CrossRef]
- Liu, S.; Pan, S.; Xue, F.; Lin, N.; Liu, H.; Miao, J.; Norford, L.K.; Lim, H. Out-of-plane micro triple-hot-wire anemometer based on Pyrex bubble for airflow sensing. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 777–780. [Google Scholar]
- Atakturk, S.S.; Katsaros, K.B. The K-Gill: A twin propeller-vane anemometer for measurements of atmospheric turbulence. J. Atmos. Ocean Technol. 1989, 6, 509–515. [Google Scholar] [CrossRef]
- Von Seht, M.I.; Wohlenberg, J. Microtremor Measurements Used to Map Thickness of Soft Sediments. Bull. Seismol. Soc. Am. 1999, 89, 250–259. [Google Scholar] [CrossRef]
- Tian, B.; Liu, H.; Yang, N.; Zhao, Y.; Jiang, Z. Design of a piezoelectric accelerometer with high sensitivity and low transverse effect. Sensors 2016, 16, 1587. [Google Scholar] [CrossRef] [Green Version]
- Tan, W. Highly Symmetric Tri-axis Piezoelectric Bimorph Accelerometer. In Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems, Piscataway, NJ, USA, 25–29 January 2004; pp. 197–200. [Google Scholar]
- Hewa-Kasakarage, N.N.; Kim, D.; Kuntzman, M.L.; Hall, N.A. Micromachined piezoelectric accelerometers via epitaxial silicon cantilevers and bulk silicon proof masses. J. Microelectromech. Syst. 2013, 22, 1438–1446. [Google Scholar] [CrossRef]
- Liu, F.; Dai, Y.; Karanja, J.M.; Yang, M. A low frequency FBG accelerometer with symmetrical bended spring plates. Sensors 2017, 17, 206. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Chan, T.H.T.; Yau, M.H.; Nguyen, T.; Thambiratnam, D.P.; Tam, H.Y. Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity. Appl. Opt. 2013, 52, 6401–6410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Rong, Q.; Sun, H.; Yang, S.; Yuan, L.; Hu, M. Low-frequency fiber Bragg grating accelerometer based on a double-semicircle cantilever. Opt. Fiber Technol. 2014, 20, 190–193. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, X.; Hu, M.; Feng, Z.; Gao, H.; Yang, Y.; Zhou, R. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement. Chin. Opt. Lett. 2011, 9, 090607. [Google Scholar] [CrossRef]
- Zhu, L.; Fu, Y.; Chow, R.; Spencer, B.F.; Park, J.W.; Mechitov, K. Development of a high-sensitivitywireless accelerometer for structural health monitoring. Sensors 2018, 18, 1–16. [Google Scholar]
- Sabato, A.; Feng, M.Q.; Fukuda, Y.; Carni, D.L.; Fortino, G. A Novel Wireless Accelerometer Board for Measuring Low-Frequency and Low-Amplitude Structural Vibration. IEEE Sens. J. 2016, 16, 2942–2949. [Google Scholar] [CrossRef]
- Sabato, A.; Feng, M.Q. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer. Sensors 2014, 14, 16563–16585. [Google Scholar] [CrossRef] [Green Version]
- Munar Junio, E.J. Implementacao de Uma Rede de Densores Sem Fios Baseada SoC Arm e ZigBee. Ph.D. Thesis, Universidad de Minho, Braga, Portugal, 2019. [Google Scholar]
- Giammarini, M.; Isidori, D.; Pieralisi, M.; Cristalli, C.; Fioravanti, M.; Concettoni, E. Design of a low cost and high performance wireless sensor network for structural health monitoring. Microsyst. Technol. 2016, 22, 1845–1853. [Google Scholar] [CrossRef]
- Sineglazov, V.M.; Dolgorukov, S.O. Environmental chamber for navigation equipment test table. Electron Control Syst. 2017, 2, 62–66. [Google Scholar]
- Allen, T.; Battley, M.; Casari, P.; Kerling, B.; Stenius, I.; Westlund, J. Structural responses of high performance sailing yachts to slamming loads. In Proceedings of the 11th International Conference on Fast Sea Transportation, Honolulu, HI, USA, 26–29 September 2011; pp. 585–592. [Google Scholar]
- Rigo, F.; Denoël, V.; Andrianne, T. Vortex induced vibrations of rectangular cylinders arranged on a grid. J. Wind Eng. Ind. Aerodyn. 2018, 177, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.H.; Gobran, M.H.; Mahmoud, F.F. Vibration Signature of Normal and Notched Tooth Gear Pump. Eur. Sci. J. 2019, 15, 64–75. [Google Scholar] [CrossRef]
- Explosive, Gun & Impact Testing. 2020, 1–40. Available online: https://www.imv.co.jp/e/products/vibrograph/pickup/piezo/ (accessed on 20 January 2021).
- Mobaraki, B.; Komarizadehasl, S.; Castilla, F.J.; Lozano-Galant, J.A. Open source platforms for monitoring thermal parameters of structures. In Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations; CRC Press: Boca Raton, FL, USA, 2019; pp. 3892–3896. [Google Scholar]
- Cho, S.; Yun, C.-B.; Lynch, J.P.; Zimmerman, A.T.; Spencer, B.F.J.; Nagayama, T. Smart wireless sensor technology for structural health monitoring of civil structures. Steel Struct. 2008, 8, 267–275. [Google Scholar]
- Komarizadehasl, S.; Mobaraki, B.; Lozano-galant, J.A. Detailed evaluation of low-cost ranging sensors for structural health monitoring applications. In Proceedings of the Recent Trends in Construction and Education RTCEE International Conference, Brisbane, Australia, 11 September 2020; pp. 10–11. [Google Scholar]
- Mobaraki, B.; Komarizadehasl, S.; Javier, F.; Pascual, C.; Antonio, J. Determination of environmental parameters based on Arduino based low-cost sensors. In Proceedings of the Recent Trends in Construction and Education RTCEE International Conference, Brisbane, Australia, 11 September 2020; pp. 10–11. [Google Scholar]
- Mobaraki, B.; Komarizadehasl, S.; Pascual, F.; Lozano-Galant, J. Environmental Monitoring System Based on Low-Cost Sensors. In Proceedings of the XV International Conference on Durability of Building Materials and Components DBMC, Barcelona, Spain, 20–23 October 2020; pp. 1679–1686. [Google Scholar]
- Kusriyanto, M.; Putra, B.D. Smart Home Using Local Area Network (Lan) Based Arduino Mega 2560. In Proceedings of the ICWT 2016: 2nd International Conference on Wireless and Telematics, Yogyakarta, Indonesia, 1–2 August 2016; pp. 127–131. [Google Scholar]
- Martín-Garín, A.; Millán-García, J.A.; Baïri, A.; Millán-Medel, J.; Sala-Lizarraga, J.M. Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit. Autom. Constr. 2018, 87, 201–214. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol. Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Domínguez, M.; Masana, F.N.; Jiménez, V.; Bermejo, S.; Amirola, J.; Ballester, J.; Fueyo, N.; Castañer, L.M. Low-cost thermal Σ-Δ air flow sensor. IEEE Sens. J. 2002, 2, 453–462. [Google Scholar] [CrossRef]
- Karami, M.; McMorrow, G.V.; Wang, L. Continuous monitoring of indoor environmental quality using an Arduino-based data acquisition system. J. Build. Eng. 2018, 19, 412–419. [Google Scholar] [CrossRef]
- Erkoreka, A.; Garcia, E.; Martin, K.; Teres-Zubiaga, J.; Del Portillo, L. In-use office building energy characterization through basic monitoring and modelling. Energy Build. 2016, 119, 256–266. [Google Scholar] [CrossRef]
- Frei, M.; Deb, C.; Stadler, R.; Nagy, Z.; Schlueter, A. Wireless sensor network for estimating building performance. Autom. Constr. 2020, 111, 103043. [Google Scholar] [CrossRef]
- Chase, O.A.; Teles, M.B.; De Jesus dos Santos Rodrigues, M.; De Almeida, J.F.; Macêdo, W.N.; da Costa Junior, C.T. A low-cost, stand-alone sensory platform for monitoring extreme solar overirradiance events. Sensors 2018, 18, 2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dussault, J.M.; Kohler, C.; Goudey, H.; Hart, R.; Gosselin, L.; Selkowitz, S.E. Development and assessment of a low cost sensor for solar heat flux measurements in buildings. Sol. Energy 2015, 122, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Komarizadehasl, S.; Mobaraki, B.; Lozano-Galant, J.; Turmo, J. Practical Application of Low-Cost Sensors for Static Tests. In Proceedings of the XV International Conference on Durability of Building Materials and Components DBMC, Barcelona, Spain, 20–23 October 2020; pp. 1–9. [Google Scholar]
- Komarizadehasl, S.; Mobaraki, B.; Lozano-Galant, J.A.; Turmo, J. Evaluation of low-cost angular measuring sensors. In Proceedings of the International Conference on Recent Trends in Construction Engineering and Education and in Geotechnical and Geo-Environmental Engineering and Education, Brisbane, Australia, 10–11 September 2020; pp. 1–6. [Google Scholar]
- Lee, J.; Khan, I.; Choi, S.; Kwon, Y.W. A smart iot device for detecting and responding to earthquakes. Electronics 2019, 8, 1546. [Google Scholar] [CrossRef] [Green Version]
- Villacorta, J.; Del-Val, L.; Martínez, R.; Balmori, J.-A.; Magdaleno, Á.; López, G.; Izquierdo, A.; Lorenzana, A.; Basterra, L.-A. Design and Validation of a Scalable, Reconfigurable and Low-Cost Structural Health Monitoring System. Sensors 2021, 21, 648. [Google Scholar] [CrossRef]
- Verma, A.; Prakash, S.; Srivastava, V.; Kumar, A.; Mukhopadhyay, S.C. Sensing, Controlling, and IoT Infrastructure in Smart Building: A Review. IEEE Sens. J. 2019, 19, 9036–9046. [Google Scholar] [CrossRef]
- Hayat, H.; Griffiths, T.; Brennan, D.; Lewis, R.P.; Barclay, M.; Weirman, C.; Philip, B.; Searle, J.R. The state-of-the-art of sensors and environmental monitoring technologies in buildings. Sensors 2019, 19, 3648. [Google Scholar] [CrossRef] [Green Version]
- López, F.J.; Lerones, P.M.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. A review of heritage building information modeling (H-BIM). Multimodal. Technol. Interact. 2018, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Akbarieh, A.; Jayasinghe, L.B.; Waldmann, D.; Teferle, F.N. BIM-based end-of-lifecycle decision making and digital deconstruction: Literature review. Sustainability 2020, 12, 2670. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, A.; Temeljotov, A. A systematic literature review of non-invasive indoor thermal discomfort detection. App. Sci. 2020, 10, 4085. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Indoor air quality monitoring systems based on internet of things: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 4942. [Google Scholar] [CrossRef]
- Shen, W.; Newsham, G. Implicit occupancy detection for energy conservation in commercial buildings: A review. In Proceedings of the International Conference on Computer Supported Cooperative Work in Design, Nanchang, China, 4–6 May 2016; pp. 625–631. [Google Scholar]
- de Bakker, C.; Aries, M.; Kort, H.; Rosemann, A. Occupancy-based lighting control in open-plan office spaces: A state of the art review. Build. Environ. 2017, 112, 308–321. [Google Scholar] [CrossRef]
- Salim, F.D.; Dong, B.; Ouf, M.; Wang, Q.; Pigliautile, I.; Kang, X.; Hong, T.; Wu, W.; Liu, Y.; Rumi, S.K.; et al. Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey. Build. Environ. 2020, 183, 106964. [Google Scholar] [CrossRef]
- Annamdas, K.K.K.; Annamdas, V.G.M. Review on developments in fiber optical sensors and applications. Fiber Opt. Sens. Appl. VII 2010, 7677, 76770R. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Staszewski, W.J.; Swamy, R.N. Smart sensing technologies for structural health monitoring of civil engineering structures. Adv. Civ. Eng. 2010, 2010, 724962. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. Shock Vib. Dig. 2006, 38, 91–128. [Google Scholar] [CrossRef] [Green Version]
- Bilro, L.; Alberto, N.; Pinto, J.L.; Nogueira, R. Optical sensors based on plastic fibers. Sensors 2012, 12, 12184–12207. [Google Scholar] [CrossRef] [Green Version]
- Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef] [Green Version]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the performance of low-cost sensors for air quality monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Penza, M.; Suriano, D.; Pfister, V.; Prato, M.; Cassano, G. Urban Air Quality Monitoring with Networked Low-Cost Sensor-Systems. Proceedings 2017, 1, 573. [Google Scholar] [CrossRef] [Green Version]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Li, X.; Hou, Y.; Meier, A.; Cheng, X.; Choi, J.-H.; Wang, F.; Wang, H.; Wagner, A.; Yan, D.; et al. Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses—A review. Energy Build. 2020, 224, 110261. [Google Scholar] [CrossRef]
- Spencer, B.F.; Ruiz-Sandoval, M.E.; Kurata, N. Smart sensing technology: Opportunities and challenges. Struct. Control Health Monit. 2004, 11, 349–368. [Google Scholar] [CrossRef]
- Bohórquez, M.A.M.; Enrique Gómez, J.M.; Andújar Márquez, J.M. A new and inexpensive temperature-measuring system: Application to photovoltaic solar facilities. Sol. Energy 2009, 83, 883–890. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. Influence of heating systems on thermal transmittance evaluations: Simulations, experimental measurements and data post-processing. Energy Build. 2018, 168, 180–190. [Google Scholar] [CrossRef]
- Andújar Márquez, J.M.; Martínez Bohórquez, M.Á.; Gómez Melgar, S. A New Metre for Cheap, Quick, Reliable and Simple Thermal Transmittance (U-Value) Measurements in Buildings. Sensors 2017, 17, 2017. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Weng, Z.; Schiano-Phan, R.; Scott, D.; Lau, B. Application of IoT and BEMS to visualise the environmental performance of an educational building. Energies 2020, 13, 4009. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Pistorio, A. A low cost multi-sensor approach for early warning in structural monitoring of buildings and structures. In Proceedings of the Conference Record—IEEE Instrumentation and Measurement Technology Conference, Montevideo, Uruguay, 12–15 May 2014; pp. 742–746. [Google Scholar]
- Measures, R.M. Fiber optic sensing for composite smart structures. Compos. Eng. 1993, 3, 715–750. [Google Scholar] [CrossRef]
- Tsilingiris, P.T. Design of a submersible, low-cost, flat-response net radiometer. Sol. Energ. 1993, 50, 369–377. [Google Scholar] [CrossRef]
- Agency IE. 2020. Available online: https://www.iea.org/reports/electricity-information-overview (accessed on 20 January 2021).
- Agency IE. Electricity Information: Overview [Internet]. 2021. Available online: https://www.iea.org/data-and-statistics (accessed on 20 January 2021).
- Cheng, Y.; Fang, C.; Yuan, J.; Zhu, L. Design and application of a smart lighting system based on distributed wireless sensor networks. Appl. Sci. 2020, 10, 8545. [Google Scholar] [CrossRef]
- Longo, E.; Redondi, A.E.C.; Cesana, M. Accurate occupancy estimation with WiFi and bluetooth/BLE packet capture. Comput. Netw. 2019, 163, 163. [Google Scholar] [CrossRef]
- Pereira, F.; Lopes, S.; Carvalho, N. Design of a Cost-Effective Multimodal IoT Edge Device for Building Occupancy Estimation. In Proceedings of the 5th IEEE International Smart Cities Conference, Casablanca, Morocco, 4–7 October 2019; pp. 122–128. [Google Scholar]
- Monti, L.; Mirri, S.; Prandi, C.; Salomoni, P. Smart Sensing Supporting Energy-Efficient Buildings: On Comparing Prototypes for People Counting. In Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, Valencia, Spain, 25–27 September 2019; pp. 171–176. [Google Scholar]
- Labeodan, T.; De Bakker, C.; Rosemann, A.; Zeiler, W. On the application of wireless sensors and actuators network in existing buildings for occupancy detection and occupancy-driven lighting control. Energy Build. 2016, 127, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.W.; Bhatt, D.V.; Hancke, G.P.; Silva, B. A web-based office climate control system using wireless sensors. IEEE Sens. J. 2016, 16, 6104–6113. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zeiler, W.; Boxem, G.; Labeodan, T. Virtual occupancy sensors for real-time occupancy information in buildings. Build. Environ. 2015, 93, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Lan, L.; Tan, Y.K. Advanced building energy monitoring using wireless sensor integrated EnergyPlus platform for personal climate control. In Proceedings of the International Conference on Power Electronics and Drive Systems, Sydney, Australia, 17 August 2015; pp. 567–574. [Google Scholar]
- Paci, F.; Brunelli, D.; Benini, L. 0, 1, 2, many—A classroom occupancy monitoring system for smart public buildings. In Proceedings of the Conference on Design and Architectures for Signal and Image Processing, DASIP, Madrid, Spain, 8–10 October 2014. [Google Scholar]
- Chen, J.; Ahn, C. Assessing occupants’ energy load variation through existing wireless network infrastructure in commercial and educational buildings. Energy Build. 2014, 82, 540–549. [Google Scholar] [CrossRef]
- Vanus, J.; Machac, J.; Martinek, R.; Bilik, P.; Zidek, J.; Nedoma, J.; Fajkus, M. The design of an indirect method for the human presence monitoring in the intelligent building. Hum.-Cent. Comput. Inf. Sci. 2018, 8, 1–44. [Google Scholar] [CrossRef]
- Dedesko, S.; Stephens, B.; Gilbert, J.A.; Siegel, J.A. Methods to assess human occupancy and occupant activity in hospital patient rooms. Build Environ. 2015, 90, 136–145. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Aiello, M. Beyond indoor presence monitoring with simple sensors. In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems, Rome, Italy, 10–13 February 2012; pp. 5–14. [Google Scholar]
- Wang, W.; Chen, J.; Hong, T. Modeling occupancy distribution in large spaces with multi-feature classification algorithm. Build. Environ. 2018, 137, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yang, Y.; Jiang, C.; Hao, J.; Zhang, L. Light Sensor Based Occupancy Estimation via Bayes Filter with Neural Networks. IEEE Trans. Ind. Electron. 2020, 67, 5787–5797. [Google Scholar] [CrossRef]
- Chaney, J.; Hugh Owens, E.; Peacock, A.D. An evidence based approach to determining residential occupancy and its role in demand response management. Energy Build. 2016, 125, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.O.; Bierer, B.; Scholz, L.; Wöllenstein, J.; Palzer, S. A wireless gas sensor network to monitor indoor environmental quality in schools. Sensors 2018, 18, 4345. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Pandey, Y.; Kumar, A.; Singh, M.K.; Kumar, A.; Mukhopadhyay, S.C. Ventilation Monitoring and Control System for High Rise Historical Buildings. IEEE Sens. J. 2017, 17, 7533–7541. [Google Scholar] [CrossRef]
- Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments. J. Sens. Sens. Syst. 2018, 7, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Rönkkö, M.; Stocker, M.; Neovius, M.; Petre, L.; Kolehmainen, M. Designing resilience mediators for control systems. In Proceedings of the IASTED International Conference on Modelling, Identification and Control, Innsbruck, Austria, 10 February 2014; pp. 147–154. [Google Scholar]
- Arnesano, M.; Revel, G.M.; Pietroni, F.; Frick, J.; Reichert, M.; Schmitt, K.; Huber, J.; Ebermann, M.; Battista, U.; Alessi, F. Cost-effective technologies to control indoor air quality and comfort in energy efficient building retrofitting. Environ. Eng. Manag. J. 2015, 14, 1487–1494. [Google Scholar] [CrossRef]
- Falchhub, F.; Bakhouya, M.; Ouladsine, R.; Essaaidi, M. Monitoring and Controlling Buildings Indoor Air Quality Using WSN-based technologies. In Proceedings of the 2017 4th International Conference on Control, Decision and Information Technologies, Barcelona, Spain, 5–7 April 2017; pp. 696–701. [Google Scholar]
- Siefker, Z.A.; Boyina, A.; Braun, J.E.; Zhao, X.; Boudouris, B.W.; Bajaj, N.; Chiu, G.T.-C.; Rhoads, J.F. A Chemiresistive CO2 Sensor Based on CNT-Functional Polymer Composite Films. In Proceedings of the IEEE Sensors, Rotterdam, The Netherlands, 25–28 December 2020. [Google Scholar]
- Li, J.; Biswas, P. Optical characterization studies of a low-cost particle sensor. Aerosol. Air Qual. Res. 2017, 17, 1691–1704. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, D.S.; Martins, L.D.; Muniz, E.C.; Rudke, A.P.; Squizzato, R.; Beal, A.; de Souza, P.R.; Bonfim, D.P.F.; Aguiar, M.L.; Gimenes, M.L. Biodegradable CA/CPB electrospun nanofibers for efficient retention of airborne nanoparticles. Process Saf. Environ. Prot. 2020, 144, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, R.; Kumar, A.; Hancke, G.P.; Silva, B.J. A wireless system for indoor air quality monitoring. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Florence, Italy, 23 October 2016; pp. 5409–5414. [Google Scholar]
- Cai, Z.; Van Veldhoven, R.; Suy, H.; De Graaf, G.; Makinwa, K.A.A.; Pertijs, M.A.P. A phase-domain readout circuit for a CMOS-compatible hot-wire CO2 sensor. IEEE J. Solid-State Circuits 2018, 53, 3303–3313. [Google Scholar] [CrossRef] [Green Version]
- Viani, F.; Polo, A. A forecasting strategy based on wireless sensing for thermal comfort optimization in smart buildings. Microw Opt. Technol. Lett. 2017, 59, 2907–2913. [Google Scholar] [CrossRef]
- Chen, P.Y.; Chan, Y.C. Developing the methodology to investigate the thermal comfort of hot-humid climate under different ventilation modes. J. Phys. Conf. Ser. 2019, 1343, 012149. [Google Scholar] [CrossRef]
- D’Orazio, M.; Quagliarini, E.; Bernardini, G.; Gregorini, B.; Gianangeli, A. Sustainable fruition as a preventive conservation strategy for hypogeum artefacts. J. Cult. Herit. 2020, 46, 235–243. [Google Scholar] [CrossRef]
- Aftab, M.; Chen, C.; Chau, C.K.; Rahwan, T. Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy Build. 2017, 154, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Che, W.; Tso, C.Y.; Sun, L.; Ip, D.Y.; Lee, H.; Chao, Y.H.C.; Lau, A.K. Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy Build. 2019, 201, 202–215. [Google Scholar] [CrossRef]
- Stamatescu, G.; Sgârciu, V. Evaluation of wireless sensor network monitoring for indoor spaces. In Proceedings of the 2012 International Symposium on Instrumentation and Measurement, Sensor Network and Automation, IMSNA 2012, Sanya, China, 8 October 2012; pp. 107–111. [Google Scholar]
- Barrios, L.; Kleiminger, W. The Comfstat—Automatically sensing thermal comfort for smart thermostats. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications, PerCom 2017, Kona, HI, USA, 13–17 March 2017; pp. 257–266. [Google Scholar]
- Kumar, A.; Sud, S.K. An approach towards development of PMV based thermal comfort smart sensor. Int. J. Smart Sens. Intell. Syst. 2010, 3, 621–642. [Google Scholar] [CrossRef]
- Yang, H.; Kim, B.; Lee, J.; Ahn, Y.; Lee, C. Advanced wireless sensor networks for sustainable buildings using building ducts. Sustainability 2018, 10, 2628. [Google Scholar] [CrossRef] [Green Version]
- Vasilievici, A.; Costea, S. Structural health monitoring using an array of spatially distributed sensors. In Proceedings of the International Semiconductor Conference, Sinaia, Romania, 12–14 October 2009; pp. 521–524. [Google Scholar]
- Li, H.; Zhao, L.; Darr, M.J.; Ling, P. Modeling Wireless Signal Transmission Performance Path Loss for ZigBee Communication Protocol in Residential Houses. In Proceedings of the ASABE Annual International Meeting, Reno, NV, USA, 21–24 June 2009. [Google Scholar]
- Li, H.; Zhao, L.; Ling, P.; Liu, J. A Model for Predicting Wireless Signal Transmission Performance of ZigBee-Based Sensor Networks in Residential Houses. In Proceedings of the ASHRAE, Reno, NV, USA, 21 June 2012; pp. 994–1007. [Google Scholar]
- Kumar, A.; Hancke, G.P. An energy-efficient smart comfort sensing system based on the IEEE 1451 standard for green buildings. IEEE Sens. J. 2014, 14, 4245–4252. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, H.; Li, B.; Kosonen, R. Prediction of thermal sensation using low-cost infrared array sensors monitoring system. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Wuhan, China, 10–12 October 2019. [Google Scholar]
- Li, D.; Menassa, C.C.; Kamat, V.R.; Byon, E. HEAT—Human Embodied Autonomous Thermostat. Build Environ. 2020, 178, 106879. [Google Scholar] [CrossRef]
- Aryal, A.; Becerik-Gerber, B. Skin temperature extraction using facial landmark detection and thermal imaging for comfort assessment. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13 November 2019; pp. 71–80. [Google Scholar]
- Vissers, D.; Zeiler, W. The User as Sensor to Reach for Optimal Individual Comfort and Reduced Energy Consumption. In Proceedings of the 28th Conference, Opportunities, Limits & Needs Towards an Environmentally Responsible Architecture, Lima, Peru, 7–9 November 2012; pp. 1–7. [Google Scholar]
- Beirne, S.; Lau, K.T.; Corcoran, B.; Diamond, D. Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network. In Proceedings of the IEEE Sensors, Christchurch, New Zealand, 25–28 October 2009; pp. 69–72. [Google Scholar]
- Lawrence, M.; Heath, A.; Walker, P. Monitoring of the Moisture Content of Straw Bale Walls; Springer: Berlin/Heidelberg, Germany, 2009; pp. 155–164. [Google Scholar]
- Davies, M.; Ye, Z. A “pad” sensor for measuring the moisture content of building materials. Build. Serv. Eng. Res. Technol. 2009, 30, 263–270. [Google Scholar] [CrossRef]
- Larson, E.; Froehlich, J.; Campbell, T.; Haggerty, C.; Atlas, L.; Fogarty, J.; Patel, S.N. Disaggregated water sensing from a single, pressure-based sensor: An extended analysis of HydroSense using staged experiments. Pervasive Mob. Comput. 2012, 8, 82–102. [Google Scholar] [CrossRef]
- Froehlich, J.; Larson, E.; Campbell, T.; Haggerty, C.; Fagorty, J.; Patel, S. HydroSense: Infrastructure-Mediated Single-Point Sensing of Whole-Home Water Activity. In Proceedings of the 11th International Conference on Ubiquitous Computing, Washington, DC, USA, 30 September 2009; pp. 235–244. [Google Scholar]
- Yu, D.; Li, H.; Ni, L.; Yu, Y. An improved virtual calibration of a supply air temperature sensor in rooftop air conditioning units. HVAC R Res. 2011, 17, 798–812. [Google Scholar] [CrossRef]
- Balsamo, D.; Paci, G.; Benini, L.; Davide, B. Long term, low cost, passive environmental monitoring of heritage buildings for energy efficiency retrofitting. In Proceedings of the 2013 IEEE Workshop on Environmental, Energy and Structural Monitoring Systems, EESMS 2013, Trento, Italy, 11–12 September 2013. [Google Scholar]
- Imteaj, A.; Rahman, T.; Hossain, M.K.; Alam, M.S.; Rahat, S.A. An IoT based Fire Alarming and Authentication System for Workhouse using Raspberry Pi 3. In Proceedings of the ECCE 2017—International Conference on Electrical, Computer and Communication Engineering, Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 899–904. [Google Scholar]
- Frei, M.; Hofer, J.; Schlüter, A.; Nagy, Z. An easily-deployable wireless sensor network for building energy performance assessment. Energy Procedia 2017, 122, 523–528. [Google Scholar] [CrossRef]
- Andreotti, M.; Calzolari, M.; Davoli, P.; Pereira, L.D.; Lucchi, E.; Malaguti, R. Design and construction of a new metering hot box for the in situ hygrothermal measurement in dynamic conditions of historic masonries. Energies 2020, 13, 2950. [Google Scholar] [CrossRef]
- Lucchi, E.; Pereira, L.D.; Andreotti, M.; Malaguti, R.; Cennamo, D.; Calzolari, M.; Frighi, V. Development of a compatible, low cost and high accurate conservation remote sensing technology for the hygrothermal assessment of historic walls. Electronics 2019, 8, 643. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Swartz, A.; Lynch, J.P.; Law, K.H.; Lu, K.-C.; Loh, C.-H. Wireless Feedback Structural Control with Embedded Computing. In Proceedings of the Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems V, San Diego, CA, USA, 26 February–2 March 2006. [Google Scholar]
- Bezas, K.; Komianos, V.; Oikonomou, K.; Koufoudakis, G. Structural Health Monitoring in Historical Buildings: A Network Approach. Heritage 2020, 3, 796–818. [Google Scholar] [CrossRef]
- D’alessandro, A.; Vitale, G.; Scudero, S. MEMS-based system for structural health monitoring and earthquake observation in Sicily. Lect. Notes Civ. Eng. 2021, 529, 89–95. [Google Scholar]
- Priswanto, A.; Maryanto, S.; Santoso, D.R. Wireless sensor module for 3-axis vibration and tilt monitoring on the structural building. J. Phys. Conf. Ser. 2019, 1153, 012040. [Google Scholar] [CrossRef]
- Lynch, J.P. An overview of wireless structural health monitoring for civil structures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 365, 345–372. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.; Lynch, J.; Zussman, G.; Rubenstein, D. An intelligent wireless structural health monitoring solution. In Proceedings of the 8th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 13–15 September 2011; pp. 2004–2011. [Google Scholar]
- Pierleoni, P.; Conti, M.; Belli, A.; Palma, L.; Incipini, L.; Sabbatini, L.; Valenti, S.; Mercuri, M.; Concetti, R. IoT Solution based on MQTT Protocol for Real-Time Building Monitoring. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019; pp. 57–62. [Google Scholar]
- Gädeke, T.; Hartmann, F.; Niestoruk, Ł.; Reinhardt, M.; Stork, W. Real-time environmental emission monitoring on construction sites. In Proceedings of the 6th European Embedded Design in Education and Research Conference, Milan, Italy, 11–14 September 2014; pp. 292–296. [Google Scholar]
- Antunes, P.F.C.; Varum, H.; Andre, P.S. Dynamic Monitorization of Structures with Optical Sensors. In Proceedings of the 8th International Conference on Structural Dynamics, Leuven, Belgium, 4–6 July 2011; pp. 2047–2051. [Google Scholar]
- Kohler, M.D.; Heaton, T.H.; Cheng, M.H.; Singh, P. Structural health monitoring through dense instrumentation by community participants: The community seismic network and quake-catcher network. In Proceedings of the Tenth US National Conference on Earthquake Engineering Frontiers of Earthquake Engineering, Anchorage, AK, USA, 21–25 July 2014; pp. 21–25. [Google Scholar]
- Simkin, G.; Beskhyroun, S.; Ma, Q.; Wotherspoon, L.; Ingham, J. Measured response of instrumented buildings during the 2013 cook strait earthquake sequence. Bull. N. Z. Soc. Earthq. Eng. 2015, 48, 223–234. [Google Scholar] [CrossRef]
- Foti, D.; La Scala, M.; Lamonaca, S.; Vacca, V. Control of framed structures using intelligent monitoring networks. In Proceedings of the MATEC Web of Conferences, Bari, Italy, 4 October 2017; p. 05012. [Google Scholar]
- Padiyar, M.J.; Krishnamurthy, C.V.; Balasubramaniam, K. Development of a stamp size pulser-receiver for structural health monitoring applications. AIP Conf. Proc. 2011, 1335, 1459–1466. [Google Scholar]
- Zonzini, F.; Aguzzi, C.; Gigli, L.; Sciullo, L.; Testoni, N.; De Marchi, L.; Di Felice, M.; Cinotti, T.S.; Mennuti, C.; Marzani, A. IEEE Instrumentation & Measurement Magazine Structural Health Monitoring and Prognostic of Industrial Plants and Civil Structures: A Sensor to Cloud Architecture. IEEE Instrum. Meas. Mag. 2020, 23, 21–27. [Google Scholar]
- Lynch, J.P.; Wang, Y.; Swartz, R.A.; Lu, K.C.; Loh, C.H. Implementation of a closed-loop structural control system using wireless sensor networks. Struct. Control Health Monit. 2008, 15, 518–539. [Google Scholar] [CrossRef]
- Liang, Q.; Tani, A.; Yamabe, Y. Fundamental tests on a structural health monitoring system for building structures using a single-board microcontroller. J. Asian Archit. Build. Eng. 2015, 14, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Zare Hosseinzadeh, A.; Harvey, P.S. Pixel-based operating modes from surveillance videos for structural vibration monitoring: A preliminary experimental study. Meas. J. Int. Meas. Confed. 2019, 148, 148. [Google Scholar] [CrossRef]
- Yin, R.C.; Wu, Y.M.; Hsu, T.Y. Application of the low-cost MEMS-type seismometer for structural health monitoring: A pre-study. In Proceedings of the Conference Record—IEEE Instrumentation and Measurement Technology Conference, Taipei, Taiwan, 23–26 May 2016. [Google Scholar]
- Tosi, D.; Olivero, M.; Perrone, G. Broadband Source-Based Interrogation Scheme of Fiber Bragg Grating Sensors for Structural Health Monitoring. Key Eng. Mater. 2007, 347, 399–404. [Google Scholar] [CrossRef]
- Addabbo, T.; Fort, A.; Mugnaini, M.; Panzardi, E.; Pozzebon, A.; Vignoli, V. Alow power city-scale wireless sensor network for monitoring of monumental structures. In Proceedings of the International Conference on Metrology for Archeology and Cultural Heritage, Lecce, Italy, 23–25 October 2017; pp. 23–25. [Google Scholar]
- Caponero, M.A.; Dell’Erba, D.; Kropp, C. Use of fibre optic sensors for structural monitoring of temporary emergency reinforcements of the church S. Maria delle Grazie in Accumoli. J. Civ. Struct. Health Monit. 2019, 9, 353–360. [Google Scholar] [CrossRef]
- Orlano, P. Geomatic techniques for the colonnade structural analysis of the historical “chiaramonte steri” building. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Milan, Italy, 8–10 May 2019; pp. 923–928. [Google Scholar]
- Marković, M.Z.; Bajić, J.S.; Vrtunski, M.; Ninkov, T.; Vasić, D.D.; Živanov, M.B. Application of fiber-optic curvature sensor in deformation measurement process. Meas. J. Int. Meas. Confed. 2016, 92, 50–57. [Google Scholar] [CrossRef]
- Isidori, D.; Concettoni, E.; Cristalli, C.; Lenci, S.; Soria, L. A combined experimental and theoretical approach to the SHM of structures subjected to seismic loading. In Proceedings of the ISMA2012-USD2012, Heverle, Belgium, 17–19 September 2012; pp. 3331–3344. [Google Scholar]
- Chin, J.C.; Rautenberg, J.M.; Ma, C.Y.T.; Pujol, S.; Yau, D.K.Y. An experimental low-cost, low-data-rate rapid structural assessment network. IEEE Sens. J. 2009, 9, 1361–1369. [Google Scholar] [CrossRef] [Green Version]
- Ćmielewski, K.; Karsznia, K.; Kuchmister, J.; Gołuch, P.; Wilczyńska, I. Accuracy and functional assessment of an original low-cost fibre-based inclinometer designed for structural monitoring. Open Geosci. 2020, 12, 1052–1059. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Y.; Du, B.; Wang, T.; Feng, D.; Jiang, B.; Yang, D. Strain-insensitive twist and temperature sensor based on seven-core fiber. Sens. Actuators A Phys. 2019, 290, 172–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Anderson, N.; Bland, S.; Nutt, S.; Jursich, G.; Joshi, S. All-printed strain sensors: Building blocks of the aircraft structural health monitoring system. Sens. Actuators A Phys. 2017, 253, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Cuadra, C.; Madokoro, H.; Nakasho, K.; Shimoi, N. Comparison of piezoelectric limit sensors with FEM analysis results of compression failure of brick masonry specimens. In Proceedings of the International Conference on Control, Automation and Systems, Gyeongiu, Korea, 16–19 October 2016; pp. 1197–1201. [Google Scholar]
- Camacho, J.; Ruiz, M.; Villamizar, R.; Mujica, L.; Ariza, F. Embedded Piezodiagnostics for Online Structural Damage Detection Based on PCA Algorithm. In Proceedings of the 8th European Workshop On Structural Health Monitoring (EWSHM 2016), Bibao, Spain, 5–8 July 2016; pp. 1–10. [Google Scholar]
- Liu, C.; Teng, J.; Wu, N. A Wireless Strain Sensor Network for Structural Health Monitoring. Shock Vib. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Sun, S.; Zheng, X.; Villalba-Díez, J.; Ordieres-Meré, J. Indoor air-quality data-monitoring system: Long-term monitoring benefits. Sensors 2019, 19, 4157. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, L.; Surace, C.; Holford, K.; Ostachowicz, W. Plastic Optical Fiber Displacement Sensor for Cracks Monitoring. Eng. Mater. 2007, 347, 487–492. [Google Scholar]
- Komarizadehasl, S.; Mobaraki, B.; Lozano-Galant, J.; Turmo, J. A Comprehensive Description of a Low-Cost Wireless Dynamic Real-Time Data Acquisition and Monitoring System. In Proceedings of the XV International Conference on Durability of Building Materials and Components DBMC, Barcelona, Spain, 20–23 October 2020; pp. 663–668. [Google Scholar]
- Meduri, S.P.; Diwan, N.; Meduri, A. A sophisticated irrigation system with passive and analogue sensors over web using orange Pi. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Triunelveli, India, 20–22 August 2020; pp. 395–399. [Google Scholar]
- Del Prete, S.; Delle Femine, A.; Gallo, D.; Landi, C.; Luiso, M. Implementation of a distributed Stand Alone Merging Unit. J. Phys. Conf. Ser. 2018, 1065, 052042. [Google Scholar] [CrossRef] [Green Version]
- Kodali, R.K.; Mahesh, K.S. Low cost ambient monitoring using ESP8266. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Noida, India, 14–17 December 2016; pp. 779–782. [Google Scholar]
- Nayyar, A.; Puri, V. A comprehensive review of Beaglebone technology: Smart board powered by ARM. Int. J. Smart Home 2016, 10, 95–108. [Google Scholar] [CrossRef]
- Tutuncu, K.; Ozcan, R. Embedded Fuzzy Logic Control System for Refrigerated Display Cabinets. Arab. J. Sci. Eng. 2019, 44, 9529–9543. [Google Scholar] [CrossRef]
- Wang, J.M.; Yang, M.T.; Chen, P.L. Design and implementation of an intelligent windowsill system using smart handheld device and fuzzy microcontroller. Sensors 2017, 17, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tresanchez, M.; Pujol, A.; Pallejà, T.; Martínez, D.; Clotet, E.; Palacín, J. A proposal of low-cost and low-power embedded wireless image sensor node for IoT applications. Procedia Comput. Sci. 2018, 134, 99–106. [Google Scholar] [CrossRef]
- Aryal, A.; Shah, I.; Becerik-Gerber, B.; Student, P.D.; Astani, S. A Novel Method for Monitoring Air Speed in Offices Using Low Cost Sensors. In Proceedings of the ASCE International Conference on Computing in Civil Engineering 2019, Atlanta, GA, USA, 17–19 June 2019; pp. 1–8. [Google Scholar]
- Zampetti, L.; Arnesano, M.; Revel, G.M. Experimental testing of a system for the energy-efficient sub-zonal heating management in indoor environments based on PMV. Energy Build. 2018, 166, 229–238. [Google Scholar] [CrossRef]
- Scarpa, M.; Ravagnin, R.; Schibuola, L.; Tambani, C. Development and testing of a platform aimed at pervasive monitoring of indoor environment and building energy. Energy Procedia 2017, 126, 282–288. [Google Scholar] [CrossRef]
- Christenson, P.D.; Yang, C.X.; Kaabouch, N. A Low Cost Through-Wall Radar for Vital Signs Monitoring. In Proceedings of the 2019 IEEE International Conference on Electro Information Technology (EIT), Brookings, WA, USA, 20–22 May 2019; pp. 567–571. [Google Scholar]
- Eastman, C.M. Computer Environments, Supporting Design and Construction; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Zahid, H.; Elmansoury, O.; Yaagoubi, R. Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization. Autom. Constr. 2021, 129, 103805. [Google Scholar] [CrossRef]
- Kensek, K.M. Integration of Environmental Sensors with BIM: Case studies using Arduino, Dynamo, and the Revit API. Inf. Constr. 2014, 66, 536. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.M.; Dzeng, R.J.; Wu, Y.J. An automated IoT visualization BIM platform for decision support in facilities management. Appl. Sci. 2018, 8, 1086. [Google Scholar] [CrossRef] [Green Version]
- Gunduz, M.; Isikdag, U.; Basaraner, M. Integration of bim, web maps and iot for supporting comfort analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Shahinmoghadam, M.; Natephra, W.; Motamedi, A. BIM- and IoT-based virtual reality tool for real-time thermal comfort assessment in building enclosures. Build. Environ. 2021, 199, 107905. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Ge, J.; He, S.X. Digitisation in facilities management: A literature review and future research directions. Autom. Constr. 2018, 92, 312–326. [Google Scholar] [CrossRef]
- Natephra, W.; Motamedi, A. Live data visualization of IoT sensors using augmented reality (AR) and BIM. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC), Banf, AB, Canada, 11–13 August 2019; pp. 632–638. [Google Scholar]
- Desogus, G.; Quaquero, E.; Rubiu, G.; Gatto, G.; Perra, C. Bim and iot sensors integration: A framework for consumption and indoor conditions data monitoring of existing buildings. Sustainability 2021, 13, 4496. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Tang, S.; Darwish, W.; Hu, Y.; Chen, W. Automatic indoor as-built building information models generation by using low-cost RGB-D sensors. Sensors 2020, 20, 293. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.T.; Lu, P.W. The development of kinetic façade units with BIM-based active control system for the adaptive building energy performance service. In Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016), Melbourne, Australia, 30 March 2016; pp. 517–526. [Google Scholar]
- Rahmani Asl, M.; Zarrinmehr, S.; Bergin, M.; Yan, W. BPOpt: A framework for BIM-based performance optimization. Energy Build. 2015, 108, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Teizer, J.; Wolf, M.; Golovina, O.; Perschewski, M.; Propach, M.; Neges, M.; König, M.N.A.M. Internet of Things (IoT) for integrating environmental and localization data in Building Information Modeling (BIM). In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC), Taipei, Taiwan, 28 June–1 July 2017; pp. 603–609. [Google Scholar]
- Seguel, J.M.; Merrill, R.; Seguel, D.; Campagna, A.C. Indoor Air Quality. Am. J. Lifestyle Med. 2017, 11, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Fisk, W.J. Estimates of improved productivity and health from better indoor environments. Indoor Air 1997, 7, 158–172. [Google Scholar] [CrossRef]
- Stabile, L.; Dell’Isola, M.; Russi, A.; Massimo, A.; Buonanno, G. The effect of natural ventilation strategy on indoor air quality in schools. Sci. Total Environ. 2017, 595, 894–902. [Google Scholar] [CrossRef] [PubMed]
- de Gennaro, G.; Dambruoso, P.R.; Loiotile, A.D.; Di Gilio, A.; Giungato, P.; Tutino, M.; Marzocca, A.; Mazzone, A.; Palmisani, J.; Porcelli, F. Indoor air quality in schools. Environ. Chem. Lett. 2014, 12, 467–482. [Google Scholar] [CrossRef]
- De Giuli, V.; Zecchin, R.; Salmaso, L.; Corain, L.; De Carli, M. Measured and perceived indoor environmental quality: Padua Hospital case study. Build. Environ. 2013, 59, 211–226. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build. Environ. 2017, 112, 359–366. [Google Scholar] [CrossRef] [Green Version]
Application | Device | Detection Range | Accuracy | Price (€) | Ref. |
---|---|---|---|---|---|
Temperature | PROTMEX MS6508 | −20 to 60 °C | 1.0 °C | 57 | [27] |
REED R6001 | −20 to 60 °C | 0.8 °C | 103 | [28] | |
FLUKE 971 | −20 to 60 °C | 0.5 °C | 464 | [29] | |
EL-USB-2 LASCAR | −35 to 80 °C | 0.5 °C | 57 | [30] | |
TESTO 435-1 thermocouples class 1 | −50 to 150 °C | 0.2 °C | 1032 | [31] | |
EXTECH EN510 | −100 to 1300 °C | 0.1 °C | 180 | [32] | |
Gas | NDIR | 0–10,000 ppm | 30–200 ppm | 80–550 | [33] |
MOSFET | 400–20,000 ppm | 30–100 ppm | 20–2300 | [34] | |
Electrochemical | 0–1000 ppm | 0–30 ppm | 85–620 | [35] | |
Humidity | Captive sensors | 0–100% RH | 0–5% | 30–180 | [36] |
Resistive sensors | 5–90% RH | 1–10% | 30–140 | [37] | |
Airflow | Hot wire Anemometer | 0.1–45 m/s | 1–5% | 45–190 | [38] |
Vane Anemometer | 0.25–50 m/s | 1–5% | 30–280 | [39] |
Mechanism | Device | Acceleration Range(g) | Frequency Range (KHz) | Price (€) | Ref. |
---|---|---|---|---|---|
Capacitive | IAC-HiRes-I-03 | ±25 | 0–10 | 2230 | [51] [52] [53] [54] |
MS9002 | ±2 | 0–2 | 286 | ||
MS9010 | ±10 | 0–10 | 286 | ||
MS9050 | ±50 | 0–50 | 286 | ||
MS9100 | ±100 | 0–100 | 286 | ||
MS9200 | ±200 | 0–200 | 571 | ||
Piezoelectric | 3713B112G | ±2 | 0–25 | 2070 | [55] [56] |
Dytran 3143D1 | ±50 | 0.0005–3 | 1255 | ||
Dytran 3093B | ±50 | 0.006–5 | 1255 | ||
Dytran 3263A14 | ±250 | 0.0005–4 | 1255 | ||
Dytran 3093M27 | ±500 | 0.0033–3 | 1525 | ||
Dytran 3093M18 | ±500 | 0.007–5 | 1525 | ||
Piezoresistive | 3501A2020KG | ±20,000 | 0–10 | 960 | [57] |
3503C2060KG | ±60,000 | 0–10 Hz | 6750 | ||
3991B1120KG | ±20,000 | 0–10 Hz | 2500 |
Fields of Building Monitoring | Indoor | Structural | ||||
---|---|---|---|---|---|---|
Category | 1 | 2 | 3 | 4 | 5 | 6 |
Studied groups | Electricity consumption | Air quality | Thermal comfort and HVAC | Others | Vibration | Strain |
Microcontroller | Number of Publications | References |
---|---|---|
Arduino UNO | 9 | [65,99,104,121,125,129,137,178,200] |
Arduino MEGA | 9 | [63,136,143,156,159,160,173,178,201] |
Raspberry Pi | 7 | [125,132,134,137,155,161,202] |
Arduino Nano | 3 | [109,127,203] |
ADS8344 ADC and AVR | 2 | [151,152] |
STM32F303 | 2 | [165,172] |
MSP430 | 1 | [116] |
PSoC | 1 | [120] |
PIC16F873 | 1 | [162] |
PIC18F4620 | 1 | [197] |
PIC18F458 | 1 | [141] |
PIC18F45K50 | 1 | [188] |
Tinkerforge Bricklet | 1 | [98] |
GR-SAKURA | 1 | [174] |
AT90S8515 AVR | 1 | [163] |
TI MSP430 | 1 | [166] |
NXP JN5148 | 1 | [154] |
Communication Protocol | Number of Publications | References |
---|---|---|
ZigBee | 18 | [99,104,108,109,121,127,129,131,139,140,141,142,156,160,166,174,178] |
Wi-Fi | 10 | [98,106,110,112,113,117,132,136,137,202] |
Other Radio Frequency | 7 | [125,159,162,163,183,189,203] |
SD-card | 2 | [143,156] |
Bluetooth | 1 | [202] |
Ethernet | 1 | [188] |
Wired connection | 1 | [172] |
MQTT | 1 | [165] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobaraki, B.; Lozano-Galant, F.; Soriano, R.P.; Castilla Pascual, F.J. Application of Low-Cost Sensors for Building Monitoring: A Systematic Literature Review. Buildings 2021, 11, 336. https://doi.org/10.3390/buildings11080336
Mobaraki B, Lozano-Galant F, Soriano RP, Castilla Pascual FJ. Application of Low-Cost Sensors for Building Monitoring: A Systematic Literature Review. Buildings. 2021; 11(8):336. https://doi.org/10.3390/buildings11080336
Chicago/Turabian StyleMobaraki, Behnam, Fidel Lozano-Galant, Rocio Porras Soriano, and Francisco Javier Castilla Pascual. 2021. "Application of Low-Cost Sensors for Building Monitoring: A Systematic Literature Review" Buildings 11, no. 8: 336. https://doi.org/10.3390/buildings11080336
APA StyleMobaraki, B., Lozano-Galant, F., Soriano, R. P., & Castilla Pascual, F. J. (2021). Application of Low-Cost Sensors for Building Monitoring: A Systematic Literature Review. Buildings, 11(8), 336. https://doi.org/10.3390/buildings11080336