Non-Linear Behavior and Design of Steel Structures: Review and Outlook
Abstract
:1. Introduction
2. Materially Nonlinear Effect
2.1. Stress-Strain Response
2.1.1. Mild Steel
2.1.2. Stainless Steel
2.1.3. High Strength Steel
2.2. Residual Stress
3. Geometrically Nonlinear Effect
3.1. Influences of Global Deformations
3.2. Geometric Imperfections
3.3. Rotational Stiffness of Joints
3.4. Local Buckling
4. Analysis and Design
4.1. Linear Analysis
4.2. Geometric Nonlinear Analysis
4.3. Post-Buckling Analysis
4.4. Material Nonlinear Analysis
4.5. Direct Analysis Method
5. Outlook
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chan, S.L. Non-linear behavior and design of steel structures. J. Constr. Steel Res. 2001, 57, 1217–1231. [Google Scholar]
- Kala, Z. Stability problems of steel structures in the presence of stochastic and fuzzy uncertainty. Thin Walled Struct. 2007, 45, 861–865. [Google Scholar] [CrossRef]
- Selvaraj, S.; Madhavan, M. Design of cold-formed steel built-up columns subjected to local-global interactive buckling using direct strength method. Thin Walled Struct. 2021, 159, 107305. [Google Scholar]
- Zhang, Z.; Xu, S.; Wang, H.; Nie, B.; Su, C. Flexural buckling behavior of corroded hot-rolled H-section steel beams. Eng. Struct. 2021, 229, 111614. [Google Scholar]
- Ziemian, C.; Ziemian, R. Efficient geometric nonlinear elastic analysis for design of steel structures: Benchmark studies. J. Constr. Steel Res. 2021, 186, 106870. [Google Scholar]
- Quan, C.; Walport, F.; Gardner, L. Equivalent imperfections for the out-of-plane stability design of steel beams by second-order inelastic analysis. Eng. Struct. 2022, 251, 113481. [Google Scholar]
- Adluri, S.M.R.; Madugula, M.K. Flexural buckling of steel angles: Experimental investigation. J. Struct. Eng. 1996, 122, 309–317. [Google Scholar] [CrossRef]
- Taras, A.; Greiner, R. New design curves for lateral–torsional buckling—Proposal based on a consistent derivation. J. Constr. Steel Res. 2010, 66, 648–663. [Google Scholar]
- Wang, J.; Gardner, L. Flexural buckling of hot-finished high-strength steel SHS and RHS columns. J. Struct. Eng. 2017, 143, 04017028. [Google Scholar]
- Duan, L.; Chen, W.F. Effective length factor for columns in unbraced frames. J. Struct. Eng. 1989, 115, 149–165. [Google Scholar]
- Kishi, N.; Chen, W.; Goto, Y. Effective length factor of columns in semirigid and unbraced frames. J. Struct. Eng. 1997, 123, 313–320. [Google Scholar]
- Chen, S.J.; Wang, W.C. Moment amplification factor for P-δ effect of steel beam-column. J. Struct. Eng. 1999, 125, 219–223. [Google Scholar] [CrossRef]
- Serna, M.A.; López, A.; Puente, I.; Yong, D.J. Equivalent uniform moment factors for lateral–torsional buckling of steel members. J. Constr. Steel Res. 2006, 62, 566–580. [Google Scholar] [CrossRef]
- Clarke, M.; Bridge, R.; Hancock, G.; Trahair, N. Advanced analysis of steel building frames. J. Constr. Steel Res. 1992, 23, 1–29. [Google Scholar]
- Surovek, A.E.; White, D.W.; Leon, R.T. Direct analysis for design evaluation of partially restrained steel framing systems. J. Struct. Eng. 2005, 131, 1376–1389. [Google Scholar] [CrossRef]
- Li, T.J.; Liu, S.W.; Chan, S.L. Direct analysis for high-strength steel frames with explicit-model of residual stresses. Eng. Struct. 2015, 100, 342–355. [Google Scholar]
- EN1993-1-1; Eurocode 3: Design of Steel Structures. Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2005.
- ANSI/AISC-360-22; Specification for Structural Steel Buildings. AISC Committee: Chicago, IL, USA, 2022.
- GB50017-2017; Code for Design of Steel Structures. China Architecture & Building Press Beijing: Beijing, China, 2017.
- AS4100-1998; Steel Structures. Standards Australia: Sydney, Australia, 2020.
- Eröz, M.; White, D.W.; DesRoches, R. Direct analysis and design of steel frames accounting for partially restrained column base conditions. J. Struct. Eng. 2008, 134, 1508–1517. [Google Scholar] [CrossRef]
- Bai, R.; Hajjar, J.F.; Liu, S.-W.; Chan, S.-L. A mixed-field Timoshenko beam-column element for direct analysis of tapered I-sections members. J. Constr. Steel Res. 2020, 172, 106157. [Google Scholar]
- Du, Z.L.; Liu, Y.P.; He, J.W.; Chan, S.L. Direct analysis method for noncompact and slender concrete-filled steel tube members. Thin Walled Struct. 2019, 135, 173–184. [Google Scholar]
- EN1993-1-5; Eurocode 3: Design of Steel Structures. Part 1-5: Plated Structural Elements. European Committee for Standardization: Brussels, Belgium, 2006.
- Bai, Z.Z.; Au, F.T.K. Effects of strain hardening of reinforcement on flexural strength and ductility of reinforced concrete columns. Struct. Des. Tall Spec. Build. 2011, 20, 784–800. [Google Scholar] [CrossRef]
- Johansson, B.; Maquoi, R.; Sedlacek, G.; Müller, C.; Beg, D. Commentary and Worked Examples to EN 1993-1-5 Plated Structural Elements. JRC Scientific and Technical Reports. 2007. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC38239 (accessed on 30 June 2023).
- Baddoo, N. Stainless steel in construction: A review of research, applications, challenges and opportunities. J. Constr. Steel Res. 2008, 64, 1199–1206. [Google Scholar]
- Wang, F.C.; Han, L.H. Analytical behavior of carbon steel-concrete-stainless steel double-skin tube (DST) used in submarine pipeline structure. Mar. Struct. 2019, 63, 99–116. [Google Scholar]
- Ramberg, W.; Osgood, W.R. Description of Stress-Strain Curves by Three Parameters. No. NACA-TN-902. 1943. Available online: https://ntrs.nasa.gov/citations/19930081614 (accessed on 30 June 2023).
- Rasmussen, K.J. Full-range stress–strain curves for stainless steel alloys. J. Constr. Steel Res. 2003, 59, 47–61. [Google Scholar] [CrossRef]
- Arrayago, I.; Real, E.; Gardner, L. Description of stress–strain curves for stainless steel alloys. Mater. Des. 2015, 87, 540–552. [Google Scholar]
- Gardner, L.; Yun, X. Description of stress-strain curves for cold-formed steels. Constr. Build. Mater. 2018, 189, 527–538. [Google Scholar]
- EN1993-1-4; Eurocode 3: Design of Steel Structures. Part 1-4: General Rules—Supplementary Rules for Stainless Steels. European Committee for Standardization: Brussels, Belgium, 2006.
- EN10088-1; EN 10088-1: Stainless Steels Part 1: List of Stainless Steels. European Committee for Standardization: Brussels, Belgium, 2014.
- Li, H.-T.; Young, B. Cold-formed ferritic stainless steel tubular structural members subjected to concentrated bearing loads. Eng. Struct. 2017, 145, 392–405. [Google Scholar]
- Afshan, S.; Arrayago Luquin, I.; Gardner, L.; Gedge, G.; Jandera, M.; Real Saladrigas, E.; Rossi, B.; Stranghoner, N.; Zhao, O. Design Manual for Structural Stainless Steel; Steel Construction Institute Publications: Berkshire, UK, 2017. [Google Scholar]
- Gardner, L. Stability and design of stainless steel structures–Review and outlook. Thin Walled Struct. 2019, 141, 208–216. [Google Scholar]
- Afshan, S.; Rossi, B.; Gardner, L. Strength enhancements in cold-formed structural sections—Part I: Material testing. J. Constr. Steel Res. 2013, 83, 177–188. [Google Scholar]
- Quach, W.; Qiu, P. Strength and ductility of corner materials in cold-formed stainless steel sections. Thin Walled Struct. 2014, 83, 28–42. [Google Scholar]
- Wang, J.; Shu, G.; Zheng, B.; Jiang, Q. Investigations on cold-forming effect of cold-drawn duplex stainless steel tubular sections. J. Constr. Steel Res. 2019, 152, 81–93. [Google Scholar]
- EN10025-6; Hot Rolled Products of Structural Steels–Part 6: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition. European Committee for Standardization: Brussels, Belgium, 2019.
- Ban, H.Y.; Shi, G. A review of research on high-strength steel structures. Proc. Inst. Civ. Eng. Struct. Build. 2018, 171, 625–641. [Google Scholar]
- Wang, Y.-B.; Li, G.-Q.; Cui, W.; Chen, S.-W.; Sun, F.-F. Experimental investigation and modeling of cyclic behavior of high strength steel. J. Constr. Steel Res. 2015, 104, 37–48. [Google Scholar]
- Shi, G.; Zhu, X.; Ban, H.Y. Material properties and partial factors for resistance of high-strength steels in China. J. Constr. Steel Res. 2016, 121, 65–79. [Google Scholar]
- Abambres, M.; Quach, W.M. Residual stresses in steel members: A review of available analytical expressions. Int. J. Struct. Integr. 2016, 7, 70–94. [Google Scholar]
- ECCS. Ultimate limit state calculation of sway frames with rigid joints. In European Convention for Constructional Steelwork. Technical Committee 8, Structural Stability; European Convention of Constructional Steel Work: Brussels, Belgium, 1984. [Google Scholar]
- Szalai, J.; Papp, F. A new residual stress distribution for hot-rolled I-shaped sections. J. Constr. Steel Res. 2005, 61, 845–861. [Google Scholar]
- Wang, Y.B.; Li, G.Q.; Chen, S.W. The assessment of residual stresses in welded high strength steel box sections. J. Constr. Steel Res. 2012, 76, 93–99. [Google Scholar]
- Ma, J.L.; Chan, T.M.; Young, B. Material properties and residual stresses of cold-formed high strength steel hollow sections. J. Constr. Steel Res. 2015, 109, 152–165. [Google Scholar]
- Yang, B.; Nie, S.; Xiong, G.; Hu, Y.; Bai, J.; Zhang, W.; Dai, G. Residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates. J. Constr. Steel Res. 2016, 122, 261–273. [Google Scholar]
- Zhang, Z.; Shi, G.; Chen, X.; Wang, L.; Zhou, L. Residual stress measurements and modeling of built-up Box-T sections. Thin-Walled Struct. 2021, 160, 107336. [Google Scholar]
- Schaper, L.; Tankova, T.; da Silva, L.S.; Knobloch, M. A novel residual stress model for welded I-sections. J. Constr. Steel Res. 2022, 188, 107017. [Google Scholar]
- Yun, X.; Zhu, Y.; Meng, X.; Gardner, L. Welded steel I-section columns: Residual stresses, testing, simulation and design. Eng. Struct. 2023, 282, 115631. [Google Scholar]
- Li, Y.; Wu, J.; Qiang, B.; Zhou, S.; Liu, W.; Yao, C. Measurements of residual stresses in a welded orthotropic steel deck by the hole-drilling method considering stress biaxiality. Eng. Struct. 2021, 230, 111690. [Google Scholar]
- Peng, Y.; Zhao, J.; Chen, L.-s.; Dong, J. Residual stress measurement combining blind-hole drilling and digital image correlation approach. J. Constr. Steel Res. 2021, 176, 106346. [Google Scholar]
- Jiang, X.; Wei, Y.; Zhou, J.; Zhan, K.; Ding, Z.; Liang, S.Y. Residual stress generation and evaluation in milling: A review. Int. J. Adv. Manuf. Technol. 2023, 126, 3783–3812. [Google Scholar]
- Rossi, A.; Saito, D.H.; Martins, C.H.; de Souza, A.S.C. The influence of structural imperfections on the LTB strength of I-beams. In Structures; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Rong, Y.; Xu, J.; Huang, Y.; Zhang, G. Review on finite element analysis of welding deformation and residual stress. Sci. Technol. Weld. Join. 2018, 23, 198–208. [Google Scholar]
- Yao, Y.; Quach, W.M.; Young, B. Finite element-based method for residual stresses and plastic strains in cold-formed steel hollow sections. Eng. Struct. 2019, 188, 24–42. [Google Scholar]
- Taraphdar, P.; Kumar, R.; Pandey, C.; Mahapatra, M. Significance of finite element models and solid-state phase transformation on the evaluation of weld induced residual stresses. Met. Mater. Int. 2021, 27, 3478–3492. [Google Scholar] [CrossRef]
- Tankova, T.; da Silva, L.S.; Balakrishnam, M.; Rodrigues, D.; Launert, B.; Pasternak, H.; Tun, T.Y. Residual stresses in welded I section steel members. Eng. Struct. 2019, 197, 109398. [Google Scholar]
- Hellesland, J. Mechanics and effective lengths of columns with positive and negative end restraints. Eng. Struct. 2007, 29, 3464–3474. [Google Scholar]
- Hellesland, J. Second order approximate analysis of unbraced multistorey frames with single curvature regions. Eng. Struct. 2009, 31, 1734–1744. [Google Scholar]
- Hellesland, J. Evaluation of effective length formulas and applications in system instability analysis. Eng. Struct. 2012, 45, 405–420. [Google Scholar] [CrossRef]
- Gunaydin, A.; Aydin, R. A simplified method for instability and second-order load effects of framed structures: Story-based approach. Struct. Des. Tall Spec. Build. 2019, 28, e1655. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, H.; Rasmussen, K.J.; Fan, F. Modeling geometric imperfections for reticulated shell structures using random field theory. Eng. Struct. 2016, 126, 481–489. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.-N.; Fu, X.; Li, Q. Geometric imperfections and ultimate capacity analysis of a steel lattice transmission tower. J. Constr. Steel Res. 2021, 183, 106734. [Google Scholar] [CrossRef]
- Zhu, S.; Ohsaki, M.; Guo, X. Prediction of non-linear buckling load of imperfect reticulated shell using modified consistent imperfection and machine learning. Eng. Struct. 2021, 226, 111374. [Google Scholar] [CrossRef]
- Zeng, Q.; Guo, X.; Yang, X.; Zhu, S.; Li, Z. Constrained Stochastic Imperfection Modal Method for Nonlinear Buckling Analysis of Single-Layer Reticulated Shells. J. Struct. Eng. 2023, 149, 04022265. [Google Scholar] [CrossRef]
- Chan, S.L.; Zhou, Z.H. Second-order elastic analysis of frames using single imperfect element per member. J. Struct. Eng. 1995, 121, 939–945. [Google Scholar] [CrossRef]
- Gantes, C.J.; Mageirou, G.E. Improved stiffness distribution factors for evaluation of effective buckling lengths in multi-story sway frames. Eng. Struct. 2005, 27, 1113–1124. [Google Scholar] [CrossRef]
- Mageirou, G.E.; Gantes, C.J. Buckling strength of multi-story sway, non-sway and partially-sway frames with semi-rigid connections. J. Constr. Steel Res. 2006, 62, 893–905. [Google Scholar] [CrossRef]
- EN1993-1-8; Eurocode 3: Design of Steel Structures. Part 1-8: Design of Joints. European Committee for Standardization: Brussels, Belgium, 2009.
- Kishi, N.; Chen, W.F. Moment-rotation relations of semirigid connections with angles. J. Struct. Eng. 1990, 116, 1813–1834. [Google Scholar] [CrossRef]
- Chisala, M.L. Modelling M–φ curves for standard beam-to-column connections. Eng. Struct. 1999, 21, 1066–1075. [Google Scholar] [CrossRef]
- Calado, L.; De Matteis, G.; Landolfo, R. Experimental response of top and seat angle semi-rigid steel frame connections. Mater. Struct. 2000, 33, 499–510. [Google Scholar] [CrossRef]
- Jiang, W.-Q.; Liu, Y.-P.; Chan, S.-L.; Wang, Z.-Q. Direct analysis of an ultrahigh-voltage lattice transmission tower considering joint effects. J. Struct. Eng. 2017, 143, 04017009. [Google Scholar] [CrossRef]
- AISI-S100-1; North American Specification for the Design of Cold-Formed Steel Structural Members. AISI Committee: Washington, DC, USA, 2016.
- Schafer, B.W. The direct strength method of cold-formed steel member design. J. Constr. Steel Res. 2008, 64, 766–778. [Google Scholar] [CrossRef]
- Yousefi, A.M.; Samali, B. Design of cold-formed ferritic stainless steel unlipped channels with offset web openings and unfastened flanges subject to web bearing failure under one-flange load scenarios. In Structures; Elsevier: Amsterdam, The Netherlands, 2020; Volume 27, pp. 194–211. [Google Scholar] [CrossRef]
- Yousefi, A.M.; Samali, B.; Hajirasouliha, I. Experimental and numerical investigations of cold-formed austenitic stainless steel unlipped channels under bearing loads. Thin Walled Struct. 2020, 152, 106768. [Google Scholar] [CrossRef]
- Yousefi, A.M.; Samali, B.; Hajirasouliha, I.; Yu, Y.; Clifton, G.C. Unified design equations for web crippling failure of cold-formed ferritic stainless steel unlipped channel-sections with web hole. J. Build. Eng. 2022, 45, 103685. [Google Scholar] [CrossRef]
- Kucukler, M.; Gardner, L.; Macorini, L. Flexural–torsional buckling assessment of steel beam–columns through a stiffness reduction method. Eng. Struct. 2015, 101, 662–676. [Google Scholar] [CrossRef]
- Kucukler, M.; Gardner, L.; Macorini, L. A stiffness reduction method for the in-plane design of structural steel elements. Eng. Struct. 2014, 73, 72–84. [Google Scholar] [CrossRef]
- González-de-León, I.; Arrayago, I.; Real, E.; Mirambell, E. A stiffness reduction method for the in-plane design of stainless steel members and frames according with EN 1993-1-4. Eng. Struct. 2022, 253, 113740. [Google Scholar] [CrossRef]
- Du, Z.L.; Liu, Y.P.; Chan, S.L. A second-order flexibility-based beam-column element with member imperfection. Eng. Struct. 2017, 143, 410–426. [Google Scholar] [CrossRef]
- Bai, R.; Liu, S.-W.; Liu, Y.-P.; Chan, S.-L. Direct analysis of tapered-I-section columns by one-element-per-member models with the appropriate geometric-imperfections. Eng. Struct. 2019, 183, 907–921. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Ding, Y.Y.; Liu, Y.P.; Chan, S.-L.; Du, E.F. Innovative displacement-based beam-column element with shear deformation and imperfection. Steel Compos. Struct. 2022, 42, 75. [Google Scholar]
- Chen, W.-F. Advanced Analysis of Steel Frames: Theory, Software, and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Augarde, C.E. Generation of shape functions for straight beam elements. Comput. Struct. 1998, 68, 555–560. [Google Scholar] [CrossRef]
- Liu, S.W.; Liu, Y.P.; Chan, S.L. Direct analysis by an arbitrarily-located-plastic-hinge element—Part 1: Planar analysis. J. Constr. Steel Res. 2014, 103, 303–315. [Google Scholar] [CrossRef]
- Liu, S.W.; Liu, Y.P.; Chan, S.L. Direct analysis by an arbitrarily-located-plastic-hinge element—Part 2: Spatial analysis. J. Constr. Steel Res. 2014, 103, 316–326. [Google Scholar] [CrossRef]
- Chan, S.L.; Zhou, Z.H. Pointwise equilibrating polynomial element for nonlinear analysis of frames. J. Struct. Eng. 1994, 120, 1703–1717. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Liu, Y.P.; Chan, S.L.; Du, E.F. An innovative co-rotational pointwise equilibrating polynomial element based on Timoshenko beam theory for second-order analysis. Thin Walled Struct. 2019, 141, 15–27. [Google Scholar] [CrossRef]
- De Borst, R.; Crisfield, M.A.; Remmers, J.J.; Verhoosel, C.V. Nonlinear Finite Element Analysis of Solids and Structures; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Zienkiewicz, O. Incremental displacement in non-linear analysis. Int. J. Numer. Methods Eng. 1971, 3, 587–588. [Google Scholar] [CrossRef]
- Crisfield, M.A. A fast incremental/iterative solution procedure that handles “snap-through”. In Computational Methods in Nonlinear Structural and Solid Mechanics; Elsevier: Amsterdam, The Netherlands, 1981; pp. 55–62. [Google Scholar]
- Nguyen, P.C.; Kim, S.E. A new improved fiber plastic hinge method accounting for lateral-torsional buckling of 3D steel frames. Thin Walled Struct. 2018, 127, 666–675. [Google Scholar] [CrossRef]
- Walport, F.; Gardner, L.; Real, E.; Arrayago, I.; Nethercot, D.A. Effects of material nonlinearity on the global analysis and stability of stainless steel frames. J. Constr. Steel Res. 2019, 152, 173–182. [Google Scholar] [CrossRef]
- Quan, C.; Kucukler, M.; Gardner, L. Out-of-plane stability design of steel beams by second-order inelastic analysis with strain limits. Thin Walled Struct. 2021, 169, 108352. [Google Scholar] [CrossRef]
- Walport, F.; Gardner, L.; Nethercot, D. Equivalent bow imperfections for use in design by second order inelastic analysis. Structures 2020, 26, 670–685. [Google Scholar] [CrossRef]
- Bai, R.; Liu, S.-W.; Chan, S.-L.; Yu, F. Flexural buckling strength of tapered-I-section steel columns based on ANSI/AISC-360-16. Int. J. Struct. Stab. Dyn. 2019, 19, 1950134. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Chan, S.L. Self-equilibrating element for second-order analysis of semirigid jointed frames. J. Eng. Mech. 1995, 121, 896–902. [Google Scholar] [CrossRef]
- Lien, K.; Chiou, Y.; Hsiao, P. Vector form intrinsic finite-element analysis of steel frames with semirigid joints. J. Struct. Eng. 2012, 138, 327–336. [Google Scholar] [CrossRef]
- Liu, S.W.; Chan, J.L.Y.; Bai, R.; Chan, S.L. Curved-quartic-function elements with end-springs in series for direct analysis of steel frames. Steel Compos. Struct. Int. J. 2018, 29, 623–633. [Google Scholar]
- Mazza, F. A distributed plasticity model to simulate the biaxial behaviour in the nonlinear analysis of spatial framed structures. Comput. Struct. 2014, 135, 141–154. [Google Scholar] [CrossRef]
- Thai, H.T.; Kim, S.E. Second-order distributed plasticity analysis of steel frames with semi-rigid connections. Thin Walled Struct. 2015, 94, 120–128. [Google Scholar] [CrossRef]
- Prakash, P.R.; Srivastava, G. Distributed plasticity model for analysis of steel structures subjected to fire using the direct stiffness method. Fire Saf. J. 2019, 105, 169–187. [Google Scholar] [CrossRef]
- Chan, S.-L.; Liu, Y.-P.; Liu, S.-W. A new codified design theory of second-order direct analysis for steel and composite structures—From research to practice. In Structures; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Liu, S.-W.; Bai, R.; Chan, S.-L.; Liu, Y.-P. Second-order direct analysis of domelike structures consisting of tapered members with I-sections. J. Struct. Eng. 2016, 142, 04016009. [Google Scholar] [CrossRef]
- Du, Z.-L.; Ding, Z.-X.; Liu, Y.-P.; Chan, S.-L. Advanced flexibility-based beam-column element allowing for shear deformation and initial imperfection for direct analysis. Eng. Struct. 2019, 199, 109586. [Google Scholar] [CrossRef]
- Bai, R.; Liu, S.W.; Chan, S.L. Finite-element implementation for nonlinear static and dynamic frame analysis of tapered members. Eng. Struct. 2018, 172, 358–381. [Google Scholar] [CrossRef]
- Chen, W.F.; Liu, Y.P.; Du, Z.L.; Bai, R.; Chan, S.L. A consistent tapered beam-column element allowing for different variations and initial imperfections. In Structures; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Ziemian, R.D.; McGuire, W.; Deierlein, G.G. Inelastic limit states design. Part I: Planar frame studies. J. Struct. Eng. 1992, 118, 2532–2549. [Google Scholar] [CrossRef]
- Farajian, M.; Sharafi, P.; Kildashti, K. The influence of inter-module connections on the effective length of columns in multi-story modular steel frames. J. Constr. Steel Res. 2021, 177, 106450. [Google Scholar] [CrossRef]
Type of Stainless Steel | Grade | Product Form | |||||
---|---|---|---|---|---|---|---|
Cold-Rolled Strip | Hot-Rolled Strip | Hot-Rolled Plate | |||||
Nominal Thickness t | |||||||
t ≤ 8 mm | t ≤ 13.5 mm | t ≤ 75 mm | |||||
fy | fu | fy | fu | fy | fu | ||
Austenitic | 1.4301 | 230 | 540 | 210 | 520 | 210 | 520 |
1.4307 | 220 | 520 | 200 | 520 | 200 | 500 | |
1.4318 | 350 | 650 | 330 | 650 | 330 | 630 | |
1.4401 | 240 | 530 | 220 | 530 | 220 | 520 | |
1.4404 | 240 | 530 | 220 | 530 | 220 | 520 | |
1.4541 | 220 | 520 | 200 | 520 | 200 | 500 | |
1.4571 | 240 | 540 | 220 | 540 | 220 | 520 | |
Duplex | 1.4062 | 530 | 700 | 480 | 680 | 450 | 650 |
1.4162 | 530 | 700 | 480 | 680 | 450 | 650 | |
1.4362 | 450 | 650 | 400 | 650 | 400 | 630 | |
1.4462 | 500 | 700 | 460 | 700 | 460 | 640 | |
1.4482 | 500 | 700 | 480 | 660 | 450 | 650 | |
1.4662 | 550 | 750 | 550 | 750 | 480 | 680 | |
Ferritic | 1.4003 | 280 | 450 | 280 | 450 | 250 | 450 |
1.4016 | 260 | 450 | 240 | 450 | 240 | 430 | |
1.4509 | 230 | 430 | - | - | - | - | |
1.4521 | 300 | 420 | 280 | 400 | 280 | 420 | |
1.4621 | 230 | 400 | 230 | 400 | - | - |
Buckling Curves | Elastic Analysis | Plastic Analysis | |
e0/L | e0/L | ||
a0 | 1/350 | 1/300 | |
a | 1/300 | 1/250 | |
b | 1/250 | 1/200 | |
c | 1/200 | 1/150 | |
d | 1/150 | 1/100 |
Component | Shape | Magnitude |
---|---|---|
Longitudinal stiffener with length a | bow | a/400 |
Panel or subpanel with short span a | buckling shape | a/200 |
Stiffener or flange subject to twist | bow twist | 1/50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.-J.; Chen, B.-S.; Bai, R.; Liu, Y.-P. Non-Linear Behavior and Design of Steel Structures: Review and Outlook. Buildings 2023, 13, 2111. https://doi.org/10.3390/buildings13082111
Zhang Z-J, Chen B-S, Bai R, Liu Y-P. Non-Linear Behavior and Design of Steel Structures: Review and Outlook. Buildings. 2023; 13(8):2111. https://doi.org/10.3390/buildings13082111
Chicago/Turabian StyleZhang, Zhi-Jian, Bai-Sen Chen, Rui Bai, and Yao-Peng Liu. 2023. "Non-Linear Behavior and Design of Steel Structures: Review and Outlook" Buildings 13, no. 8: 2111. https://doi.org/10.3390/buildings13082111
APA StyleZhang, Z. -J., Chen, B. -S., Bai, R., & Liu, Y. -P. (2023). Non-Linear Behavior and Design of Steel Structures: Review and Outlook. Buildings, 13(8), 2111. https://doi.org/10.3390/buildings13082111