Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach
Abstract
:1. Introduction
2. BIM Situation
2.1. Origin of BIM
2.2. BIM Software Industry
2.3. BIM in Government
2.4. BIM in AEC Industry
2.5. Typical Use of BIM Software
3. Traditional Design and Construction in Wood for Modern Buildings
4. CAD Tools for Wood Design
4.1. Material Complexity and CAD Modeling
4.2. Regulatory Integration and Design Compliance
4.3. Sustainable Design and Optimization
4.4. Collaborative Ecosystem and Interoperability
5. BIM for Wood
5.1. Transversal Function of BIM Tool for Wood
5.2. Specific Functions for BIM in Wood
- A multilayer system: the design of a wood construction is characterized by having a multilayer system (interior lining, sheathing, structural component, exterior siding, nailers, etc.). This allows for each of the layers to be configured, created, and generated with high precision and a certain flexibility, as well as each of its elements to be controlled, in addition to the whole.
- Configuration and automated generation of frames: the design tools allow for their components to be defined (studs, panels, siding, beams, nogging, etc.), configuring the dimensional parameters (squaring, thickness, heights, etc.) and location (distancing, angle, etc.) and then generating them automatically. In the case of changes to the architectural and/or structural design, the frames and their components are automatically updated. Furthermore, it is also possible configure the connections between studs in L, T, or other connections, which allows for the flexible modelling and easy handling of complex situations. In a large project including several wooden buildings, it is possible to design multiple frameworks automatically.
- Configuration and generation of documentation: sheets are generated automatically with different views that show one or more layers of a component (vertical frame, horizontal frame, roof framework) as predefined in the design. The documentation process becomes automated and rapid, ideal for the preparation of assembly and manufacturing plans, which is usually a long and tedious process.
- -
- Modeling of material, connections, and releases is a function covered by most of the BIM wood software. There are three important options:
- -
- modeling pieces with parametric capabilities (length, wide, height, depth, number of screws, etc.), a user can easily handle all parameters according to the project, and some pieces will adjust automatically to the context. For example, in Tekla’s WoodStud_Frame, a user can drag the connector and touch the target (wall, column, beam, etc.) and the connector will recognize the new host and adapt to it.
- -
- Creation of standardized pieces: this capability allows a user to create pieces of standard sizes and lets users put them directly in the new host (wall, column, beam, etc.).
- -
- Using existing BIM libraries (www.bimtool.com accessed on 16 February 2024, www.catalogoarquitectura.cl accessed on 3 January 2024, https://bimware.com/ accessed on 16 February 2024)
5.3. Benefits and Advantages of BIM-Wood Tools
6. Cases around the World
6.1. International Samples
6.2. Academic Experiences
- Three-dimensional model: the complete building is derived from the BIM-wood model, and it has more advantages in comparison to the traditional CAD approach that shows just parts of the real building.
- Visualization: automatic orthogonal views, perspective views, 3D sections, and renders are derived from the BIM-wood model, and it has more advantages in comparison to the traditional CAD approach that requires the creation of another model for such views.
- Drawings: automatic floor plans, sections, elevation, and details are derived from the BIM-wood model, and it has more advantages in comparison to the traditional CAD approach that requires the creation of each drawing be separate and unconnected.
- Schedules and cost estimations: automatic schedule and cost estimation are derived from the BIM-wood model, and it has more advantages in comparison to the traditional CAD approach that requires the creation of separate spreadsheets, which are unconnected to drawings.
- Fabrication: automated shop drawings and machine formats are available, and it has more advantages in comparison to the traditional CAD approach that requires the creation of new files for fabrication.
7. Conclusions
- Use of BIM software and plug-ins in English would improve competitiveness in international markets.
- Introduction of BIM methodologies and plug-ins in the academic curricula of architecture, engineering, and construction (AEC) degrees, such as the UC and UBB timber certification courses.
- Creation of national standards for using BIM that include the use of wood.
- Creation of training for AEC professionals, such as workshops, courses, or certification courses.
- Partnerships with wood producers for construction, where standardizations of products for BIM platforms can be discussed.
- Dissemination seminars supported by the industry organizations involved: college/associations of architects, constructor and engineers.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fleury, E.; Chiche, M. Le Bois Dans la Construction; CSTB: Marne la Vallée, France, 2006. [Google Scholar]
- Hildebrandt, J.; Hagemann, N.; Thrän, D. The contribution of wood-based construction materials for leveraging a low carbon building sector in europe. Sustain Cities Soc. 2017, 34, 405–418. [Google Scholar] [CrossRef]
- Sakata, H.; Yamazaki, Y. Challenges in High-rise Wooden Structures and the Seismic Design in Japan. Int. J. High-Rise Build. 2022, 11, 171–180. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Terraza, H.C.; Donoso Arias, R.A.; Victorero Castano, F.A.; Ibanez Moreno, D. The Construction of Timber Houses in Chile: A Pillar of Sustainable Development and the Agenda for Economic Recovery; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Hurmekoski, E.; Kunttu, J.; Heinonen, T.; Pukkala, T.; Peltola, H. Does expanding wood use in construction and textile markets contribute to climate change mitigation? Renew. Sustain. Energy Rev. 2023, 174, 113152. [Google Scholar] [CrossRef]
- Roos, A.; Hurmekoski, E.; Häyrinen, L.; Jussila, J.; Lähtinen, K.; Mark-Herbert, C.; Nagy, E.; Toivonen, R.; Toppinen, A. Beliefs on environmental impact of wood construction. Scand. J. For. Res. 2023, 38, 49–57. [Google Scholar] [CrossRef]
- Aloisio, A.; Pasca, D.P.; De Santis, Y.; Hillberger, T.; Giordano, P.F.; Rosso, M.M.; Tomasi, R.; Limongelli, M.P.; Bedon, C. Vibration issues in timber structures: A state-of-the-art review. J. Build. Eng. 2023, 76, 107098. [Google Scholar] [CrossRef]
- Pohoryles, D.A.; Bournas, D.A.; Da Porto, F.; Caprino, A.; Santarsiero, G.; Triantafillou, T. Integrated seismic and energy retrofitting of existing buildings: A state-of-the-art review. J. Build. Eng. 2022, 61, 105274. [Google Scholar] [CrossRef]
- Diaz, P.M. Analysis of Benefits, Advantages and Challenges of Building Information Modelling in Construction Industry. J. Adv. Civ. Eng. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Okakpu, A.; GhaffarianHoseini, A.; Tookey, J.; Haar, J.; Hoseini, A.G. An optimisation process to motivate effective adoption of BIM for refurbishment of complex buildings in New Zealand. Front. Arch. Res. 2019, 8, 646–661. [Google Scholar] [CrossRef]
- Borjeghaleh, R.M.; Sardroud, J.M. Approaching Industrialization of Buildings and Integrated Construction Using Building Information Modeling. Procedia Eng. 2016, 164, 534–541. [Google Scholar] [CrossRef]
- Wu, P.; Jin, R.; Xu, Y.; Lin, F.; Dong, Y.; Pan, Z. The analysis of barriers to bim implementation for industrialized building construction: A China study. J. Civ. Eng. Manag. 2021, 27, 1–13. [Google Scholar] [CrossRef]
- Malgıt, B.; Işıkdağ, Ü.; Bekdaş, G.; Yücel, M. A generative design-to-BIM workflow for minimum weight plane truss design. Rev. Constr. 2022, 21, 473–492. [Google Scholar] [CrossRef]
- Biancardo, S.A.; Capano, A.; de Oliveira, S.G.; Tibaut, A. Integration of BIM and procedural modeling tools for road design. Infrastructures 2020, 5, 37. [Google Scholar] [CrossRef]
- Kamari, A.; Kotula, B.M.; Schultz, C.P.L. A BIM-based LCA tool for sustainable building design during the early design stage. Smart Sustain. Built Environ. 2022, 11, 217–244. [Google Scholar] [CrossRef]
- Ahmad, T.; Aibinu, A.; Thaheem, M.J. BIM-based Iterative Tool for Sustainable Building Design: A Conceptual Framework. Procedia Eng. 2017, 180, 782–792. [Google Scholar] [CrossRef]
- Llatas, C.; Quiñones, R.; Bizcocho, N. Environmental Impact Assessment of Construction Waste Recycling versus Disposal Scenarios Using an LCA-BIM Tool during the Design Stage. Recycling 2022, 7, 82. [Google Scholar] [CrossRef]
- Gaur, S.; Tawalare, A. Investigating the Role of BIM in Stakeholder Management: Evidence from a Metro-Rail Project. J. Manag. Eng. 2022, 38, 05021013. [Google Scholar] [CrossRef]
- Hasan, A.N.; Rasheed, S.M. The Benefits of and Challenges to Implement 5D BIM in Construction Industry. Civ. Eng. J. 2019, 5, 412–421. [Google Scholar] [CrossRef]
- Sampaio, A.Z.; Sequeira, P.; Gomes, A.M.; Sanchez-Lite, A. BIM Methodology in Structural Design: A Practical Case of Collaboration, Coordination, and Integration. Buildings 2023, 13, 31. [Google Scholar] [CrossRef]
- Ilhan, B.; Yaman, H. Green building assessment tool (GBAT) for integrated BIM-based design decisions. Autom. Constr. 2016, 70, 26–37. [Google Scholar] [CrossRef]
- van Eldik, M.A.; Vahdatikhaki, F.; dos Santos, J.M.O.; Visser, M.; Doree, A. BIM-based environmental impact assessment for infrastructure design projects. Autom. Constr. 2020, 120, 103379. [Google Scholar] [CrossRef]
- Tam, V.W.; Zhou, Y.; Shen, L.; Le, K.N. Optimal BIM and LCA integration approach for embodied environmental impact assessment. J. Clean. Prod. 2023, 385, 135605. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Zhou, J. Enhancing environmental sustainability over building life cycles through green BIM: A review. Autom. Constr. 2015, 57, 156–165. [Google Scholar] [CrossRef]
- Marrero, M.; Wojtasiewicz, M.; Martínez-Rocamora, A.; Solís-Guzmán, J.; Alba-Rodríguez, M.D. BIM-LCA integration for the environmental impact assessment of the urbanization process. Sustainability 2020, 12, 4196. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Development of a BIM-based Environmental and Economic Life Cycle Assessment tool. J. Clean. Prod. 2020, 265, 121705. [Google Scholar] [CrossRef]
- Wilhelm, L.; Donaubauer, A.; Kolbe, T.H. Integration of bim and environmental planning: The citygml envplan ade. J. Digit. Landsc. Archit. 2021, 6, 332–343. [Google Scholar] [CrossRef]
- Junge, R.; Steinmann, R.; Beetz, K. A Dynamic Product Model. In CAAD Futures 1997; Junge, R., Ed.; Springer: Dordrecht, The Netherlands, 1997; pp. 617–634. [Google Scholar]
- Eastman, C. The Use of Computers Instead of Drawings in Building Design. AIA J. 1975, 63, 46–50. [Google Scholar]
- Eastman, C.; Henrion, M. GLIDE a language for design information systems. ACM SIGGRAPH Comput. Graph. 1977, 11, 24–33. [Google Scholar] [CrossRef]
- Aish, R. Building modelling the key to integrated construction CAD. In Proceedings of the Conference: CIB 1986: International Symposium on the Use of Computers for Environmental Engineering Related to Buildings, Guildhall, Bath, UK, 7–9 July 1986. [Google Scholar]
- Van Nederveen, G.A.; Tolman, F.P. Modelling multiple views on buildings. Autom. Constr. 1992, 1, 215–224. [Google Scholar] [CrossRef]
- Mos, A.; Murphy, J. Performance Management in Component-Oriented systems using a Model Driven Architecture. In Proceedings of the 6th International Etnerprise Distributed Object Computing Conference Futures, IEEE Computer Society, Lausanne, Switzerland, 17–20 September 2002; pp. 227–237. [Google Scholar] [CrossRef]
- Khemlani, L. Building Product Models: Computer Environments Supporting Design and Construction. Autom. Constr. 2002, 11, 495–496. [Google Scholar] [CrossRef]
- Martens, B.; Peter, H. Archicad v27; Springer: Vienna, Austria, 2007. [Google Scholar] [CrossRef]
- ArchiSolutions Oy/Ltd. Archiframe. Available online: https://archiframe.fi/en/ (accessed on 16 January 2024).
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of bim-based LCA method to buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- Khemlani, L. BIM Evaluation Study Report, for the AIA Large Firm Round Table (LFRT) CEO Committee; AECbytes: Santa Clara, CA, USA, 2010. [Google Scholar]
- CIC Research Group; Computer Integrated Construction Research Program; Penn State CIC Research Team. BIM Project Execution Planning Guide and Templates—Version 2.1; Pennsylvania State University: State College, PA, USA, 2011. [Google Scholar]
- Gu, N.; London, K. Understanding and facilitating BIM adoption in the AEC industry. Autom. Constr. 2010, 19, 988–999. [Google Scholar] [CrossRef]
- Jobim, C.; Stumpf, M.; Edelweiss, R.; Kern, A. Análisis de la implantación de tecnología BIM en oficinas de proyecto y construcción en una ciudad de Brasil en 2015. Rev. Ing. Constr. 2017, 32, 3. [Google Scholar] [CrossRef]
- McGraw Hill Construction. The Business Value of BIM for Construction in Major Global Markets; McGraw Hill Construction: New York, NY, USA, 2014. [Google Scholar]
- ISO 29481-1:2010; Building Information Modelling—Information Delivery Manual—Part 1: Methodology and Format. ISO: Geneva, Switzerland, 2010.
- Agirbas, A. Teaching construction sciences with the integration of BIM to undergraduate architecture students. Front. Arch. Res. 2020, 9, 940–950. [Google Scholar] [CrossRef]
- Levin, S.; Alberts, T.; Mitchener, K.; Richardson, G.; Tabelini, M.; Dervis, B.; Chaudhary, L.; Swamy, A.; Jedwab, R.; Johson, N.; et al. Plan BIM Chile. Econ. Hist. Rev. 2019, 73, 1. [Google Scholar]
- CORFO; PMG. Hoja de Ruta PyCS 2025. In Programa Estratégico de Productividad y Sustentabilidad en la Construcción; Construye2025: Santiago, Chile, 2016. [Google Scholar]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd ed.; Wiley Publishing: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lobos, D.; Trebilcock, M. Building performance information and graphs approach for the design of floor plans. Arquiteturarevista 2014, 10, 23–30. [Google Scholar] [CrossRef]
- Ogueta, C.S.; Sweden, M.C. Object Interaction Query: A Context Awareness Tool for Evaluating BIM Components’ Interactions. In Proceedings of the XVII Conference of the Iberoamerican Society of Digital Graphics: Knowledge-Based Design, Valparaiso, Chile, 20–22 November 2013. [Google Scholar] [CrossRef]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook—A Guide to Building Information Modelling for Owners, Designers, Engineers, Contractors, and Facility Managers, 3rd ed.; Wiley Publishing: Hoboken, NJ, USA, 2018. [Google Scholar]
- Loyola, M.; de Chile, U.; López, F. An evaluation of the macro-scale adoption of Building Information Modeling in Chile: 2013–2016. Rev. Constr. 2018, 17, 158–171. [Google Scholar] [CrossRef]
- Messner, J.; Anumba, C.; Dubler, C.; Goodman, S.; Kasprzak, C.; Kreider, R.; Leicht, R.; Saluja, C.; Zikic, N. BIM Project Execution Planning Guide—Version 2.2; Computer Integrated Construction Research Program; Pennsylvania State University: State College, PA, USA, 2019. [Google Scholar]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Dzambazova, T.; Demchak, G.; Krygiel, E. Mastering Revit Architecture; Sybex: Alameda, CA, USA, 2008; Volume 53. [Google Scholar]
- Alpatov, V.Y.; Atamanchuk, A.V.; I Balzannikov, M. Economic effectiveness of traditional building materials in modern conditions. IOP Conf. Ser. Mater. Sci. Eng. 2019, 698, 022055. [Google Scholar] [CrossRef]
- Švajlenka, J.; Kozlovská, M. Perception of user criteria in the context of sustainability of modern methods of construction based on wood. Sustainability 2018, 10, 116. [Google Scholar] [CrossRef]
- Švajlenka, J.; Kozlovská, M. Elements of the Fourth Industrial Revolution in the Production of Wood Buildings. Teh. Glas. 2020, 14, 365–368. [Google Scholar] [CrossRef]
- Pribadi, T.W.; Arif, M.S.; I Wahidi, S.; Maditiara, I.W. Modular system construction for laminated wooden fishing vessel industry. IOP Conf. Ser. Earth Environ. Sci. 2021, 649, 012009. [Google Scholar] [CrossRef]
- Salamah, H.; Kang, T. Review of timber construction manual in designing traditional building. In Proceedings of the 2022 Structures Congress (Structures22), Seoul, Republic of Korea, 16–19 August 2022. [Google Scholar]
- Domljan, D.; Janković, L. Design of Sustainable Modular Wooden Booths Inspired by Revit v2023alization of Croatian Traditional Construction and New User Needs Due to COVID-19 Pandemic. Sustainability 2022, 14, 720. [Google Scholar] [CrossRef]
- Kim, B. Proportions of Wood Members in Japanese Traditional Architecture—A Comparison of the Kiwari-Sho and Measurements of Building Remains. Sustainability 2023, 15, 5800. [Google Scholar] [CrossRef]
- Erarslan, A. An example of traditional timber building techniques from Anatolia. Granary structures in the region of the Eastern Black Sea, Turkey; serender. Int. Wood Prod. J. 2021, 12, 58–70. [Google Scholar] [CrossRef]
- Wrightsman, B. A Critical Investigation of the Wood Frame System: The Case for the Neil Astle House. J. Arch. Educ. 2021, 75, 60–67. [Google Scholar] [CrossRef]
- Lindblad, F. Växjö municipality’s planning strategy to increase the construction ofwooden multi-family buildings. Sustainability 2020, 12, 4915. [Google Scholar] [CrossRef]
- Lindblad, F. A Case Study of Växjö Municipality’s Actions to Increase the Construction of Wooden Multi-family Buildings. J. Civ. Eng. Arch. 2022, 16, 235–246. [Google Scholar] [CrossRef]
- Lu, X.; Wei, Y.; Hu, X.; Fang, J. A Research on the Architectural Design and its Implementing of Dong Nationality in Northern Guangxi. IOP Conf. Ser. Earth Environ. Sci. 2020, 525, 012078. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, J.; Pitts, A.; Gao, Y.; Bai, W.; Tao, Z. Improving the sustainability of traditional dwellings in Yunnan, China: Seismic resistance testing of wood-frame and earth-built wall dwellings. Sustainability 2019, 11, 977. [Google Scholar] [CrossRef]
- Fernando, S.; Hansen, E.; Kozak, R.; Sinha, A. Organizational cultural compatibility of engineered wood products manufacturers and building specifiers in the Pacific Northwest. Arch. Eng. Des. Manag. 2018, 14, 398–410. [Google Scholar] [CrossRef]
- Kuzman, M.K.; Sandberg, D. Engineered wood products in contemporary architectural use—A concise overview. Wood Mater. Sci. Eng. 2023, 18, 2112–2115. [Google Scholar] [CrossRef]
- Herzog, T.; Natterer, J.; Schweitzer, R.; Volz, M.; Winter, W. Timber Construction Manual; Birkhäuser Architecture: Basel, Switzerland, 2004. [Google Scholar]
- Fallahi, A.; Poirier, E.A.; Staub-French, S.; Glatt, J.; Sills, N. Designing for Pre-Fabrication and Assembly in the Construction of UBCäó» s Tall Wood Building. In Proceedings of the Modular and Offsite Construction (MOC) Summit, Edmonton, AB, Canada, 29 September–1 October 2016. [Google Scholar]
- Udosen, U.J. Evaluation and improvement of dvorak keyboard layout using CADwork. Adv. Mater. Res. 2009, 62–64, 585–591. [Google Scholar] [CrossRef]
- Abushwereb, M.; Liu, H.; Al-Hussein, M. A knowledge-based approach towards automated manufacturing-centric BIM: Wood frame design and modelling for light-frame buildings. In Proceedings of the Modular and Offsite Construction (MOC) Summit, Banff, AB, Canada, 21–24 May 2019; pp. 100–107. [Google Scholar]
- Ceranic, B.; Latham, D.; Dean, A. Sustainable Design and Building Information Modelling: Case Study of Energy Plus House, Hieron’s Wood, Derbyshire UK. Energy Procedia 2015, 83, 434–443. [Google Scholar] [CrossRef]
- Alwisy, A.; Bu Hamdan, S.; Barkokebas, B.; Bouferguene, A.; Al-Hussein, M. A BIM-based automation of design and drafting for manufacturing of wood panels for modular residential buildings. Int. J. Constr. Manag. 2019, 19, 187–205. [Google Scholar] [CrossRef]
- Deng, H. Application of BIM Technology in the Seismic Performance of ‘wood Weaving’ Structure of Wooden Arcade Bridges. Shock. Vib. 2022, 2022, 8033059. [Google Scholar] [CrossRef]
- Dong, L.L.; Lu, Y.H.; Chen, G. The Modern Green Technology Innovation of Bayu Traditional Wooden Building. Adv. Mater. Res. 2014, 1065–1069, 1610–1617. [Google Scholar] [CrossRef]
- Bianconi, F.; Filippucci, M. Digital Wood Design: Innovative Techniques of Representation in Architectural Design; Springer: Berlin/Heidelberg, Germany, 2019; Volume 24. [Google Scholar]
- Bianconi, F.; Filippucci, M. WOOD, CAD AND AI: Digital modelling as place of convergence of natural and artificial intelligent to design timber architecture. In Digital Wood Design; Bianconi, F., Filippucci, M., Eds.; Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2019; Volume 24, pp. 3–60. [Google Scholar] [CrossRef]
- Neri, F.; Cognoli, R.; Palmieri, G.; Ruggiero, R. Robotic assembly of a wooden architectural design. In Advances in Service and Industrial Robotics, Proceedings of the RAAD 2023, Bled, Slovenia, 14–16 June 2023; Mechanisms and Machine Science; Springer: Cham, Switzerland, 2023; pp. 426–433. [Google Scholar] [CrossRef]
- Adelzadeh, A.; Karimian-Aliabadi, H.; Åhlund, K.; Robeller, C. ReciprocalShell A hybrid timber system for robotically-fabricated lightweight shell structures. In Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023), Graz, Austria, 20–23 September 2023. [Google Scholar]
- Boton, C.; Forgues, D. Construction industrialization and IT integration: How tall wood buildings can show the right path towards construction 4.0. In Proceedings of the Modular and Offsite Construction (MOC) Summit, Shianghai, China, 10–12 November 2017. [Google Scholar]
- Hurmekoski, E.; Jonsson, R.; Nord, T. Context, drivers, and future potential for wood-frame multi-story construction in Europe. Technol. Forecast. Soc. Chang. 2015, 99, 181–196. [Google Scholar] [CrossRef]
- An, S.; Martinez, P.; Al-Hussein, M.; Ahmad, R. BIM-based decision support system for automated manufacturability check of wood frame assemblies. Autom. Constr. 2020, 111, 103065. [Google Scholar] [CrossRef]
- Chong, O.W.; Zhang, J.; Voyles, R.M.; Min, B.-C. BIM-based simulation of construction robotics in the assembly process of wood frames. Autom. Constr. 2022, 137, 104194. [Google Scholar] [CrossRef]
- Ben Mahmoud, B.; Lehoux, N.; Blanchet, P.; Cloutier, C. Barriers, strategies, and best practices for BIM adoption in Quebec prefabrication small and medium-sized enterprises (SMEs). Buildings 2022, 12, 390. [Google Scholar] [CrossRef]
- Dang, H.V. Using sustainable timber in architecture in Vietnam. E3S Web Conf. 2023, 403, 02001. [Google Scholar] [CrossRef]
- Bucklin, O.; Menges, A.; Amtsberg, F.; Krieg, O.; Drexler, H.; Rohr, A. Mono-Material Wood Wall: Digital Fabrication of Performative Wood Envelopes. J. Facade Des. Eng. 2021, 9, 1. [Google Scholar] [CrossRef]
- Ruuska, A.; Häkkinen, T. Efficiency in the Delivery of Multi-story Timber Buildings. Energy Procedia 2016, 96, 190–201. [Google Scholar] [CrossRef]
- Ali, A.A.M. An integrated analysis with life cycle assessment, building information modeling, and environmental performance for window materials: Assiut university hospital clinic as a case study. J. Eng. Sci. 2020, 48, 1024–1050. [Google Scholar] [CrossRef]
- Schneider-Marin, P.; Harter, H.; Tkachuk, K.; Lang, W. Uncertainty analysis of embedded energy and greenhouse gas emissions using BIM in early design stages. Sustainability 2020, 12, 2633. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; Moya, L. Comparative BIM-based Life Cycle Assessment of Uruguayan timber and concrete-masonry single-family houses in design stage. J. Clean. Prod. 2020, 277, 121958. [Google Scholar] [CrossRef]
- Shukla, S.R.; Viswanath, S. Comparative study on growth, wood quality and financial returns of teak (Tectona grandis Lf) managed under three different agroforestry practices. Agrofor. Syst. 2014, 88, 331–341. [Google Scholar] [CrossRef]
- Zheng, Q.; Yang, K.; Xu, Q.; Zhang, C.; Wang, L. Pattern recognition of wood structure design parameters under external interference based on artificial neural network with BIM environment. J. Intell. Fuzzy Syst. 2020, 39, 8723–8729. [Google Scholar] [CrossRef]
- Takabayashi, H.; Kado, K.; Hirasawa, G. Versatile Robotic Wood Processing Based on Analysis of Parts Processing of Japanese Traditional Wooden Buildings. In Proceedings of the Robotic Fabrication in Architecture, Art and Design 2018, Zurich, Switzerland, 10–15 September 2019. [Google Scholar] [CrossRef]
- Rogeau, N.; Tiberghien, V.; Latteur, P.; Weinand, Y. Robotic Insertion of Timber Joints using Visual Detection of Fiducial Markers. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction, ISARC 2020: From Demonstration to Practical Use—To New Stage of Construction Robot, Kitakyushu, Japan, 27–28 October 2020. [Google Scholar] [CrossRef]
- Peronto, J.; Komp, J.; Fernandez, A. Tall mass timber present and future—2 case studies. In Proceedings of the 20th Congress of IABSE: The Evolving Metropolis, New York, NY, USA, 4–6 September 2019. [Google Scholar] [CrossRef]
- Liu, H.; Singh, G.; Lu, M.; Bouferguene, A.; Al-Hussein, M. BIM-based automated design and planning for boarding of light-frame residential buildings. Autom. Constr. 2018, 89, 235–249. [Google Scholar] [CrossRef]
- Bakchan, A.; Guerra, B.C.; Faust, K.M.; Leite, F. BIM-based estimation of wood waste stream: The case of an institutional building project. In Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation—Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2019, Proceedings of the ASCE International Conference on Computing in Civil Engineering 2019, Atlanta, GA, USA, 17–19 June 2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 185–192. [Google Scholar] [CrossRef]
- Darwish, M.; Alsakka, F.; Assaf, S.; Al-Hussein, M. Automated BIM-based CNC file generator for wood panel framing machines in construction manufacturing. In Proceedings of the 2022 Moc Summit, Edmonton, AB, Canada, 27–29 July 2022; pp. 98–105. [Google Scholar] [CrossRef]
- Al-Qahtani, S.; Aljuhani, E.; Felaly, R.; Alkhamis, K.; Alkabli, J.; Munshi, A.; El-Metwaly, N. Development of photoluminescent translucent wood toward photochromic smart window applications. Ind. Eng. Chem. Res. 2021, 60, 8340–8350. [Google Scholar] [CrossRef]
- Rose, J.C.; Kicherer, A.; Wieland, M.; Klingbeil, L.; Töpfer, R.; Kuhlmann, H. Towards automated large-scale 3D phenotyping of vineyards under field conditions. Sensors 2016, 16, 2136. [Google Scholar] [CrossRef]
- Kaiser, A.; Larsson, M.; Girhammar, U.A. From file to factory: Innovative design solutions for multi-storey timber buildings applied to project Zembla in Kalmar, Sweden. Front. Arch. Res. 2019, 8, 1–16. [Google Scholar] [CrossRef]
- Yuvita, R.L.; Budiwirawan, A. Analysis of the Advantages and Disadvantages of Using Autodesk Revit v2023 for the Dean Building of the Faculty of Education, Universitas Negeri Semarang. J. Tek. Sipil Perenc. 2022, 24, 91–98. [Google Scholar] [CrossRef]
- Manrique, J.D.; Al-Hussein, M.; Bouferguene, A.; Nasseri, R. Automated generation of shop drawings in residential construction. Autom. Constr. 2015, 55, 15–24. [Google Scholar] [CrossRef]
- Loffer, L. The Advantages of Wood as a Building Material. Wagner Meters. 2020. Available online: https://www.wagnermeters.com/moisture-meters/wood-info/advantages-wood-building (accessed on 16 January 2024).
- Al-Omari, F.; Al-Jarrah, M.; Omari, M.; Hayajneh, M. Development of a CAD/CAM system for simulating closed forging process using finiteelement method. Eng. Comput. 2009, 26, 302–312. [Google Scholar] [CrossRef]
- Adler, P.S. CAD/CAM: Managerial Challenges and Research Issues. IEEE Trans. Eng. Manag. 1989, 36, 202–215. [Google Scholar] [CrossRef]
- Gómez, P.D.; D’Amico, F.C.; Alvarado, R.G. Computing the Spatial Explorations of Roberto Matta. Nexus Netw. J. 2023. [Google Scholar] [CrossRef]
- Alvarado, R.G.; Muñoz, J.J. The control of shape: Origins of parametric design in architecture in xenakis, gehry and grimshaw. Metu J. Fac. Archit. 2012, 29, 107–118. [Google Scholar] [CrossRef]
- Abdelmohsen, S.; Massoud, P.; El-Dabaa, R.; Ibrahim, A.; Mokbel, T. A Computational Method for Tracking the Hygroscopic Motion of Wood to develop Adaptive Architectural Skins. In Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe, Łódź, Poland, 19–21 September 2018. [Google Scholar] [CrossRef]
- Stavric, M.; Wiltsche, A.; Bogensperger, T. Generative design for folded timber structures. In Proceedings of the CAADRIA 2015—20th International Conference on Computer-Aided Architectural Design Research in Asia: Emerging Experiences in the Past, Present and Future of Digital Architecture, Daegu, Republic of Korea, 20–22 May 2015. [Google Scholar]
- Bannwart, M. The Gravitational Pavilion: Simplified Node Complexity. In Research Culture in Architecture; Birkhäuser: Basel, Switzerland, 2019. [Google Scholar] [CrossRef]
- Codrón, C. Análisis de las Herramientas de las Tecnologías BIM que Permiten Mejorar la Etapa de Diseño en la Elaboración de los Proyectos de Construcción en Madera. Master’s Thesis, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile, 2018. (In Spanish). [Google Scholar]
- Maqsood, Z.; Rao, P.S.; Abdullah, T. CAD/CAM with New Trends and Advancements, using Machine Learning: A Review. Int. J. Tech. Innov. Mod. Eng. Sci. 2019, 5, 885–889. [Google Scholar]
- Westover, J.; Lam, P.; Houck, J. Using BIM for Wood Framed Construction Projects. Structure Magazine. 2018. Available online: https://www.structuremag.org/?p=13711 (accessed on 17 January 2024).
- Paskoff, C.; Boton, C.; Blanchet, P. BIM-Based Checking Method for the Mass Timber Industry. Buildings 2023, 13, 1474. [Google Scholar] [CrossRef]
- Staub-French, S.; Poirier, E.A.; Calderon, F.; Zadeh, P.; Chudasma, D.; Huang, S. Building Information Modeling (BIM) and Design for Manufacturing and Assembly (DfMA) for Mass Timber Construction; Naturally: Wood: Vancouver, BC, USA, 2018; Available online: https://www.naturallywood.com/resource/bim-and-design-for-manufacturing-and-assembly-for-mass-timber-construction/ (accessed on 17 January 2024).
- NBS. What is BIM? (Building Information Modelling)—NBS National BIM Library. NBS National Library. Available online: https://www.thenbs.com/knowledge/what-is-building-information-modelling-bim (accessed on 17 January 2024).
- NBS. National BIM Report 2019: The Definitive Industry Update. 2019. Available online: https://www.thenbs.com/knowledge/national-bim-report-2019 (accessed on 16 January 2024).
- Wenzel, H. Stora Enso baut Wellpappengeschäft aus. Leb. Ztg. 2023, 75, 40. [Google Scholar] [CrossRef]
- Meschini, S.; Iturralde, K.; Linner, T.; Bock, T. Novel applications offered by Integration of Robotic Tools in BIM-based Design Workflow for Automation in Construction Processes. In Proceedings of the CIB*IAARC W199 CIC 2016 Workshop, Munich, Germany, 27 October 2016. [Google Scholar]
- FFiorillo, F.; Bolognesi, C.M. Cultural heritage dissemination: Bim modelling and ar application for a diachronic tale. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2, 563–570. [Google Scholar] [CrossRef]
- Conti, A.; Fiorini, L.; Massaro, R.; Santoni, C.; Tucci, G. HBIM for the preservation of a historic infrastructure: The Carlo III bridge of the Carolino Aqueduct. Appl. Geomatics 2022, 14, 41–51. [Google Scholar] [CrossRef]
- Inzerillo, L.; Turco, M.L.; Parrinello, S.; Santagati, C.; Valenti, G.M. Bim and architectural heritage: Towards an operational methodology for the knowledge and the management of cultural heritage. Disegnarecon 2016, 9, 16. [Google Scholar]
- Yang, X.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of built heritage modelling: Integration of HBIM and other information techniques. J. Cult. Heritage 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Fernández, J.; Ferreira, V. A scan-to-bim methodology applied to heritage buildings. Heritage 2020, 3, 47–67. [Google Scholar] [CrossRef]
- Argiolas, R.; Bagnolo, V.; Cera, S.; Cuccu, S. Virtual Environments to Communicate Built Cultural Heritage: A HBIM Based Virtual Tour. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2022, XLVI-5/W1, 21–29. [Google Scholar] [CrossRef]
- Lobos, D.; Pino, F.; Codron, C.; Nuñez, V.; Sierra, A. BIM and wood integration. New possibilities for AEC industry. In Proceedings of the WCTE 2018—World Conference on Timber Engineering, Seoul, Republic of Korea, 20–23 August 2018. [Google Scholar]
- Souza, E. Using BIM to Deliver Low-Carbon Wood Buildings. ArchDaily. Available online: https://www.archdaily.com/974772/using-bim-to-deliver-low-carbon-wood-buildings. (accessed on 17 January 2024).
- Eversmann, P.; Gramazio, F.; Kohler, M. Robotic prefabrication of timber structures: Towards automated large-scale spatial assembly. Constr. Robot. 2017, 1, 49–60. [Google Scholar] [CrossRef]
- He, R.; Li, M.; Gan, V.J.L.; Ma, J. BIM-enabled computerized design and digital fabrication of industrialized buildings: A case study. J. Clean. Prod. 2021, 278, 123505. [Google Scholar] [CrossRef]
- Skidmore, O.; Merrill, L. Timber Tower Research Project. STRUCTURE Magazine. Available online: https://www.som.com/research/timber-tower-research/ (accessed on 17 January 2024).
- Le Roux, S.; Bannier, F.; Bossanne, E.; Stieglmeier, M. Investigating the interaction of building information modelling and lean construction in the timber industry. In Proceedings of the WCTE 2016—World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- British Woodworking Federation Ltd. (BWF). What is BIM? Available online: https://www.bwf.org.uk/toolkit/what-is-bim/ (accessed on 14 January 2024).
- Matsunaka, Y. Stunning Wooden Architecture in Japan Exemplifies How BIM Helps Construction. Available online: https://www.autodesk.com/design-make/articles/how-bim-helps-construction (accessed on 17 January 2024).
- Naturaly Wood; University of British Columbia’s Centre for Interactive Research on Sustainability. Brock Commons: Construction Modelling Case Study. 2017. Available online: https://www.naturallywood.com/wp-content/uploads/brock-commons-construction-modelling_case-study_naturallywood.pdf (accessed on 17 January 2024).
- Menges, A.; Knippers, J. BUGA Wood Pavilion 2019. Available online: https://www.icd.uni-stuttgart.de/projects/buga-wood-pavilion-2019/ (accessed on 17 January 2024).
- Merino, O. Estudio Exploratorio Sobre la Edificación con Madera en 3 Pisos en Chile y Su Vinculación con Metodología BIM Building Information Modeling. Master’s Thesis, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile, 2014. (In Spanish). [Google Scholar]
- Lobos, D.; Codron-Lechuga, C.; de la Cruz, F.P.; Nuñez-Bustos, V. BIM y Madera. Nuevos desafíos para el Diseño y Construcción. In Proceedings of the XXI Congreso Internacional de la Sociedad Iberoamericana de Gráfica Digital, Concepción, Chile, 22–24 November 2017; pp. 295–302. [Google Scholar]
- Yang, C.-H.; Wu, T.-H.; Xiao, B.; Kang, S.-C. Design of a robotic software package for modular home builder. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction, ISARC 2019, Banff, AB, Canada, 21–24 May 2019. [Google Scholar] [CrossRef]
Name | Vendor | Year | Country of Origin | Field of Use | Approx. Cost |
---|---|---|---|---|---|
Archicad v27 | Graphisoft (Nemetscheck from 2020) | 1982 | Hungary (until 2008) Germany (since 2008) | Architecture, MEP, Structure | Annual subscription from USD 2000 to 3000 Perpetual license from USD 1000 to 2000 until 2023 |
Revit v2023 | Revit v2023 Technologies Corporation (from 1997 to 2002) Autodesk (from 2002) | 1997 | United States | Architecture, MEP, Structure | Annual subscription from USD 2000 to 3000 |
Microstation (now OpenBuildings v10.10) | Bentley | 1987 | United States | Architecture, MEP, Structure | Annual subscription from USD 2000 to 3000 |
Digital Project v1.R5 | Gehry Technologies (up to 2020) Trimble (from 2020) | 2004 | United States | Architecture, MEP, Structure | Annual subscription from USD 2000 to 3000 |
Vectorworks v2024 | Nemetschek | 2002 | Germany | Architecture, MEP, Structure | Annual subscription from 2000 to 3000 USD |
Allplan v2024 | Nemetschek | 2002 | Germany | Architecture, MEP, Structure | Annual subscription from USD 2000 to 3000 |
Tekla | Trimble | 2002 | United States | Structural Engineering | -- |
SDS/2 | Nemetschek | 2002 | Germany | Structural Engineering | -- |
ISTRAM | Istram | 1992 | Spain | Highway Engineering | Perpetual license USD 5000 Annual subscription from USD 2000 |
Tool | Vendor | Material Complexity and CAD Modeling | Regulatory Integration and Design Compliance | Sustainable Design and Optimization | Collaborative Ecosystem and Interoperability |
---|---|---|---|---|---|
3DEXPERIENCE SOLIDWORKS | SOLIDWORKS | +++ | ++ | ++ | +++ |
Shapr3D | Shapr3D Zrt | + | ++ | ||
Autodesk Fusion 360 | Autodesk | +++ | ++ | +++ | +++ |
SketchUp | Trimble | +++ | + | + | ++ |
C + T (Change + Timber) | Elige Madera | + | + | ||
Autocad | Autodesk | ++ | + | + | + |
Country | Name | Maker | Approx. Cost |
---|---|---|---|
Finland | ArchiFrame | ArchiFrame | 500 Euros |
Finland | Vertex DB | Vertex Systems | Standard 400 USD/month |
Lithuania | AGACAD Wood Framing | AGACAD | USD 400 |
US | WoodStud_Frame | Tekla (Trimble) | -- |
Canada | Metal Wood Framer | StrucSoft Solutions Ltd. | -- |
US | Timber Framing 2015 | Autodesk | Subscription customers |
-- | Offsite wood | Offsite Wood | -- |
Spain | CADWork | Cadwork Ibérica and Latinoamérica | -- |
Name | Laminated Timber | CLT Panels | SIP Panels | Framing | Panels | Others |
---|---|---|---|---|---|---|
ArchiFrame | O | O | O | O | O | O |
Vertex DB | O | O | O | √ | √ | O |
AGACAD Wood Framing | √ | √ | O | √ | √ | Parametrization |
WoodStud_Frame | √ | √ | O | O | O | O |
Metal Wood Framer | x | x | x | √ | √ | Shop Drawings |
Timber Framing 2015 | √ | √ | x | √ | x | Parametrization |
Offsite wood | √ | √ | √ | √ | √ | Parametrization |
CADWork | √ | √ | x | √ | √ | Parametric Design |
Name | Slabs | Walls | Columns | Doors and wINDOWS | Roofs | Special Parts |
---|---|---|---|---|---|---|
ArchiFrame | √ | √ | √ | √ | √ | √ |
Vertex DB | √ | √ | √ | √ | √ | |
AGACAD Wood Framing | √ | √ | √ | √ | √ | |
WoodStud_Frame | O | O | O | O | O | O |
Metal Wood Framer | x | x | x | x | x | |
Timber Framing 2015 | x | x | x | x | x | |
Offsite wood | √ | √ | √ | √ | √ | |
CADWork | √ | √ | √ | √ | √ |
Name | Direct BIM Software Exchange | 2D Drawings Output | Cut Lists | Shop Floor Drawings | Exports CNC Code for Specific Machinery | IFC Compliance |
---|---|---|---|---|---|---|
ArchiFrame | Archicad v27 | √ | x | O | O | O |
Vertex DB | √ | O | O | O | O | |
AGACAD Wood Framing | Revit v2023 | √ | O | O | O | O |
WoodStud_Frame | Tekla | √ | O | O | O | O |
Metal Wood Framer | x | x | x | √ | O | |
Timber Framing 2015 | Revit v2023 | √ | O | O | O | |
Offsite wood | √ | √ | √ | √ | O | |
CADWork | Naviswork (*.vue)Revit v2023-Archicad v27-Allplan v2024(*.ifc) Others (*.csv) | √ | √ | √ | √ | √ |
Name of the Example | Software | 3D Model and Visualization | Simulation | 2D Drawings | Schedules and Cost Estimations | Fabrication |
---|---|---|---|---|---|---|
International samples | Revit v2023 | √ | O | √ | √ | O |
Analytical Models for structural simulation. | Revit v2023 and Robot Structural v2024 | √ | √ | √ | √ | x |
Custom templates. | Revit v2023 and Agacad | √ | O | √ | √ | √ |
Interoperability. | Archiframe v2024 and Archicad v27 | √ | x | √ | √ | √ |
BIM v/s CAD | Revit v2023 and Agacad | √ | O | √ | √ | O |
Simulation of timber woof buildings | Robot Structural v2024 | √ | √ | √ | x | x |
3D modelling of parts in BIM | Revit v2023 | √ | x | √ | √ | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobos Calquin, D.; Mata, R.; Correa, C.; Nuñez, E.; Bustamante, G.; Caicedo, N.; Blanco Fernandez, D.; Díaz, M.; Pulgar-Rubilar, P.; Roa, L. Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach. Buildings 2024, 14, 584. https://doi.org/10.3390/buildings14030584
Lobos Calquin D, Mata R, Correa C, Nuñez E, Bustamante G, Caicedo N, Blanco Fernandez D, Díaz M, Pulgar-Rubilar P, Roa L. Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach. Buildings. 2024; 14(3):584. https://doi.org/10.3390/buildings14030584
Chicago/Turabian StyleLobos Calquin, Danny, Ramón Mata, Claudio Correa, Eduardo Nuñez, Guillermo Bustamante, Natalia Caicedo, David Blanco Fernandez, Marcos Díaz, Pablo Pulgar-Rubilar, and Leonardo Roa. 2024. "Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach" Buildings 14, no. 3: 584. https://doi.org/10.3390/buildings14030584
APA StyleLobos Calquin, D., Mata, R., Correa, C., Nuñez, E., Bustamante, G., Caicedo, N., Blanco Fernandez, D., Díaz, M., Pulgar-Rubilar, P., & Roa, L. (2024). Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach. Buildings, 14(3), 584. https://doi.org/10.3390/buildings14030584