Oxidative Stress in Chronic Hepatitis B—An Update
Abstract
:1. Introduction
2. Liver and Oxidative Stress
3. The Link between HBV Proteins and Oxidative Stress
3.1. HBx Protein
3.2. HBe Protein
3.3. HBs Protein
4. New Advances in Understanding the Role of Oxidative Stress in HBV Infection
Markers | Groups | Reference |
---|---|---|
Total Cu, Cu ions, small-molecule Cu, ceruloplasmin, SOD-1, urinary Cu | 32 patients with chronic hepatitis B; 10 healthy subjects | Huang et al. (2018) [68] |
NOX-2 | 105 patients with chronic hepatitis B; 58 patients with HBV-related cirrhosis; 48 patients with HBV-related hepatocellular carcinoma; 104 healthy subjects | Xiong et al. (2018) [71] |
sE-cadherin, TAC, GSH, SOD, TOC, NOX-2, MDA | 51 patients with HBeAg-negative chronic hepatitis B; 54 patients with HBeAg-positive chronic hepatitis B; 109 healthy individuals | Yang et al. (2020) [72] |
NT, TT, DS, DS/NT. DS/TT, NT/TT | 63 patients with chronic hepatitis B; 60 healthy subjects | Celik et al. (2020) [76] |
Glutamine, nitrotyrosine | 50 patients with untreated chronic hepatitis B; 50 patients with untreated chronic hepatitis C; 50 patients with treated chronic hepatitis B; 50 patients with treated chronic hepatitis C; 50 healthy subjects | Murad et al. (2021) [74] |
MDA, 4-HNE, carbonylated proteins, TAC | 25 patients with alcoholic cirrhosis; 10 patients with HBV and HCV related cirrhosis; 10 healthy subjects | Pomacu et al. (2021) [67] |
5. Oxidative Stress—A Potential Source of New Markers for Hepatic Fibrosis Assessment
Markers | Groups | Reference |
---|---|---|
8-oxo-Gsn | 138 patients with HBV infection; 169 healthy subjects | Xu et al. (2018) [86] |
TT, NT, DS, DS/NT, DS/TT, NT/TT | 71 patients with chronic hepatitis B; 50 patients with HBV-related cirrhosis; 45 healthy subjects | Dertli et al. (2018) [87] |
TAC | 54 patients with HBV-related cirrhosis | Wang et al. (2021) [85] |
6. Oxidative Stress—A Cofactor in HBV-Related Carcinogenesis
7. Antioxidant Therapy in HBV Infection
8. Conclusions
Funding
Conflicts of Interest
References
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P. Nutrients and oxidative stress: Friend or foe? Oxidative Med. Cell. Longev. 2018, 2018, 9719584. [Google Scholar] [CrossRef]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Metcalfe, N.B.; Salin, K. Is mitochondrial reactive oxygen species production proportional to oxygen consumption? A theoretical consideration. Bioessays 2021, 43, e2000165. [Google Scholar] [CrossRef]
- Taysi, S.; Tascan, A.S.; Ugur, M.G.; Demir, M. Radicals, Oxidative/Nitrosative Stress and Preeclampsia. Mini-Rev. Med. Chem. 2019, 19, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, H.; Fang, S.; Xu, C. Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells. Mol. Med. Rep. 2018, 18, 4163–4174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants—An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
- Cafe, S.L.; Nixon, B.; Dun, M.D.; Roman, S.D.; Bernstein, I.R.; Bromfield, E.G. Oxidative stress dysregulates protein homeostasis within the male germ line. Antioxid. Redox Signal. 2020, 32, 487–503. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Majzoub, A.; Agarwal, A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab. J. Urol. 2019, 17, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, T.A.F.; HernándezNavarro, B.C.; Pérez, J.A.M. Endogenous Antioxidants: A Review of their Role in Oxidative Stress; IntechOpen: Rijeka, Croatia, 2016; ISBN 978-953-51-2838-0. [Google Scholar]
- Kimball, J.S.; Johnson, J.P.; Carlson, D.A. Oxidative Stress and Osteoporosis. J. Bone Jt. Surg. Am. 2021, 103, 1451–1461. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, N.-J.; Zhang, L.-J. Oxidative stress in leukemia and antioxidant treatment. Chin. Med. J. 2021, 134, 1897–1907. [Google Scholar] [CrossRef]
- Mitran, M.I.; Nicolae, I.; Tampa, M.; Mitran, C.I.; Caruntu, C.; Sarbu, M.I.; Ene, C.D.; Matei, C.; Georgescu, S.R.; Popa, M.I. Reactive Carbonyl Species as Potential Pro-Oxidant Factors Involved in Lichen Planus Pathogenesis. Metabolites 2019, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Paracha, U.Z.; Fatima, K.; Alqahtani, M.; Chaudhary, A.; Abuzenadah, A.; Damanhouri, G.; Qadri, I. Oxidative stress and hepatitis C virus. Virol. J. 2013, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Sevastianos, V.A.; Voulgaris, T.A.; Dourakis, S.P. Hepatitis C, systemic inflammation and oxidative stress: Correlations with metabolic diseases. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 27–37. [Google Scholar] [CrossRef]
- Lozano-Sepulveda, S.A.; Bryan-Marrugo, O.L.; Cordova-Fletes, C.; Gutierrez-Ruiz, M.C.; Rivas-Estilla, A.M. Oxidative stress modulation in hepatitis C virus infected cells. World J. Hepatol. 2015, 7, 2880–2889. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Wong, G.; Gane, E.; Kao, J.-H.; Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin. Microbiol. Rev. 2020, 33, e00046-19. [Google Scholar] [CrossRef]
- Yuen, M.-F.; Chen, D.-S.; Dusheiko, G.M.; Janssen, H.L.A.; Lau, D.T.Y.; Locarnini, S.A.; Peters, M.G.; Lai, C.-L. Hepatitis B virus infection. Nat. Rev. Dis. Primers 2018, 4, 18035. [Google Scholar] [CrossRef] [PubMed]
- Seto, W.-K.; Lo, Y.-R.; Pawlotsky, J.-M.; Yuen, M.-F. Chronic hepatitis B virus infection. Lancet 2018, 392, 2313–2324. [Google Scholar] [CrossRef]
- Faure-Dupuy, S.; Delphin, M.; Aillot, L.; Dimier, L.; Lebossé, F.; Fresquet, J.; Parent, R.; Matter, M.S.; Rivoire, M.; Bendriss-Vermare, N. Hepatitis B virus-induced modulation of liver macrophage function promotes hepatocyte infection. J. Hepatol. 2019, 71, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.; Mousa, O.Y. Hepatitis B. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Tang, L.S.Y.; Covert, E.; Wilson, E.; Kottilil, S. Chronic Hepatitis B Infection: A Review. JAMA 2018, 319, 1802. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Hepatitis B—Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/hepatitis-b-annual-epidemiological-report-2019 (accessed on 27 January 2022).
- Feng, J.; Yang, Y.; Wang, D.; Tang, J.; Xie, G.; Fan, L. Relationship between oxidative stress in patients with HBV-induced liver disease and HBV genotype/drug-resistant mutation. Front. Lab. Med. 2017, 1, 211–216. [Google Scholar] [CrossRef]
- Xianyu, J.; Feng, J.; Yang, Y.; Tang, J.; Xie, G.; Fan, L. Correlation of oxidative stress in patients with HBV-induced liver disease with HBV genotypes and drug resistance mutations. Clin. Biochem. 2018, 55, 21–27. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Valuev-Elliston, V.T.; Tyurina, D.A.; Ivanova, O.N.; Kochetkov, S.N.; Bartosch, B.; Isaguliants, M.G. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2017, 8, 3895–3932. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.-H.; Chen, X.; Zhou, L.; Tao, N.-N.; Zhou, H.-Z.; Liu, B.; Li, W.-Y.; Huang, A.-L.; Chen, J. Protective Role of Sirtuin3 (SIRT3) in Oxidative Stress Mediated by Hepatitis B Virus X Protein Expression. PLoS ONE 2016, 11, e0150961. [Google Scholar] [CrossRef]
- Kim, Y.S.; Seo, H.W.; Jung, G. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly. Biochem. Biophys. Res. Commun. 2015, 457, 328–333. [Google Scholar] [CrossRef]
- Cichoż-Lach, H. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Farzaei, M.H.; Zobeiri, M.; Parvizi, F.; El-Senduny, F.F.; Marmouzi, I.; Coy-Barrera, E.; Naseri, R.; Nabavi, S.M.; Rahimi, R.; Abdollahi, M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018, 10, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Tan, H.-Y.; Wang, N.; Zhang, Z.-J.; Lao, L.; Wong, C.-W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, D.; Takaki, A.; Oyama, A.; Adachi, T.; Wada, N.; Onishi, H.; Okada, H. Oxidative Stress Management in Chronic Liver Diseases and Hepatocellular Carcinoma. Nutrients 2020, 12, 1576. [Google Scholar] [CrossRef]
- He, G.; Karin, M. NF-κB and STAT3–key players in liver inflammation and cancer. Cell Res. 2011, 21, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezhilarasan, D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab. J. Gastroenterol. 2018, 19, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Shaban, N.; Salem, H.; Elsadany, M.; Ali, B.; Hassona, E.; Mogahed, F.A.K. Alterations in Lipid Peroxidation and Antioxidants in Patients with Different Stages of Hepatitis B Virus Infection in Egypt. Life Sci. J. 2014, 11, 960–967. [Google Scholar]
- Zhang, X.; Wu, X.; Hu, Q.; Wu, J.; Wang, G.; Hong, Z.; Ren, J. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci. 2019, 236, 116464. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Kim, Y.-J. C-terminal region of HBx is crucial for mitochondrial DNA damage. Cancer Lett. 2013, 331, 76–83. [Google Scholar] [CrossRef]
- Fu, Y.; Chung, F.-L. Oxidative stress and hepatocarcinogenesis. Hepatoma Res. 2018, 4, 39. [Google Scholar] [CrossRef]
- Brahma, M.K.; Gilglioni, E.H.; Zhou, L.; Trépo, E.; Chen, P.; Gurzov, E.N. Oxidative stress in obesity-associated hepatocellular carcinoma: Sources, signaling and therapeutic challenges. Oncogene 2021, 40, 5155–5167. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Ye, Y.; Xie, L.; Li, W. Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxidative Med. Cell. Longev. 2016, 2016, 7891574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Xie, X.; Tan, X.; Yu, H.; Tian, M.; Lv, H.; Qin, C.; Qi, J.; Zhu, Q. The Functions of Hepatitis B Virus Encoding Proteins: Viral Persistence and Liver Pathogenesis. Front. Immunol. 2021, 12, 691766. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lan, P.; Hou, X.; Han, Q.; Lu, N.; Li, T.; Jiao, C.; Zhang, J.; Zhang, C.; Tian, Z. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J. Hepatol. 2017, 66, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Xu, F.; Xiao, Q.; Tan, G. Hepatitis B virus X protein and its host partners. Cell. Mol. Immunol. 2021, 18, 1345–1346. [Google Scholar] [CrossRef]
- Tsukuda, S.; Watashi, K. Hepatitis B virus biology and life cycle. Antivir. Res. 2020, 182, 104925. [Google Scholar] [CrossRef]
- Yu, D.-Y. Relevance of reactive oxygen species in liver disease observed in transgenic mice expressing the hepatitis B virus X protein. Lab. Anim. Res. 2020, 36, 6. [Google Scholar] [CrossRef]
- Lee, Y.I.; Hwang, J.M.; Im, J.H.; Lee, Y.I.; Kim, N.S.; Kim, D.G.; Yu, D.Y.; Moon, H.B.; Park, S.K. Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J. Biol. Chem. 2004, 279, 15460–15471. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Siddiqui, A. Hepatitis B Virus X Protein Stimulates the Mitochondrial Translocation of Raf-1 via Oxidative Stress. J. Virol. 2007, 81, 6757–6760. [Google Scholar] [CrossRef] [Green Version]
- Ling, L.; Zheng, D.; Zhang, Z.; Xie, W.; Huang, Y.; Chen, Z.; Wang, X.; Li, D. Effect of HBx on inflammation and mitochondrial oxidative stress in mouse hepatocytes. Oncol. Lett. 2020, 19, 2861–2869. [Google Scholar] [CrossRef]
- Wieland, S.; Thimme, R.; Purcell, R.H.; Chisari, F.V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 2004, 101, 6669–6674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, K.; Lei, Y.; Chen, H.-N.; Chen, Y.; Zhang, T.; Li, K.; Xie, N.; Wang, K.; Feng, X.; Pu, Q.; et al. HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3. Cell Death Differ. 2016, 23, 616–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Liu, Y.; Zhang, Q.; Gao, L.; Han, L.; Ma, C.; Zhang, L.; Chen, Y.H.; Sun, W. Hepatitis B Virus Sensitizes Hepatocytes to TRAIL-Induced Apoptosis through Bax. J. Immunol. 2007, 178, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Zhang, X.; Hu, D.; Feng, T.; Li, H.; Lu, Y.; Huang, J. Hepatitis B virus X (HBx) play an anti-apoptosis role in hepatic progenitor cells by activating Wnt/β-catenin pathway. Mol. Cell. Biochem. 2013, 383, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.-Y.; Li, D.; Cai, D.-E.; Huang, X.-Y.; Zheng, B.-Y.; Huang, Y.-H.; Chen, Z.-X.; Wang, X.-Z. Hepatitis B virus X protein sensitizes HL-7702 cells to oxidative stress-induced apoptosis through modulation of the mitochondrial permeability transition pore. Oncol. Rep. 2017, 37, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Nguyen, T.; Tan, I.; Ninnis, R.; Iyer, S.; Stroud, D.; Menard, M.; Kluck, R.M.; Ryan, M.; Dewson, G. Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: A requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death Differ. 2014, 21, 1925–1935. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-M.; Lee, S.-Y.; Kim, B.-J. Naturally Occurring Hepatitis B Virus Mutations Leading to Endoplasmic Reticulum Stress and Their Contribution to the Progression of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2019, 20, 597. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Iglesias, A.; Hide, D.; Gracia-Sancho, J. Oxidative Stress in Liver Diseases. In Gastrointestinal Tissue; Academic Press: London, UK, 2017; pp. 125–140. ISBN 978-0-12-805377-5. [Google Scholar]
- Höner zu Siederdissen, C.; Maasoumy, B.; Cornberg, M. What is new on HBsAg and other diagnostic markers in HBV infection? Best Pract. Res. Clin. Gastroenterol. 2017, 31, 281–289. [Google Scholar] [CrossRef]
- Al-Kanaan, B.M.; Al-Ouqaili, M.T.S.; Al-Rawi, K.F.A. Detection of cytokines (IL-1α and IL-2) and oxidative stress markers in hepatitis B envelope antigen-positive and -negative chronic hepatitis B patients: Molecular and biochemical study. Gene Rep. 2019, 17, 100504. [Google Scholar] [CrossRef]
- Mak, L.-Y.; Seto, W.-K.; Fung, J.; Yuen, M.-F. Use of HBsAg quantification in the natural history and treatment of chronic hepatitis B. Hepatol. Int. 2020, 14, 35–46. [Google Scholar] [CrossRef]
- Jiang, X.; Chang, L.; Yan, Y.; Wang, L. Paradoxical HBsAg and anti-HBs coexistence among Chronic HBV Infections: Causes and Consequences. Int. J. Biol. Sci. 2021, 17, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Alavian, S.M.; Showraki, A. Hepatitis B and its Relationship with Oxidative Stress. Hepat. Mon. 2016, 16, e37973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomacu, M.; Trașcă, M.; Pădureanu, V.; Bugă, A.; Andrei, A.; Stănciulescu, E.; Baniță, I.; Rădulescu, D.; Pisoschi, C. Interrelation of inflammation and oxidative stress in liver cirrhosis. Exp. Ther. Med. 2021, 21, 602. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Lin, Z.; Han, M.; Cheng, H. Altered serum copper homeostasis suggests higher oxidative stress and lower antioxidant capability in patients with chronic hepatitis B. Medicine 2018, 97, e11137. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Liu, W.; Zhang, X.; Gao, X.; Yu, F.; Guo, W.; Meng, Y.; Gao, P.; Zhou, J.; Yuan, M.; et al. Oxidative Stress-Related Gene Polymorphisms Are Associated with Hepatitis B Virus-Induced Liver Disease in the Northern Chinese Han Population. Front. Genet. 2020, 10, 1290. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhang, J.; Wu, C.; Fang, Y.; Su, W.; Fan, Y.; Wang, K. Decreased Methylation of IFNAR Gene Promoter from Peripheral Blood Mononuclear Cells Is Associated with Oxidative Stress in Chronic Hepatitis B. J. Interferon Cytokine Res. 2018, 38, 480–490. [Google Scholar] [CrossRef]
- Xiong, Y.; Ye, Y.; Li, P.; Xiong, Y.; Mao, J.; Huang, Y.; Chen, W.; Wang, B. Serum NOX2 as a new biomarker candidate for HBV-related disorders. Am. J. Transl. Res. 2018, 10, 2350–2361. [Google Scholar]
- Yang, J.; Xiong, Y.; Zhou, L.; Huang, Y.; Chen, W.; Wang, B. Soluble E-cadherin is associated with oxidative stress in patients with chronic HBV infection. J. Med. Virol. 2020, 92, 34–44. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Xiong, Y.; Yan, Y.; Sun, B.; Zhao, Q.; Duan, L.; Li, P.; Huang, Y.; Chen, W. Soluble E-cadherin as a serum biomarker in patients with HBV-related liver diseases. Clin. Biochem. 2016, 49, 1232–1237. [Google Scholar] [CrossRef]
- Murad, H.; Tayeb, H.O.; Mosli, M.; Rafeeq, M.; Basheikh, M. Blood Levels of Glutamine and Nitrotyrosine in Patients with Chronic Viral Hepatitis. Int. J. Gen. Med. 2021, 14, 8753–8762. [Google Scholar] [CrossRef]
- Ogando, D.G.; Choi, M.; Shyam, R.; Li, S.; Bonanno, J.A. Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress. Redox Biol. 2019, 26, 101260. [Google Scholar] [CrossRef] [PubMed]
- Çelik, N.; Biçer, C.; Çelik, O.; Çarlıoğlu, A.; Alışık, M. Thiol/disulfide homeostasis in patients with chronic hepatitis B. Ortadoğu Tıp Derg. 2020, 12, 279–287. [Google Scholar] [CrossRef]
- Rockey, D.C. Liver Fibrosis Reversion After Suppression of Hepatitis B Virus. Clin. Liver Dis. 2016, 20, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Choe, W.H.; Han, H.S.; Yu, M.H.; Kim, Y.J.; Jung, S.I.; Kim, J.H.; Kwon, S.Y. Assessing significant fibrosis using imaging-based elastography in chronic hepatitis B patients: Pilot study. World J. Gastroenterol. 2019, 25, 3256–3267. [Google Scholar] [CrossRef]
- Wong, G.L. Non-invasive assessments for liver fibrosis: The crystal ball we long for. J. Gastroenterol. Hepatol. 2018, 33, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Guo, J.; Lu, Y.; Zhang, L.; Shen, G.; Wu, S.; Chang, M.; Hu, L.; Hao, H.; Li, M.; et al. Changes in APRI and FIB-4 in HBeAg-negative treatment-naive chronic hepatitis B patients with significant liver histological lesions receiving 5-year entecavir therapy. Clin. Exp. Med. 2019, 19, 309–320. [Google Scholar] [CrossRef]
- Agbim, U.; Asrani, S.K. Non-invasive assessment of liver fibrosis and prognosis: An update on serum and elastography markers. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 361–374. [Google Scholar] [CrossRef]
- Flores-Calderón, J.; Morán-Villota, S.; Ramón-García, G.; González-Romano, B.; Bojórquez-Ramos, M.d.C.; Cerdán-Silva, L.; Hernández-Frías, P. Non-invasive markers of liver fibrosis in chronic liver disease in a group of Mexican children. A multicenter study. Ann. Hepatol. 2012, 11, 364–368. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Liu, H.; Liu, X.-Y.; Ma, L.-N.; Guan, Y.-H.; Luo, X.; Ding, X.-C. Value of gamma-glutamyltranspeptidase-to-platelet ratio in diagnosis of hepatic fibrosis in patients with chronic hepatitis B. World J. Gastroenterol. 2017, 23, 7425–7432. [Google Scholar] [CrossRef]
- Duygu, F.; Karsen, H.; Aksoy, N.; Taskin, A. Relationship of Oxidative Stress in Hepatitis B Infection Activity with HBV DNA and Fibrosis. Ann. Lab. Med. 2012, 32, 113–118. [Google Scholar] [CrossRef]
- Wang, J.-H.; Lee, S.-B.; Lee, D.-S.; Son, C.-G. Total Antioxidant Capacity in HBV Carriers, a Promising Biomarker for Evaluating Hepatic Fibrosis: A Pilot Study. Antioxidants 2021, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-M.; Zhou, X.-Y.; Li, X.-Y.; Guo, J.; Wang, H.-Z.; Li, Y.; Yang, C.-C.; Liu, T.-H.; Cai, J.-P. Increased oxidative damage of RNA in liver injury caused by hepatitis B virus (HBV) infection. Free. Radic. Res. 2018, 52, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Dertli, R.; Keskin, M.; Biyik, M.; Ataseven, H.; Polat, H.; Demir, A.; Oltulu, P.; Neşeloğlu, S.; Erel, Ö.; Asil, M. Dynamic thiol-disulfide homeostasis is disturbed in hepatitis B virus-related chronic hepatitis and liver cirrhosis. Turk. J. Med. Sci. 2018, 48, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Kgatle, M.M.; Spearman, C.W.; Kalla, A.A.; Hairwadzi, H.N. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations. Oxidative Med. Cell. Longev. 2017, 2017, 3179421. [Google Scholar] [CrossRef]
- Paganoni, R.; Lechel, A.; Vujic Spasic, M. Iron at the Interface of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2021, 22, 4097. [Google Scholar] [CrossRef]
- Marrogi, A.J.; Khan, M.A.; van Gijssel, H.E.; Welsh, J.A.; Rahim, H.; Demetris, A.J.; Kowdley, K.V.; Hussain, S.P.; Nair, J.; Bartsch, H.; et al. Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J. Natl. Cancer Inst. 2001, 93, 1652–1655. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.-M.; Grouls, M.; Carmella, S.G.; Wang, R.; Heskin, A.; Jiang, Y.; Tan, Y.-T.; Adams-Haduch, J.; Gao, Y.-T.; Hecht, S.S. Prediagnostic levels of urinary 8-epi-prostaglandin F2α and prostaglandin E2 metabolite, biomarkers of oxidative damage and inflammation, and risk of hepatocellular carcinoma. Carcinogenesis 2019, 40, 989–997. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Liu, W.; He, Y.; Wu, Y.-L.; Chen, W.-N.; Lin, X.-J.; Lin, X. Hepatitis B Virus X Protein Increases 8-Oxo-7,8-Dihydro-2ʹ-Deoxyguanosine (8-Oxodg) Level via Repressing MTH1/ MTH2 Expression in Hepatocytes. Cell. Physiol. Biochem. 2018, 51, 80–96. [Google Scholar] [CrossRef]
- Weitzman, S.A.; Turk, P.W.; Milkowski, D.H.; Kozlowski, K. Free radical adducts induce alterations in DNA cytosine methylation. Proc. Natl. Acad. Sci. USA 1994, 91, 1261–1264. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-H.; Fang, Y.; Wang, J.-W.; Yuan, X.-D.; Fan, Y.-C.; Gao, S.; Han, L.-Y.; Wang, K. Hypomethylation of the cyclin D1 promoter in hepatitis B virus-associated hepatocellular carcinoma. Medicine 2020, 99, e20326. [Google Scholar] [CrossRef]
- Hunter, T.; Pines, J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 1994, 79, 573–582. [Google Scholar] [CrossRef]
- Tasdelen Fisgin, N.; Aydin, B.K.; Sarikaya, H.; Tanyel, E.; Esen, S.; Sunbul, M.; Leblebicioglu, H. Oxidative stress and antioxidant defense in patients with chronic hepatitis B. Clin. Lab. 2012, 58, 273–280. [Google Scholar] [PubMed]
- Seen, S. Chronic liver disease and oxidative stress—A narrative review. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1021–1035. [Google Scholar] [CrossRef] [PubMed]
- Vairetti, M.; Di Pasqua, L.G.; Cagna, M.; Richelmi, P.; Ferrigno, A.; Berardo, C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants 2021, 10, 364. [Google Scholar] [CrossRef]
- Fiorino, S.; Bacchi-Reggiani, L.; Sabbatani, S.; Grizzi, F.; di Tommaso, L.; Masetti, M.; Fornelli, A.; Bondi, A.; de Biase, D.; Visani, M.; et al. Possible role of tocopherols in the modulation of host microRNA with potential antiviral activity in patients with hepatitis B virus-related persistent infection: A systematic review. Br. J. Nutr. 2014, 112, 1751–1768. [Google Scholar] [CrossRef]
- Qian, L.; Wang, W.; Zhou, Y.; Ma, J. Effects of reduced glutathione therapy on chronic hepatitis B. Central Eur. J. Immunol. 2017, 1, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Feustel, S.; Ayón-Pérez, F.; Sandoval-Rodriguez, A.; Rodríguez-Echevarría, R.; Contreras-Salinas, H.; Armendáriz-Borunda, J.; Sánchez-Orozco, L.V. Protective Effects of Moringa oleifera on HBV Genotypes C and H Transiently Transfected Huh7 Cells. J. Immunol. Res. 2017, 2017, 6063850. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, G.L.; Popa, M.I. Oxidative Stress in Chronic Hepatitis B—An Update. Microorganisms 2022, 10, 1265. https://doi.org/10.3390/microorganisms10071265
Popa GL, Popa MI. Oxidative Stress in Chronic Hepatitis B—An Update. Microorganisms. 2022; 10(7):1265. https://doi.org/10.3390/microorganisms10071265
Chicago/Turabian StylePopa, Gabriela Loredana, and Mircea Ioan Popa. 2022. "Oxidative Stress in Chronic Hepatitis B—An Update" Microorganisms 10, no. 7: 1265. https://doi.org/10.3390/microorganisms10071265
APA StylePopa, G. L., & Popa, M. I. (2022). Oxidative Stress in Chronic Hepatitis B—An Update. Microorganisms, 10(7), 1265. https://doi.org/10.3390/microorganisms10071265