Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples, Bacterial Isolation and Characterization
2.2. Resistance to Gastric Acid Environment
2.3. Presence of Virulence Genes
2.4. Antimicrobial Resistance
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control). The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 276. [Google Scholar]
- Denis, M.; Houard, E.; Fablet, A.; Rouxel, S.; Salvat, G. Distribution of serotypes and genotypes of Salmonella enterica species in French pig production. Vet. Rec. 2013, 173, 370. [Google Scholar] [CrossRef] [PubMed]
- Audia, J.P.; Webb, C.C.; Foster, J.W. Breaking through the acid barrier: An orchestrated response to proton stress by enteric bacteria. Int. J. Med. Microbiol. 2001, 291, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.L.; Tsolis, R.M.; Bäumler, A.J.; Adams, L.G. Pathogenesis of Salmonella-induced enteritis. Braz. J. Med. Biol. Res. 2003, 36, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Hensel, M. Evolution of pathogenicity islands of Salmonella enterica. Int. J. Med. Microbiol. 2004, 294, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, R.G.; Hensel, M. Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica. Berl. Münch. Tierärztl. Wochenschr. 2007, 120, 317–327. [Google Scholar] [PubMed]
- Stanley, T.L.; Ellermeier, C.D.; Slauch, J.M. Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar typhimurium survival in Peyer’s patches. J. Bacteriol. 2000, 182, 4406–4413. [Google Scholar] [CrossRef] [Green Version]
- Ehrbar, K.; Hardt, W.-D. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect. Genet. Evol. 2005, 5, 1–9. [Google Scholar] [CrossRef]
- Guiney, D.G.; Fierer, J. The role of the spv genes in Salmonella pathogenesis. Front. Microbiol. 2011, 2, 129. [Google Scholar] [CrossRef] [Green Version]
- Rushing, M.D.; Slauch, J.M. Either periplasmic tethering or protease resistance is sufficient to allow a SodC to protect Salmonella enterica serovar Typhimurium from phagocytic superoxide. Mol. Microbiol. 2011, 82, 952–963. [Google Scholar] [CrossRef] [Green Version]
- Brunelle, B.W.; Bearson, B.L.; Bearson, S.M.D. Chloramphenicol and tetracycline decrease motility and increase invasion and attachment gene expression in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. Front. Microbiol. 2015, 5, 801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J. 2017, 15, 4694. [Google Scholar]
- EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007. [Google Scholar]
- Graziani, C.; Busani, L.; Dionisi, A.M.; Lucarelli, C.; Owczarek, S.; Ricci, A.; Mancin, M.; Caprioli, A.; Luzzi, I. Antimicrobial resistance in Salmonella enterica serovar Typhimurium from human and animal sources in Italy. Vet. Microbiol. 2008, 128, 414–418. [Google Scholar] [CrossRef]
- McMillan, E.A.; Gupta, S.K.; Williams, L.E.; Jové, T.; Hiott, L.M.; Woodley, T.A.; Barrett, J.B.; Jackson, C.R.; Wasilenko, J.L.; Simmons, M.; et al. Antimicrobial resistance genes, cassettes, and plasmids present in salmonella enterica associated with United States food animals. Front. Microbiol. 2019, 10, 832. [Google Scholar] [CrossRef]
- Bertelloni, F.; Chemaly, M.; Cerri, D.; Le Gall, F.; Ebani, V.V. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol. Immunol. Hung. 2016, 63, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Kérouanton, A.; Marault, M.; Lailler, R.; Weill, F.-X.; Feurer, C.; Espié, E.; Brisabois, A. Pulsed-field gel electrophoresis subtyping database for foodborne Salmonella enterica serotype discrimination. Foodborne Pathog. Dis. 2007, 4, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Zhao, S.; Smith, A.; McEvoy, J.; Meng, J.; Bhagwat, A.A. Characterization of Salmonella isolates from retail foods based on serotyping, pulse field gel electrophoresis, antibiotic resistance and other phenotypic properties. Int. J. Food Microbiol. 2009, 129, 93–98. [Google Scholar] [CrossRef]
- Skyberg, J.A.; Logue, C.M.; Nolan, L.K. Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Dis. 2006, 50, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Karasova, D.; Havlickova, H.; Sisak, F.; Rychlik, I. Deletion of sodCI and spvBC in Salmonella enterica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chickens early after infection. Vet. Microbiol. 2009, 139, 304–309. [Google Scholar] [CrossRef]
- Huehn, S.; La Ragione, R.M.; Anjum, M.; Saunders, M.; Woodward, M.J.; Bunge, C.; Helmuth, R.; Hauser, E.; Guerra, B.; Beutlich, J.; et al. Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog. Dis. 2010, 7, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Paban Bhowmick, P.; Devegowda, D.; Karunasagar, I. Virulotyping of seafood associated Salmonella enterica subsp. enterica isolated from Southwest coast of India. Res. Artic. Biotechnol. Bioinf. Bioeng. 2011, 1, 63–69. [Google Scholar]
- Parvathi, A.; Vijayan, J.; Murali, G.; Chandran, P. Comparative virulence genotyping and antimicrobial susceptibility profiling of environmental and clinical Salmonella enterica from Cochin, India. Curr. Microbiol. 2011, 62, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). M02-A12 Performance Standards for Antimicrobial Disk Susceptibility Tests; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahshan, H.; Shahada, F.; Chuma, T.; Moriki, H.; Okamoto, K. Genetic analysis of multidrug-resistant Salmonella enterica serovars Stanley and Typhimurium from cattle. Vet. Microbiol. 2010, 145, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Benacer, D.; Thong, K.L.; Watanabe, H.; Devi Puthucheary, S. Characterization of drug-resistant Salmonella enterica serotype Typhimurium by antibiograms, plasmids, integrons, resistance genes, and PFGE. J. Microbiol. Biotechnol. 2010, 20, 1042–1052. [Google Scholar] [PubMed] [Green Version]
- Barlozzari, G.; Franco, A.; Macrì, G.; Lorenzetti, S.; Maggiori, F.; Dottarelli, S.; Maurelli, M.; Di Giannatale, E.; Tittarelli, M.; Battisti, A.; et al. First report of Brucella suis biovar 2 in a semi free-range pig farm, Italy. Vet. Ital. 2015, 51, 151–154. [Google Scholar]
- Costa, D.; Poeta, P.; Sáenz, Y.; Vinué, L.; Coelho, A.C.; Matos, M.; Rojo-Bezares, B.; Rodrigues, J.; Torres, C. Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. Microb. Drug Resist. 2008, 14, 71–77. [Google Scholar] [CrossRef]
- Maynard, C.; Fairbrother, J.M.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149: K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 2003, 47, 3214–3221. [Google Scholar] [CrossRef] [Green Version]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, 5077. [Google Scholar]
- Bonardi, S.; Bassi, L.; Brindani, F.; D’Incau, M.; Barco, L.; Carra, E.; Pongolini, S. Prevalence, characterization and antimicrobial susceptibility of Salmonella enterica and Yersinia enterocolitica in pigs at slaughter in Italy. Int. J. Food Microbiol. 2013, 163, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, S.; Alpigiani, I.; Bruini, I.; Barilli, E.; Brindani, F.; Morganti, M.; Cavallini, P.; Bolzoni, L.; Pongolini, S. Detection of Salmonella enterica in pigs at slaughter and comparison with human isolates in Italy. Int. J. Food Microbiol. 2016, 218, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Torrieri, E.; Russo, F.; Di Monaco, R.; Cavella, S.; Villani, F.; Masi, F. Shelf life prediction of fresh Italian pork sausage modified atmosphere packed. Food Sci. Technol. Int. 2011, 17, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H. Prevalence & phenotypic expression of sopB gene among clinical isolates of Salmonella enterica. Indian J. Med. Res. 2006, 123, 83–88. [Google Scholar]
- Núñez-Hernández, C.; Alonso, A.; Pucciarelli, M.G.; Casadesús, J.; García-del Portillo, F. Dormant intracellular Salmonella enterica serovar Typhimurium discriminates among Salmonella pathogenicity island 2 effectors to persist inside fibroblasts. Infect. Immun. 2014, 82, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Lee, E.-J. Regulation and function of the Salmonella MgtC virulence protein. J. Microbiol. 2015, 53, 667–672. [Google Scholar] [CrossRef]
- Zou, W.; Al-Khaldi, S.F.; Branham, W.S.; Han, T.; Fuscoe, J.C.; Han, J.; Foley, S.L.; Xu, J.; Fang, H.; Cerniglia, C.E.; et al. Microarray analysis of virulence gene profiles in Salmonella serovars from food/food animal environment. J. Infect. Dev. Ctries. 2011, 5, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Bertelloni, F.; Tosi, G.; Massi, P.; Fiorentini, L.; Parigi, M.; Cerri, D.; Ebani, V.V. Some pathogenic characters of paratyphoid Salmonella enterica strains isolated from poultry. Asian Pac. J. Trop. Med. 2017, 10, 1161–1166. [Google Scholar] [CrossRef]
- Fois, F.; Piras, F.; Torpdahl, M.; Mazza, R.; Consolati, S.G.; Spanu, C.; Scarano, C.; De Santis, E.P.L. Occurrence, characterization, and antimicrobial susceptibility of Salmonella enterica in slaughtered pigs in sardinia. J. Food Sci. 2017, 82, 969–976. [Google Scholar] [CrossRef]
- Akiyama, T.; Presedo, J.; Khan, A.A. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int. J. Antimicrob. Agents 2013, 42, 133–140. [Google Scholar] [CrossRef]
- Calayag, A.M.B.; Paclibare, P.A.P.; Santos, P.D.M.; Bautista, C.A.C.; Rivera, W.L. Molecular characterization and antimicrobial resistance of Salmonella enterica from swine slaughtered in two different types of Philippine abattoir. Food Microbiol. 2017, 65, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Maka, L.; Maćkiw, E.; Ściezyńska, H.; Modzelewska, M.; Popowska, M. Resistance to sulfonamides and dissemination of sul genes among salmonella spp. isolated from food in Poland. Foodborne Pathog. Dis. 2015, 12, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.; Machado, J.; Sousa, J.C.; Peixe, L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob. Agents Chemother. 2005, 49, 836–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Dalsgaard, A.; Hammerum, A.M.; Porsbo, L.J.; Jensen, L.B. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human. Acta Vet. Scand. 2010, 52, 47. [Google Scholar] [CrossRef] [Green Version]
- Pezzella, C.; Ricci, A.; DiGiannatale, E.; Luzzi, I.; Carattoli, A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob. Agents Chemother. 2004, 48, 903–908. [Google Scholar] [CrossRef] [Green Version]
- Dionisi, A.M.; Lucarelli, C.; Benedetti, I.; Owczarek, S.; Luzzi, I. Molecular characterisation of multidrug-resistant Salmonella enterica serotype infantis from humans, animals and the environment in Italy. Int. J. Antimicrob. Agents 2011, 38, 384–389. [Google Scholar] [CrossRef]
- Argüello, H.; Guerra, B.; Rodríguez, I.; Rubio, P.; Carvajal, A. Characterization of antimicrobial resistance determinants and class 1 and class 2 integrons in salmonella enterica spp., multidrug-resistant isolates from pigs. Genes (Basel) 2018, 9, 256. [Google Scholar] [CrossRef] [Green Version]
- Kaczorek-Łukowska, E.; Sowińska, P.; Franaszek, A.; Dziewulska, D.; Małaczewska, J.; Stenzel, T. Can domestic pigeon be a potential carrier of zoonotic Salmonella? Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef]
Isolate | Serotype | Source | Gastric Environment ResistanceMean Value ± s.d. * | Virulence Genes Profile | Antimicrobial Resistance Profile | MDR | Antimicrobial Resistance Genes | |
---|---|---|---|---|---|---|---|---|
Constitutive | Induced | |||||||
S29 | Derby | I | 1.31 ± 0.88 | 10.15 ± 3.18 | sopB | TE | ||
S34 | Derby | I | 4.39 ± 1.87 | 10.87 ± 2.11 † | sopB | S TE S3 | • | tetA aadA1 |
S76 | Derby | L | 0.00 ± 0.00 | 0.51 ± 0.52 | sopB mgtC | AMP KF K S TE S3 F | • | blaTEM strA-strB |
S77 | Mbandaka | I | 2.67 ± 1.91 | 4.64 ± 3.38 | sopB | TE TGC S3 | ||
S78 | Typhimurium | I | 3.68 ± 2.79 | 36.50 ± 4.34 † | spvRBC sopB rhuM pipB mgtC | NA AMP S TE TGC S3 | • | tetA blaTEM strA-strB sul2 |
S79 | Give | I | 2.35 ± 2.76 | 8.12 ± 2.26 † | sopB | TE TGC S3 W SXT | strA-strB sul2 | |
S80 | Livingstone | L | 0.00 ± 0.00 | 0.47 ± 0.66 | sopB | TE TGC S3 F | • | tetA sul2 |
S82 | Infantis | LN | 0.00 ± 0.00 | 0.00 ± 0.00 | sopB pipB | TE TGC S3 | sul2 sul3 | |
S83 | Typhimurium | I | 0.60 ± 0.31 | 0.53 ± 0.61 | sodCI spvRBC sopB rhuM pipB mgtC | NA AMP S TE S3 | • | tetA blaTEM strA-strB sul2 |
S99 | Choleraesuis | L | 0.00 ± 0.00 | 0.00 ± 0.00 | sodCI spvRBC sopB pipB gipA | S TE S3 | • | tetA aadA2 strA-strB sul2 sul3 |
S100 | Typhimurium | I | 1.44 ± 0.60 | 1.26 ± 1.10 | sodCI sopB rhuM pipB mgtC | AMP S TE S3 | • | tetB tetG blaTEM strA-strB sul2 |
S169 | Kapemba | I | 0.31 ± 0.16 | 14.39 ± 1.00 † | mgtC | S3 | ||
S177 | Infantis | I | 0.67 ± 0.02 | 3.01 ± 1.08 | sopB pipB | AMP S S3 | • | |
S179 | Derby | I | 2.95 ± 1.06 | 64.20 ± 2.81 † | sopB | S3 | ||
S184 | Kapemba | I | 0.72 ± 0.01 | 23.29 ± 3.98 † | S3 | |||
S192 | Infantis | Ie | 0.10 ± 0.12 | 17.96 ± 3.25 † | pipB | S S3 F | • | sul2 |
S193 | Derby | I | 6.02 ± 5.47 | 39.44 ± 12.53 † | S3 | |||
S198 | Veneziana | I | 0.91 ± 0.56 | 29.71 ± 0.16 † | ||||
S203 | Group 4 | I | 6.01 ± 5.69 | 32.71 ± 10.50 † | F | |||
S272 | Derby | I | 5.61 ± 1.80 | 43.18 ± 1.24 † | sopB | |||
S276 | Rissen | I | 13.19 ± 3.71 | 13.81 ± 1.42 | sopB | TE | tetA | |
S293 | Bovismorbificans | LN | 0.21 ± 0.16 | 3.85 ± 0.54 † | sodCI spvRBC sopB pipB | |||
S311 | Paratyphi B | LN | 0.66 ± 0.28 | 6.04 ± 0.21 † | sopB pipB mgtC | S | ||
S315 | Derby | LN | 3.98 ± 1.75 | 2.54 ± 2.06 | sopB pipB mgtC | S TOB TE S3 | • | tetA aadA2 |
S317 | London | I | 0.03 ± 0.02 | 6.48 ± 1.38 † | sopB pipB mgtC | AMP TE TGC S3 F | • | aadA2 |
S322 | Typhimurium | I | 0.04 ± 0.04 | 3.98 ± 0.55 † | sodCI spvRBC sopB pipB mgtC | AMP S TE TGC S3 C | • | tetA tetG aadA2 sul1 |
S324 | 40:z4,z23:- | LN | 0.53 ± 0.13 | 1.32 ± 0.52 | spvRBC sopB | S AK S3 | ||
S327 | TMV | I | 0.34 ± 0.08 | 4.64 ± 1.12 | sopB rhuM pipB mgtC gipA | AMP S S3 F | • | tetB blaTEM strA-strB sul2 |
S333 | TMV | I | 1.55 ± 0.60 | 4.54 ± 0.61 | sopB rhuM pipB mgtC gipA | AMP S TE S3 F | • | tetB blaTEM strA-strB sul2 |
Serotype (No. of Analyzed Strains) | Virulence Genes | |||||||
---|---|---|---|---|---|---|---|---|
sodCI | sopE | spvRBC | sopB | rhuM | pipB | mgtC | gipA | |
Bovismorbificans (1) | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
Choleraesuis (1) | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
Derby (7) | 0 | 0 | 0 | 6 | 0 | 1 | 2 | 0 |
Give (1) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Group 4 (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Infantis (3) | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 0 |
Kapemba (2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Livingstone (1) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
London (1) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
Mbandaka (1) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Paratyphi B (1) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
Rissen (1) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Typhimurium (4) | 3 | 0 | 3 | 4 | 3 | 4 | 4 | 0 |
TMV (2) | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 |
Veneziana (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
40:z4,z23:- (1) | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Total (29) | 5 | 0 | 6 | 23 | 5 | 14 | 11 | 3 |
Antimicrobial | Susceptible | Intermediate | Resistant | Non-Susceptible | |||||
---|---|---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | No. | % | ||
Fluoroquinolones | NA | 26 | 89.66 | 1 | 3.45 | 2 | 6.90 | 3 | 10.34 |
CIP | 27 | 93.10 | 2 | 6.90 | 0 | 0.00 | 2 | 6.90 | |
ENR | 24 | 82.76 | 5 | 17.24 | 0 | 0.00 | 5 | 17.24 | |
Penicillins | AMP | 17 | 58.62 | 3 | 10.34 | 9 | 31.03 | 12 | 41.38 |
AMC | 27 | 93.10 | 2 | 6.90 | 0 | 0.00 | 2 | 6.90 | |
Cephems (cephalosporins) | CTX | 24 | 82.76 | 5 | 17.24 | 0 | 0.00 | 5 | 17.24 |
KF | 24 | 82.76 | 4 | 13.79 | 1 | 3.45 | 5 | 17.24 | |
CAZ | 29 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | |
Aminoglycosides | CN | 29 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
K | 12 | 41.38 | 16 | 55.17 | 1 | 3.45 | 17 | 58.62 | |
S | 3 | 10.34 | 12 | 41.38 | 14 | 48.28 | 26 | 89.66 | |
AK | 26 | 89.66 | 2 | 6.90 | 1 | 3.45 | 3 | 10.34 | |
TOB | 21 | 72.41 | 7 | 24.14 | 1 | 3.45 | 8 | 27.59 | |
Tetracyclines | TE | 12 | 41.38 | 1 | 3.45 | 15 | 51.72 | 16 | 57.14 |
TGC | 1 | 3.45 | 21 | 72.41 | 7 | 24.14 | 28 | 96.55 | |
Folate pathway inhibitors | S3 | 6 | 20.69 | 1 | 3.45 | 22 | 75.86 | 23 | 79.31 |
W | 28 | 96.55 | 0 | 0.00 | 1 | 3.45 | 1 | 3.45 | |
SXT | 28 | 96.55 | 0 | 0.00 | 1 | 3.45 | 1 | 3.45 | |
Others | CT | 29 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
F | 16 | 55.17 | 6 | 20.69 | 7 | 24.14 | 13 | 44.83 | |
C | 27 | 93.10 | 1 | 3.45 | 1 | 3.45 | 2 | 6.90 | |
FFC | 26 | 89.66 | 3 | 10.34 | 0 | 0.00 | 3 | 10.34 |
Serotype (No. of Analyzed Strains) | Resistance Genes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tetA | tetB | tetC | tetG | aadA1 | aadA2 | aphA1-lab | strA-strB | blaTEM | blaPSE-1 | sul1 | sul2 | sul3 | |
Bovismorbificans (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Choleraesuis (1) | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
Derby (7) | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Give (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
Group 4 (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Infantis (3) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 |
Kapemba (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Livingstone (1) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
London (1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mbandaka (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Paratyphi B (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Rissen (1) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Typhimurium (4) | 3 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 3 | 0 | 1 | 3 | 0 |
TMV (2) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 |
Veneziana (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
40:z4,z23:- (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total (29) | 8 | 3 | 0 | 2 | 1 | 4 | 0 | 8 | 6 | 0 | 1 | 10 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen Thi, H.; Pham, T.-T.-T.; Turchi, B.; Fratini, F.; Ebani, V.V.; Cerri, D.; Bertelloni, F. Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance. Animals 2020, 10, 2418. https://doi.org/10.3390/ani10122418
Nguyen Thi H, Pham T-T-T, Turchi B, Fratini F, Ebani VV, Cerri D, Bertelloni F. Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance. Animals. 2020; 10(12):2418. https://doi.org/10.3390/ani10122418
Chicago/Turabian StyleNguyen Thi, Hai, Thi-Thanh-Thao Pham, Barbara Turchi, Filippo Fratini, Valentina Virginia Ebani, Domenico Cerri, and Fabrizio Bertelloni. 2020. "Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance" Animals 10, no. 12: 2418. https://doi.org/10.3390/ani10122418
APA StyleNguyen Thi, H., Pham, T. -T. -T., Turchi, B., Fratini, F., Ebani, V. V., Cerri, D., & Bertelloni, F. (2020). Characterization of Salmonella spp. Isolates from Swine: Virulence and Antimicrobial Resistance. Animals, 10(12), 2418. https://doi.org/10.3390/ani10122418