Effects of Fermented Tea Residue on Fattening Performance, Meat Quality, Digestive Performance, Serum Antioxidant Capacity, and Intestinal Morphology in Fatteners
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fermented Tea Residue Sample
2.2. Animals and Diets
2.3. Sample Collection
2.4. Meat Quality
2.5. Digestibility Trial and Digestive Enzyme
2.6. Determination of Antioxidant Capacity Indicators
2.7. Intestinal Morphology
2.8. Statistical Analysis
3. Results
3.1. Fattening Performance
3.2. Meat Quality
3.3. Digestive Performance
3.4. Antioxidant Capacity
3.5. Intestinal Morphology
4. Discussion
4.1. Fattening Performance
4.2. Meat Quality
4.3. Digestive Performance
4.4. Antioxidant Capacity
4.5. Intestinal Morphology
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yücel, Y.; Göycıncık, S. Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste Biomass Valoriz. 2015, 6, 1077–1084. [Google Scholar] [CrossRef]
- Yue, N.; Kuang, H.; Sun, L.; Wu, L.H.; Xu, C.L. An empirical analysis of the impact of EU’s new food safety standards on China’s tea export. Int. J. Food Sci. Technol. 2010, 45, 745–750. [Google Scholar] [CrossRef]
- Yang, X.; Cui, X. Adsorption characteristics of Pb (II) on alkali treated tea residue. Water Resour. Ind. 2013, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Malkoc, E.; Nuhoglu, Y. Removal of Ni (II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column. J. Hazard. Mater. 2006, 135, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Kita, K.; Yokota, H.O. Ensiled or oven-dried green tea by-product as protein feedstuffs: Effects of tannin on nutritive value in goats. Asian Australas. J. Anim. 2007, 20, 880–886. [Google Scholar] [CrossRef]
- Newey, H.; Smyth, D.H. Intracellular hydrolysis of dipeptides during intestinal absorption. J. Physiol. 1960, 152, 367–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, P.A.; Buckley, D.J.; Sheehy, P.J.; Monahan, F.J. Vitamin E and meat quality. Proc. Nutr. Soc. 1994, 53, 289–295. [Google Scholar] [CrossRef]
- Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z.Y. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 2001, 131, 2248–2251. [Google Scholar] [CrossRef]
- Yamei, C.; Daiwen, C.; Bing, Y.U.; Jun, H.E.; Jie, Y.U.; Mao, X.B. Effects of tea polyphenol on growth performance, antioxidant capacity, carcass performance and meat quality of finishing pigs. Chin. J. Anim. Nutr. 2016, 28, 3996–4005. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Washington, DC, USA, 2007. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012; pp. 210–211. [Google Scholar]
- Dalla Costa, F.A.; Dalla Costa, O.A.; Coldebella, A.; Lima, G.J.M.M.; Ferraudo, A.S. How do season, on-farm fasting interval and lairage period affect swine welfare, carcass and meat quality traits? Int. J. Biometeorol. 2018, 62, 1497–1505. [Google Scholar] [CrossRef] [Green Version]
- Honikel, K.O.; Kim, C.J.; Hamm, R.; Roncales, P. Sarcomere shortening of prerigor muscle and its influence on drip loss. Meat Sci. 1986, 16, 267–282. [Google Scholar] [CrossRef]
- Choe, D.W.; Loh, T.C.; Foo, H.L.; Hair-Bejo, M.; Awis, Q.S. Egg production, faecal pH and microbial population, small intestine morphology, and plasma and yolk cholesterol in laying hens given liquid metabolites produced by Lactobacillus plantarum strains. Br. Poult. Sci. 2012, 53, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Touchette, K.; Carroll, J.; Allee, G.; Matteri, R.; Dyer, C.; Beausang, L.; Zannelli, M. Effect of spray-dried plasma and lipopolysaccharide exposure on weaned pigs: I. Effects on the immune axis of weaned pigs. J. Anim. Sci. 2002, 80, 494–501. [Google Scholar] [CrossRef]
- Zhu, F.; Su, D.; Ran, L.; Fan, C.Y.; Zhang, Z.J.; Liu, Z.Q.; Wan, X.C.; Cheng, J.B. Nutritional improvement of tea residue by solid-state fermentation with Aspergillus niger. Chin. J. Anim. Nutr. 2018, 30, 4269–4278. [Google Scholar]
- Yang, C.; Yang, I.; Oh, D.; Bae, I.; Cho, S.; Kong, I.; Uuganbayar, D.; Nou, I.; Choi, K. Effect of green tea by-product on performance and body composition in broiler chicks. Asian Australas. J. Anim. Sci. 2003, 16, 867–872. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Lee, J.W.; Mun, H.S.; Yang, C.J. Effects of supplementation with green tea by-products on growth performance, meat quality, blood metabolites and immune cell proliferation in goats. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1127–1137. [Google Scholar] [CrossRef]
- Ko, S.Y.; Yang, C.J. Effect of green tea probiotics on the growth performance, meat quality and immune response in finishing pigs. J. Anim. Sci. 2008, 21, 1339–1347. [Google Scholar] [CrossRef]
- Miller, K.D.; Ellis, M.; Bidner, B.; McKeith, F.K. Porcine longissimus glycolytic potential level effects on growth performance, carcass, and meat quality characteristics. J. Muscle Foods 2000, 11, 169–181. [Google Scholar] [CrossRef]
- Hamilton, D.N.; Miller, K.D.; Elis, M.; McKeith, F.K.; Wilson, E.R. Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci. 2003, 81, 2206–2212. [Google Scholar] [CrossRef] [Green Version]
- Karwowska, M.; Dolatowski, Z.J.; Grela, E. Influence of dietary supplement with extracted alfalfa meal on meat quality. Pol. J. Food Nutr. 2007, 54, 1–3. [Google Scholar]
- Joo, S.T.; Kauffman, R.G.; Kim, B.C.; Park, G.B. The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water holding capacity in porcine longissimus muscle. Meat Sci. 1999, 52, 291–297. [Google Scholar] [CrossRef]
- Jun, W.U.; Kai, Z. Application of tea leaves and tea dust as feed additives for pigs. J. Southwest Minzu Univ. 2017, 43, 462–468. [Google Scholar]
- Mitsumoto, M.; O’Grady, M.N.; Kerry, J.P.; Buckley, D.J. Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties. Meat Sci. 2005, 69, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, C. Utilization of tea grounds as feedstuff for ruminant. J. Anim. Sci. Biotechnol. 2013, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.; Tan, C.; Han, X.; Tang, S.; Tan, Z.; Zeng, B. Effect of dietary tea catechins supplementation in goats on the quality of meat kept under refrigeration. Small Rumin. Res. 2009, 87, 122–125. [Google Scholar] [CrossRef]
- Kai, C.; Qiang, W.; Shi, Q.W.; Qi, Y.D.; Nai, F.Z. The facilitating effect of tartary buckwheat flavonoids and Lactobacillus plantarum on the growth performance, nutrient digestibility, antioxidant capacity, and fecal microbiota of weaned piglets. Animals 2019, 9, 986. [Google Scholar]
- Feng, J.; Liu, X.; Xu, Z.R.; Lu, Y.P.; Liu, Y.Y. The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Technol. 2007, 134, 295–303. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, F.; Chen, G.; Snyder, C.L.; Sun, J.; Li, Y. High-level expression, purification and characterization of a recombinant medium-temperature α-amylase from Bacillus subtilis. Biotechnol. Lett. 2010, 32, 119–124. [Google Scholar] [CrossRef]
- Hua, W.D.; Huang, S.P.; Cai, Z.W.; Liu, X.F.; Zhang, J.Z. Effects of compound gastrointestinal microbial regulators on growth performance and digestive enzyme activity of weaned piglets. Acta Agric. Zhejiangensis 2008, 4, 240–244. [Google Scholar]
- Lindemann, M.D.; Cornelius, S.G.; El Kandelgy, S.M.; Moser, R.L.; Pettigrew, J.E. Effect of age, weaning and diet on digestive enzyme levels in the piglet. J. Anim. Sci. 1986, 62, 1296–1370. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.H.; Li, Y.D.; Jun, P.J.; Shi, Y.W.; Wen, L.Z.; Mai, W. Effects of antibiotics substitution agent z-27 on intestinal digestive enzymes, nutrients and growth performance of weaned piglet. J. Henan Agric. Sci. 2017, 46, 125–129. [Google Scholar]
- Collington, G.K.; Parker, D.S.; Armstrong, D.G. The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig. Br. J. Nutr. 1990, 64, 59–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sogarrd, D.H.; Suhr-Jessen, T. Microbials for feed beyond lactic acid bacteria. Feed Int. 1990, 11, 32–37. [Google Scholar]
- Li, Q.D.; Shan, A.S.; Ma, D.Y.; Du, J. Effect of Ligustrum lucidum, Schisandra chinensis and MOS on antioxidant status and blood biochemical parameters of broilers. Acta Zoonutrimenta Sin. 2005, 17, 45–48. [Google Scholar]
- Kim, M.H.; Lee, E.J.; Cheon, J.M.; Nam, K.J.; Oh, T.H.; Kim, K.S. Antioxidant and hepatoprotective effects of fermented red ginseng against high fat diet-induced hyperlipidemia in rats. Lab. Anim. Res. 2016, 32, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Placer, Z.A.; Cushman, L.L.; Johnson, B.C. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 1966, 16, 359–364. [Google Scholar] [CrossRef]
- Yang, C.S.; Wang, H.; Li, G.X.; Yang, Z.; Guan, F.; Jin, H. Cancer prevention by tea: Evidence from laboratory studies. Pharmacol. Res. 2011, 64, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Freese, R.; Basu, S.; Hietanen, E.; Nair, J.; Nakachi, K.; Bartsch, H.; Mutanen, M. Green tea extract decreases plasma malondialdehyde concentration but does not affect other indicators of oxidative stress, nitric oxide production, or hemostatic factors during a high-linoleic acid diet in healthy females. Eur. J. Nutr. 1999, 38, 149–157. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, U.K.; Sharma, A.K.; Pandey, A.K. Protective efficacy of Solanum xanthocarpum root extracts against free radical damage: Phytochemical analysis and antioxidant effect. Cell Mol. Biol. 2012, 58, 174–181. [Google Scholar]
- Li, X.H.; Zhang, Y.; Guo, J.Q.; Wu, J.Y. Effects of tomato pomace fermentation feed on anti-oxidation and immunity of serum and milk for Xinjiang brown cows. China Anim. Husb. Vet. Med. 2011, 38, 9–12. [Google Scholar]
- Wang, G.J.; Gao, Y.L.; Hang, X.; Yang, Y.X. Effects of probiotic fermented apple pomace on apparent digestibility, serum immune indexes, intestinal microflora and morphology in weaned piglets. Chin. J. Anim. Sci. 2017, 53, 96–103. [Google Scholar]
- Dunsford, B.R. The effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 1989, 67, 1855. [Google Scholar] [CrossRef] [Green Version]
- Pluske, J.R.; Thompson, M.J.; Atwood, C.S.; Bird, P.H.; Williams, I.H.; Hartmann, P.E. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows’ whole milk after weaning. Br. J. Nutr. 1996, 76, 409–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huan, H.L.; Bai, J.Y.; Zhou, W.R.; Yan, J.S.; Xu, X.M.; Yang, Y.; Wen, C.; Zhou, Y.M. Effects of antimicrobial peptides on serum biochemical indices, intestinal mucosa morphology and relative expression level of tight junction protein gene of jejunum of piglets. Chin. J. Anim. Nutr. 2015, 27, 3797–3804. [Google Scholar]
- Deng, J.; Li, Y.F.; Yang, Q. Effects of co-adminstration of Bacillus subtilis and porcine Lactobacillus salivarius on intestinal villus of piglets. Chin. J. Anim. Vet. Sin. 2013, 2, 295–301. [Google Scholar]
- Missotten, J.A.M.; Michiels, J.; Ovyn, A.; Smet, S.D.; Dierick, N.A. Fermented liquid feed for weaned piglets: Impact of sedimentation in the feed slurry on performance and gut parameters. Czech J. Anim. Sci. 2015, 60, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Goel, A.; Hosseindoust, A.; Lee, S.; Chae, B. Effects of dietary supplementation of Ecklonia cava with or without probiotics on the growth performance, nutrient digestibility, immunity and intestinal health in weanling pigs. Ital. J. Anim. Sci. 2016, 15, 62–68. [Google Scholar] [CrossRef] [Green Version]
Items | Experimental Groups | |||
---|---|---|---|---|
CG | T1 | T2 | T3 | |
Ingredient | ||||
Corn | 70 | 65 | 62.5 | 60 |
Soybean meal | 25 | 20 | 17.5 | 15 |
Fermented tea residue | 0 | 10 | 15 | 20 |
Soybean oil | 1 | 1 | 1 | 1 |
Dicalcium phosphate | 0.2 | 0.2 | 0.2 | 0.2 |
Limestone | 1.5 | 1.5 | 1.5 | 1.5 |
Salt | 0.3 | 0.3 | 0.3 | 0.3 |
Premix ** | 2 | 2 | 2 | 2 |
Calculated Nutritional Value | ||||
Digestive energy (MJ/kg) | 14.20 | 13.61 | 13.31 | 13.02 |
Crude protein | 17.24 | 18.63 | 19.33 | 20.03 |
Calcium | 0.56 | 0.55 | 0.54 | 0.53 |
Available phosphorus | 0.49 | 0.47 | 0.46 | 0.45 |
Lysine | 0.95 | 0.99 | 1.03 | 1.05 |
Items | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CG | T1 | T2 | T3 | |||
IBM (Kg) | 69.85 | 70.72 | 70.70 | 70.43 | 0.32 | 0.068 |
FBW (Kg) | 122.14 b | 124.1 a | 125.87 a | 122.8 b | 1.32 | 0.015 |
ADG (g/d) | 861.86 b | 902.05 a | 904.5 a | 868.92 b | 7.21 | 0.045 |
ADFI (Kg/d) | 2.99 | 2.87 | 2.84 | 2.82 | 0.031 | 0.205 |
FCR | 3.47 a | 3.18 bc | 3.14 c | 3.25 b | 0.043 | 0.032 |
Items | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CG | T1 | T2 | T3 | |||
pH45min | 6.11 a | 6.29 b | 6.45 b | 6.34 b | 0.38 | 0.030 |
pH24h | 5.69 a | 5.77 ab | 5.97 b | 5.81 ab | 0.15 | 0.045 |
L*45min | 51.39a | 47.59 ab | 46.37 b | 49.10 a | 0.61 | 0.014 |
L*24h | 51.67 a | 48.85 b | 47.59 b | 49.99 a | 0.59 | 0.048 |
a*45min | 8.78 | 9.21 | 9.42 | 9.65 | 0.28 | 0.087 |
a*24h | 7.64 | 8.19 | 8.36 | 8.48 | 0.44 | 0.079 |
b*45min | 7.35 | 7.21 | 6.51 | 6.25 | 0.18 | 0.830 |
b*24h | 10.44 | 10.21 | 8.97 | 9.16 | 0.44 | 0.411 |
Drip loss (%) | 4.06 a | 3.54 b | 3.65 b | 3.07 c | 0.10 | 0.026 |
Cooking loss (%) | 46.52 | 45.82 | 43.90 | 44.75 | 2.80 | 0.640 |
Shear force (kg) | 5.97 a | 3.90 b | 4.12 b | 4.70 b | 0.96 | 0.007 |
Items | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CG | T1 | T2 | T3 | |||
DM | 84.56 | 85.69 | 83.78 | 84.35 | 0.69 | 0.590 |
CP | 80.15 b | 82.42 a | 83.04 a | 82.35 a | 0.26 | 0.042 |
EE | 33.95 b | 50.36 a | 47.76 a | 50.56 a | 1.82 | <0.001 |
OM | 83.91 | 83.56 | 84.68 | 82.95 | 0.77 | 0.141 |
Ca | 32.39 c | 41.53 b | 55.89 a | 38.91 b | 1.58 | <0.001 |
P | 37.85 b | 48.83 a | 48.81 a | 48.72 a | 2.82 | 0.005 |
Items | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CG | T1 | T2 | T3 | |||
Amylase, U/mgprot | 28.46 | 26.73 | 27.79 | 28.27 | 0.61 | 0.436 |
Lipase, U/mgprot | 42.56 b | 43.99 b | 68.47 a | 69.74 a | 0.97 | 0.029 |
Trypsin, U/mgprot | 60.45 c | 88.47 b | 109.10 a | 89.33 b | 2.60 | 0.016 |
Items | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CG | T1 | T2 | T3 | |||
CAT (U/mL) | 2.82 | 4.12 | 4.13 | 3.07 | 0.61 | 0.360 |
SOD (U/mL) | 186.80 | 213.45 | 213.15 | 213.75 | 5.88 | 0.459 |
MDA (nmol/mL) | 8.78 | 8.39 | 8.06 | 7.39 | 0.95 | 0.617 |
GSH-Px (U/mL) | 118.62 b | 129.30 ab | 143.49 a | 139.74 a | 3.16 | 0.006 |
T-AOC (U/mL) | 2.21 b | 2.35 b | 5.90 a | 5.24 a | 0.39 | 0.001 |
Items | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
CG | T1 | T2 | T3 | |||
Duodenum | ||||||
VH (mm) | 0.28 | 0.29 | 0.33 | 0.32 | 0.011 | 0.205 |
CD (mm) | 0.17 | 0.16 | 0.14 | 0.15 | 0.009 | 0.621 |
VH: CD | 1.65c | 1.81 bc | 2.34 a | 2.13 b | 0.079 | 0.027 |
Jejunum | ||||||
VH (mm) | 0.29 b | 0.31 b | 0.37a | 0.33 ab | 0.013 | 0.040 |
CD (mm) | 0.16 | 0.14 | 0.15 | 0.15 | 0.005 | 0.784 |
VH: CD | 1.81c | 2.21b | 2.47a | 2.20b | 0.080 | 0.012 |
Ileum | ||||||
VH (mm) | 0.29 | 0.32 | 0.33 | 0.34 | 0.013 | 0.476 |
CD (mm) | 0.15 | 0.16 | 0.16 | 0.17 | 0.005 | 0.214 |
VH: CD | 1.93 | 2.00 | 2.06 | 2.00 | 0.072 | 0.887 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Li, H.; Wen, Z.; Hou, Y.; Wang, G.; Fan, J.; Qian, L. Effects of Fermented Tea Residue on Fattening Performance, Meat Quality, Digestive Performance, Serum Antioxidant Capacity, and Intestinal Morphology in Fatteners. Animals 2020, 10, 185. https://doi.org/10.3390/ani10020185
Ding X, Li H, Wen Z, Hou Y, Wang G, Fan J, Qian L. Effects of Fermented Tea Residue on Fattening Performance, Meat Quality, Digestive Performance, Serum Antioxidant Capacity, and Intestinal Morphology in Fatteners. Animals. 2020; 10(2):185. https://doi.org/10.3390/ani10020185
Chicago/Turabian StyleDing, Xiaoqing, Huaiyu Li, Zhiwei Wen, Yong Hou, Genliang Wang, Jinghui Fan, and Lichun Qian. 2020. "Effects of Fermented Tea Residue on Fattening Performance, Meat Quality, Digestive Performance, Serum Antioxidant Capacity, and Intestinal Morphology in Fatteners" Animals 10, no. 2: 185. https://doi.org/10.3390/ani10020185
APA StyleDing, X., Li, H., Wen, Z., Hou, Y., Wang, G., Fan, J., & Qian, L. (2020). Effects of Fermented Tea Residue on Fattening Performance, Meat Quality, Digestive Performance, Serum Antioxidant Capacity, and Intestinal Morphology in Fatteners. Animals, 10(2), 185. https://doi.org/10.3390/ani10020185