Influences of Enzyme Blend Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microbiota and Meat-Quality in Grower-Finisher Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Feed Additive and Animal Ethics
2.2. Experimental Design, Animals, Housing and Diets
2.3. Sampling and Measurements
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ewan, R.C. Energy Utilization in Swine Nutrition, 2nd ed.; Lewis, A.J., Southern, L.L., Eds.; CRC Press: Raton, FL, USA, 2001; pp. 85–94. [Google Scholar]
- Omogbenigun, F.O.; Nyachoti, C.M.; Slominski, B.A. Dietary supplementation with multienzyme preparations improves nutrient utilization and growth performance in weaned pigs. J. Anim. Sci. 2004, 82, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Van Kempen, T.A.T.G.; Van Heugten, E.; Moeser, A.J.; Muley, N.S.; Sewalt, V.J.H. Selecting soybean meal characteristics preferred for swine nutrition. J. Anim. Sci. 2006, 84, 1387–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach Knudsen, K.E.; Jensen, B.; Andersen, J. Gastrointestinal implications in pigs of wheat and oat fractions. Br. J. Nutr. 1991, 65, 233–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, J.D. Maize: Factors affecting its digestibility and variability in its feeding value. In Enzymes in Farm Animal Nutrition; Partridge, M.B.G., Ed.; CABI Publishing: Wallingford, UK, 2001; pp. 109–124. [Google Scholar]
- Kim, S.W.; Zhang, J.H.; Soltwedel, K.T.; Knabe, D.A. Use of carbohydrases in corn-soybean meal-based grower-finisher pig diets. Anim. Res. 2006, 55, 563–578. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Peng, J.; Liu, Z.; Liu, Y. Responses of non-starch polysaccharide-degrading enzymes on digestibility and performance of growing pigs fed a diet based on corn, soya bean meal and Chinese double-low rapeseed meal. J. Anim. Physiol. Anim. Nutr. 2007, 91, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.K.; Ingale, S.L.; Kim, J.S.; Kim, Y.W.; Kim, K.H.; Lohakare, J.D.; Lee, J.H.; Chae, B.J. Effects of exogenous enzyme supplementation to corn- and soybean meal-based or complex diets on growth performance, nutrient digestibility, and blood metabolites in growing pigs. J. Anim. Sci. 2012, 90, 3041–3048. [Google Scholar] [CrossRef] [Green Version]
- Whitney, M.H.; Shurson, G.C.; Johnston, L.J.; Wulf, D.M.; Shanks, B.C. Growth performance and carcass characteristics of grower-finisher pigs fed high-quality corn distillers dried grain with solubles originating from a modern Midwestern ethanol plant. J. Anim. Sci. 2006, 84, 3356–3363. [Google Scholar] [CrossRef]
- Ying, W.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Dritz, S.S. Effects of XFE liquid energy and choice white grease on nursery pig performance. Kansas Agricult. Exp. Stat. Res. Rep. 2011, 10, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Ying, W.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Dritz, S.S. Effects of AV-E Digest and XFE liquid energy on nursery pig performance. In Kansas Agricultural Experiment Station Research Reports; Kansas State University/Agricultural Experiment Station and Cooperative Extension Service: Kansas: Manhattan, KS, USA, 2012; pp. 74–85. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Research Council; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Kwang, Y.L.; Balamuralikrishnan, B.; Jong, K.K.; Kim, I.H. Dietary inclusion of xylanase improves growth performance, apparent total tract nutrient digestibility, apparent ileal digestibility of nutrients and amino acids and alters gut microbiota in growing pigs. Anim. Feed Sci. Technol. 2018, 235, 105–109. [Google Scholar]
- Balasubramanian, B.; Lee, S.I.; Kim, I.H. Inclusion of dietary multi-species probiotic on growth performance, nutrient digestibility, meat quality traits, fecal microbiota and diarrhoea score in growing–finishing pigs. Italian J. Anim. Sci. 2018, 17, 100–106. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified regents for determination of urea and ammonia. Clini. Chem. 1962, 8, 131. [Google Scholar]
- Balasubramanian, B.; Li, T.; Kim, I.H. Effects of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade quality traits. Rev. Bras. Zootec. 2016, 45, 93–100. [Google Scholar] [CrossRef] [Green Version]
- National Pork Procedures Council (NPPC). Procedures to Evaluate Market Hogs, 3rd ed.; National Pork Procedures Council: Des Moines, IA, USA, 1991. [Google Scholar]
- Kauffman, R.G.; Eikelenboom, G.; van der Wal, P.G.; Engel, B.; Zaar, M. A comparison of methods to estimate water-holding capacity in post-rigor porcine muscle. Meat Sci. 1986, 18, 307–322. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1988, 49, 447–457. [Google Scholar] [CrossRef]
- Moehn, S.; Atakora, J.K.A.; Sands, J.; Ball, R.O. Effect of phytase-xylanase supplementation to wheat-based diets on energy metabolism in growing-finishing pigs fed ad libitum. Livest. Sci. 2007, 109, 271–274. [Google Scholar] [CrossRef]
- Nortey, T.N.; Patience, J.F.; Simmins, P.H.; Trottier, N.L.; Zijlstra, R.T. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-based diets containing wheat millrun. J. Anim. Sci. 2007, 85, 1432–1443. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fang, Z.; Dai, J.; Partridge, G.; Ru, Y.; Peng, J. Corn extrusion and enzyme addition improves digestibility of corn/soy based diets by pigs: In vitro and in vivo studies. Anim. Feed Sci. Technol. 2010, 158, 146–154. [Google Scholar] [CrossRef]
- Kiarie, E.; Nyachoti, C.M.; Slominski, B.A.; Blank, G. Growth performance, gastrointestinal microbial activity, and nutrient digestibility in early-weaned pigs fed diets containing flaxseed and carbohydrase enzyme. J. Anim. Sci. 2007, 85, 2982–2993. [Google Scholar] [CrossRef] [Green Version]
- Kerr, B.J.; Yen, B.J.; Nienaber, J.A.; Easter, R.A. Influences of dietary protein level, amino acid supplementation and environmental temperature on performance, body composition, organ weights and total heat production of growing pigs. J. Anim. Sci. 2003, 81, 1998–2007. [Google Scholar] [CrossRef] [Green Version]
- Woyengo, T.A.; Sands, J.S.; Guenter, W.; Nyachoti, C.M. Nutrient digestibility and performance responses of growing pigs fed phytase- and xylanase-supplemented wheat-based diets. J. Anim. Sci. 2008, 86, 848–857. [Google Scholar] [CrossRef] [Green Version]
- Adeola, O.; Cowieson, A.J. Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Crovace, A.M.; Rossi, G.; Laudadio, V. Effect of a dietary probiotic blend on performance, blood characteristics, meat quality and fecal microbial shedding in growing-finishing pigs. S. Afr. J. Anim. Sci. 2017, 47, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Ha, D.M.; Kim, G.D.; Han, J.C.; Park, M.J.; Joo, S.T.; Park, B.C.; Joo, S.T.; Lee, C.Y. Effects of Dietary Energy Level on Growth Efficiency and Carcass Quality Traits of Finishing Pigs. J. Anim. Sci. Technol. 2010, 52, 191–198. [Google Scholar] [CrossRef] [Green Version]
Item | Positive Control | Negative Control (ME −150 kcal) | ||
---|---|---|---|---|
Grower | Finisher | Grower | Finisher | |
Ingredient | ||||
Corn | 585.8 | 703.4 | 541.6 | 656.2 |
Oat | 50.0 | 50.0 | 10.0 | 10.0 |
Molasses | 31.00 | 10.0 | 30.0 | 10.0 |
Soybean meal (CP, 48%) | 261.8 | 180.00 | 244.9 | 170.0 |
Rapeseed meal | 16.0 | - | 15.0 | - |
Lysine (78%) | 0.50 | 1.8 | 0.30 | 1.6 |
Tallow(liquid) | 30.1 | 30.0 | 27.4 | 27.4 |
Limestone | 7.9 | 7.9 | 7.9 | 7.9 |
Dicalcium phosphate | 11.8 | 11.8 | 11.8 | 11.8 |
Salt | 2.00 | 2.00 | 2.00 | 2.00 |
Vit. premix A | 2.00 | 2.00 | 2.00 | 2.00 |
Mineral premix B | 1.00 | 1.00 | 1.00 | 1.00 |
Choline | 0.10 | 0.1 | 0.10 | 0.1 |
Calculated composition | ||||
ME, kcal/kg | 3336 | 3349 | 3186 | 3199 |
Analyzed composition | ||||
Crude protein | 165.3 | 143.6 | 157.5 | 136.5 |
Crude fat | 5.88 | 6.15 | 5.95 | 6.23 |
Crude fiber | 3.27 | 2.89 | 3.30 | 2.92 |
Crude ash | 4.88 | 4.27 | 4.87 | 4.28 |
Calcium | 6.8 | 6.3 | 6.8 | 6.4 |
Total phosphorous | 5.5 | 5.2 | 5.4 | 5.2 |
Available lysine | 7.8 | 6.9 | 7.5 | 6.7 |
Available methionine | 2.1 | 1.8 | 2.0 | 1.7 |
Traits | PC | NC | A1 | SEM | p-Value |
---|---|---|---|---|---|
Body weight, kg—Grower phase | |||||
Initial | 23.1 | 23.05 | 22.99 | 0.07 | 0.532 |
Week 2 | 32.83 | 32.56 | 32.65 | 0.14 | 0.415 |
Week 6 | 49.12 b | 50.5 a | 50.32 ab | 0.40 | 0.081 |
Body weight, kg—Finisher phase | |||||
Week 8 | 61.89 | 61.39 | 62.32 | 1.14 | 0.846 |
Week 12 | 91.19 | 89.87 | 91.76 | 1.14 | 0.519 |
Week 16 | 112.20 ab | 106.9 4 b | 114.08 a | 1.65 | 0.038 |
Week 6—Grower Phase | |||||
ADG (g) | 620 b | 654 a | 651 ab | 10 | 0.072 |
ADFI (g) | 1726 a | 1638 ab | 1526 b | 41 | 0.025 |
G:F | 0.361 b | 0.399 a | 0.427 a | 0.011 | 0.011 |
Week 16—Finisher Phase | |||||
ADG (g) | 898 a | 813 b | 922 a | 15 | 0.002 |
ADFI (g) | 2703 | 2774 | 2794 | 58 | 0.535 |
G:F | 0.333 a | 0.294 b | 0.330 a | 0.006 | 0.002 |
Overall | |||||
ADG (g) | 796 ab | 749 b | 813 a | 14 | 0.034 |
ADFI (g) | 2738 | 3028 | 2809 | 92 | 0.129 |
G:F | 0.292 a | 0.248 b | 0.290 a | 0.007 | 0.004 |
Traits (%) | PC | NC | A1 | SEM | p-Value |
---|---|---|---|---|---|
Dry matter | |||||
Week 6 | 75.15 | 74.33 | 74.48 | 0.93 | 0.811 |
Week 16 | 71.71 b | 69.69 ab | 73.05 a | 0.69 | 0.027 |
Energy | |||||
Week 6 | 73.95 b | 72.81 ab | 75.56 a | 0.57 | 0.026 |
Week 16 | 70 | 70.3 | 71.75 | 0.73 | 0.266 |
Nitrogen | |||||
Week 6 | 74.37 | 72.09 | 73.65 | 1.10 | 0.217 |
Week 16 | 69.94 | 69.47 | 71.90 | 1.47 | 0.494 |
Items | PC | NC | A1 | SEM | p-Value |
---|---|---|---|---|---|
Fecal microbial (log10 cfu/g) | |||||
Week 6 | |||||
Lactobacillus | 7.16 b | 7.07 b | 7.36 a | 0.05 | 0.048 |
E. coli | 6.39 a | 6.35 ab | 6.26 b | 0.03 | 0.043 |
Week 16 | |||||
Lactobacillus | 7.32 b | 7.30 b | 7.43 a | 0.03 | 0.012 |
E. coli | 6.42 | 6.36 | 6.24 | 0.04 | 0.064 |
Excreta noxious gas emission (mg/kg) | |||||
Week 6 | |||||
NH3 | 3.91 | 3.58 | 3.27 | 0.42 | 0.383 |
H2S | 3.12 | 3.26 | 2.38 | 0.33 | 0.251 |
Total mercaptans | 5.16 | 5.08 | 4.72 | 0.29 | 0.493 |
Week 16 | |||||
NH3 | 13.51 a | 11.83 ab | 10.74 b | 0.39 | 0.032 |
H2S | 22.84 | 22.71 | 21.61 | 0.25 | 0.806 |
Total mercaptans | 17.45 | 16.85 | 16.80 | 0.32 | 0.368 |
Traits | PC | NC | A1 | SEM | p-Value |
---|---|---|---|---|---|
Color | |||||
L—Lightness | 56.03 | 55.40 | 56.26 | 0.25 | 0.094 |
a—Redness | 18.22 | 17.90 | 18.54 | 0.44 | 0.612 |
b—Yellowness | 7.74 | 7.81 | 7.37 | 0.38 | 0.691 |
Sensory evaluation | |||||
Color | 2.48 | 2.56 | 2.64 | 0.08 | 0.426 |
Firmness | 2.88 | 3.18 | 3.27 | 0.11 | 0.409 |
Marbling | 1.3 | 1.2 | 1.4 | 0.16 | 0.698 |
Cooking loss (%) | 27.60 | 27.81 | 26.15 | 0.98 | 0.061 |
Drip loss (%) | |||||
Day 1 | 4.65 | 4.29 | 4.49 | 0.47 | 0.867 |
Day 3 | 9.03 | 9.36 | 9.11 | 0.65 | 0.930 |
Day 5 | 14.44 | 13.84 | 13.46 | 0.82 | 0.709 |
Day 7 | 20.2 | 19.47 | 20.38 | 0.81 | 0.710 |
pH | 5.26 | 5.23 | 5.24 | 0.02 | 0.640 |
Loin muscle area (cm2) | 47.01 | 48.27 | 45.35 | 1.06 | 0.191 |
Water holding capacity (%) | 60.34 | 60.9 | 58.92 | 0.96 | 0.355 |
Carcass weight (kg) | 88.48 ab | 87.18 b | 90.29 a | 0.41 | 0.005 |
Back-fat thickness (mm) | 17.44 a | 18.1 a | 16.26 b | 0.21 | 0.009 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasubramanian, B.; Park, J.H.; Shanmugam, S.; Kim, I.H. Influences of Enzyme Blend Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microbiota and Meat-Quality in Grower-Finisher Pigs. Animals 2020, 10, 386. https://doi.org/10.3390/ani10030386
Balasubramanian B, Park JH, Shanmugam S, Kim IH. Influences of Enzyme Blend Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microbiota and Meat-Quality in Grower-Finisher Pigs. Animals. 2020; 10(3):386. https://doi.org/10.3390/ani10030386
Chicago/Turabian StyleBalasubramanian, Balamuralikrishnan, Jae Hong Park, Sureshkumar Shanmugam, and In Ho Kim. 2020. "Influences of Enzyme Blend Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microbiota and Meat-Quality in Grower-Finisher Pigs" Animals 10, no. 3: 386. https://doi.org/10.3390/ani10030386
APA StyleBalasubramanian, B., Park, J. H., Shanmugam, S., & Kim, I. H. (2020). Influences of Enzyme Blend Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microbiota and Meat-Quality in Grower-Finisher Pigs. Animals, 10(3), 386. https://doi.org/10.3390/ani10030386