Performance and Meat Quality of Dual-Purpose Cockerels of Dominant Genotype Reared on Pasture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cockerels, Husbandry and Diets
2.2. Physical Analysis of the Breast Muscles
2.3. Histochemical Analysis of Breast Muscles
2.4. Sensory Analysis of Breast Muscles
2.5. Chemical Analyses of Breast Muscles
2.6. Chemical Analyses of Diet and Freeze-Dried Pasture
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission (EC). Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Dal Bosco, A.; Mugnai, C.; Sirri, F.; Zamparini, C.; Castellini, C. Assessment of a global positioning system to evaluate activities of organic chickens at pasture. J. Appl. Poult. Res. 2010, 19, 213–218. [Google Scholar] [CrossRef]
- Sirri, F.; Castellini, C.; Bianchi, M.; Petracci, M.; Meluzzi, A.; Franchini, A. Effect of fast-, medium- and slow-growing strains on meat quality of chickens reared under the organic farming method. Animal 2011, 5, 312–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamski, M.; Kuźniacka, J.; Banaszak, M. The effects of strain and caponisation on carcass and meat traits of cockerels aged twenty weeks. Ann. Anim. Sci. 2016, 16, 1227–1239. [Google Scholar] [CrossRef] [Green Version]
- Adamski, M.; Kuźniacka, J.; Banaszak, M.; Wegner, M. The analysis of meat traits of Sussex cockerels and capons (S11) at different ages. Poult. Sci. 2016, 95, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Kuźniacka, J.; Adamski, M.; Banaszak, M.; Huse-Wesolek, H.; Biesek, J. Comparison of carcass, meat and bone characteristics of 16-week-old cockerels and capons of various origin. Eur. Poult. Sci. 2017, 81, 3169–3175. [Google Scholar] [CrossRef] [PubMed]
- Bruijnis, M.R.N.; Blok, V.; Stassen, E.N.; Gremmen, H.G.J. Moral “Lock-In” in Responsible Innovation: The Ethical and Social Aspects of Killing Day-Old Chicks and Its Alternatives. J. Agric. Environ. Ethics 2015, 28, 939–960. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Mungai, C.; Ruggeri, S.; Mattioli, S.; Castelini, C. Fatty acid composition of meat and estimated indices of lipid metabolism in different poultry genotypes reared under organic system. Poult. Sci. 2012, 91, 2039–2045. [Google Scholar] [CrossRef]
- Alessandri, J.M.; Extier, A.; Al-Gubory, K.H.; Harbeby, E.; Lallemand, M.; Linard, A.; Lavialle, M.; Guesnet, P. Influence of gender on DHA synthesis: The response of rat liver to low dietary α-linolenic acid evidences higher ω3 Δ4-desaturation index in females. Eur. J. Nutr. 2012, 51, 199–209. [Google Scholar] [CrossRef]
- Glatz, P.C.; Ru, Y.J.; Miao, Z.H.; Wyatt, S.K.; Rodda, B.J. Integrating poultry into a crop and pasture farming system. Int. J. Poult. Sci. 2005, 4, 187–191. [Google Scholar]
- Lorenz, C.; Kany, T.; Grashorn, M.A. Method to estimate feed intake from pasture in broilers and laying hens. Arch. Geflugelkd. 2013, 77, 160–165. [Google Scholar]
- Mugnai, C.; Dal Bosco, A.; Castellini, C. Effect of rearing system and season on the performance and egg characteristics of Ancona laying hens. Ital. J. Anim. Sci. 2009, 8, 175–188. [Google Scholar] [CrossRef]
- Sossidou, E.N.; Dal Bosco, A.; Castelini, C.; Grashorn, M.A. Effects of pasture management on poultry welfare and meat quality in organic poultry production systems. Worlds Poult. Sci. J. 2015, 71, 375–384. [Google Scholar] [CrossRef]
- Ponte, P.I.P.; Prates, J.A.M.; Crespo, J.P.; Crespo, D.G.; Mourão, J.L.; Alves, S.P.; Bessa, R.J.B.; Chaveiro-Soares, M.A.; Gama, L.T.; Ferreira, L.M.A.; et al. Restricting the intake of a cereal-based feed in free-range-pastured poultry: Effects on performance and meat quality. Poult. Sci. 2008, 87, 2032–2042. [Google Scholar] [CrossRef] [PubMed]
- Michalczuk, M.; Zdanowska-Sasiadek, Z.; Damaziak, K.; Niemiec, J. Influence of indoor and outdoor systems on meat quality of slow-growing chickens. CyTA J. Food. 2017, 15, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Michiels, J.; Tagliabue, M.M.; Akbarian, A.; Ovyn, A.; De Smet, S. Oxidative status, meat quality and fatty acid profile of broiler chickens reared under free-range and severely feed-restricted conditions compared with conventional indoor rearing. Avian Biol. Res. 2014, 7, 74–82. [Google Scholar] [CrossRef]
- Wang, K.H.; Shi, S.R.; Dou, T.C.; Sun, H.J. Effect of a free-range raising system on growth performance, carcass yield, and meat quality of slow-growing chicken. Poult. Sci. 2009, 88, 2219–2223. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mungai, C.; Rossati, A.; Paoletti, A.; Caporali, S.; Castelini, C. Effect of range enrichment on performance, behavior and forage intake of free-range chickens. J. Appl. Poult. Res. 2014, 23, 137–145. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L.; Kotrba, R.; Hakl, J. Quality attributes and composition of meat from red deer (Cervus elephus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). J. Sci. Food Agric. 2014, 95, 2159–2354. [Google Scholar]
- International Organisation for Standardisation. ISO Standard No 8586-1. Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors; International Organisation for Standardisation: Geneva, Switzerland, 1993. [Google Scholar]
- Folch, J.M.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Raes, K.; De Smet, S.; Balcaen, A.; Claeys, E.; Demeyer, D. Effects of diets rich in N-3 polyunsatured fatty acids on muscle lipids and fatty acids in Belgian Blue double-muscled young bulls. Reprod. Nutr. Dev. 2003, 43, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Cortinas, L.; Galobart, J.; Barroeta, A.C.; Baucells, M.D.; Grashorn, M.A. Change in α-tocopherol contents, lipid oxidation and fatty acid profile in eggs enriched with linolenic acid or very long-chain w3 polyunsaturated fatty acids after different processing methods. J. Sci. Food Agric. 2003, 83, 820–829. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effects of genotype, feeding system and slaughter weight on the quality of light lambs. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Froescheis, O.; Moalli, S.; Liechti, H.; Bausch, J. Determination of lycopene in tissues and plasma of rats by normal-phase high-performance liquid chromatography with photometric detection. J. Chromatogr. B 2000, 739, 291–299. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 12822. Foodstuffs—Determination of Vitamin E by High Performance Liquid Chromatography—Measurement of α-, β-, γ- and δ-Tocopherols; European Committee for Standardization: Brussels, Belgium, 2000. [Google Scholar]
- European Committee for Standardization. EN 12823-1. Foodstuffs—Determination of Vitamin A by High Performance Liquid Chromatography—Part 1: Measurement of All-Trans-Retinol and 13-cis-Retinol; European Committee for Standardization: Brussels, Belgium, 2000. [Google Scholar]
- Czauderna, M.; Kowalczyk, J.; Marounek, M. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J. Chromatogr. B 2011, 879, 2251–2258. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS/STAT User’s Guide (Release 9.3); SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- Mueller, S.; Kreuzer, M.; Siegrist, K.; Mannale, R.E.; Messikommer, I.; Gangnat, D. Carcass and meat quality of dualpurpose chickens (Lohmann Dual, Belgian Malines, Schweizerhuhn) in comparison to broiler and layer chicken types. Poult. Sci. 2018, 97, 3325–3336. [Google Scholar] [CrossRef]
- Jelínková, P. Fattening of the Layer Males. Master’s Thesis, Mendel University in Brno, Brno, Czech Republic, 2015. [Google Scholar]
- Almasi, A.; Andrassyne, B.G.; Milisits, G.; Kustosne, P.O.; Suto, Z. Effects of different rearing systems on muscle and meat quality traits of slow- and medium-growing male chickens. Br. Poult. Sci. 2015, 56, 320–324. [Google Scholar] [CrossRef]
- Muth, P.C.; Ghaziani, S.; Klaiber, I.; Zárate, A.V. Are carcass and meat quality of male dual-purpose chickens competitive compared to slow-growing broilers reared under a welfare-enhanced organic system? Org. Agric. 2018, 8, 57–68. [Google Scholar] [CrossRef]
- Glamoclija, N.; Starcevic, M.; Janjic, N.; Ivanovic, J.; Boskovic, M.; Djordjevic, J.; Markovic, R.; Baltic, M.Z. The effect of breed line and age on measurements of pH-value as meat quality parameter in breast muscles (m. pectoralis major) of broiler chickens. Procedia Food Sci. 2015, 5, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Berri, C.; Le Bihan-Duval, E.; Baeza, E.; Chartrin, P.; Picgirard, L.; Jehl, N.; Quentin, M.; Picard, M.; Duclos, M.J. Further processing characteristics of breast and leg meat from fast-, medium- and slow-growing commercial chickens. Anim. Res. 2005, 54, 123–134. [Google Scholar] [CrossRef]
- Berri, C.; Wacrenier, N.; Millet, N.; Le Bihan-Duval, E. Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poult. Sci. 2001, 80, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Michalczuk, M.; Łukasiewicz, M.; Zdanowska-Sąsiadek, Ż.; Niemiec, J. Comparison of selected quality attributes of chicken meat as affected by rearing systems. Pol. J. Food Nutr. Sci. 2014, 64, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Debut, M.; Berri, C.; Baéza, E.; Sellier, N.; Arnould, C.; Guémené, D.; Jehl, N.; Boutten, B.; Jego, Y.; Beaumont, C.; et al. Variation of chicken meat quality in relation to genotype and stressing pre-slaughter conditions. Poult. Sci. 2003, 82, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Fanatico, A.C.; Pillai, P.B.; Cavitt, L.C.; Owens, C.M.; Emmert, J.L. Evaluation of slower growing broiler genotypes grown with and without outdoor access: Growth performance and carcass yield. Poult. Sci. 2005, 84, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Touraille, C.; Ricard, F.P.; Kopp, J.; Valin, C.; Leclerq, B. Chicken meat quality. 2 Changes with age of some physical chemical and sensory characteristics of the meat. Arch. Geflugelkd. 1981, 45, 97–104. [Google Scholar]
- Lukasiewicz, M.; Niemiec, J.; Wnuk, A.; Mroczek-Sosnowska, N. Meat quality and the histological structure of breast and leg muscles in Ayam Cemani chickens, Ayam Cemani x Sussex hybrids and slow-growing Hubbard JA 957 chickens. J. Sci. Food Agric. 2015, 95, 1730–1735. [Google Scholar] [CrossRef]
- Remignon, H.; Lefaucheur, L.; Blu, J.C.; Ricard, F.H. Effects of divergent selection for body weight on three skeletal muscles characteristics in the chicken. Br. Poult. Sci. 1994, 35, 65–76. [Google Scholar] [CrossRef]
- Cameron, N.D.; Oksbjerg, N.; Henckel, P.; Nute, G.; Brown, S.; Wood, J.D. Relationships between Muscle Fibre Traits with Meat and Eating Quality in Pigs. In Proceedings of the BSAS Annual Meeting, Scarborough, UK, 23–25 March 1998; p. 123. [Google Scholar]
- Yang, Y.; Wen, J.; Fang, G.Y.; Li, Z.R.; Dong, Z.Y.; Liu, J. The effects of raising system on the lipid metabolism and meat quality traits of slow-growing chickens. J. Appl. Anim. Res. 2015, 43, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Castellini, C.; Dal Bosco, A.; Mugnai, C.; Pedrazzoli, M. Comparison of two chicken genotypes organically reared: Oxidative stability and other qualitative traits of the meat. Ital. J. Anim. Sci. 2006, 5, 29–42. [Google Scholar] [CrossRef]
- Skřivan, M.; Englmaierová, M. The deposition of carotenoids and α-tocopherol in hen eggs produced under a combination of sequential feeding and grazing. Anim. Feed. Sci. Technol. 2014, 190, 79–86. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mugnai, C.; Mattioli, S.; Rosati, A.; Ruggeri, S.; Ranucci, D.; Castellini, C. Transfer of bioactive compounds from pasture to meat in organic free-range chickens. Poult. Sci. 2016, 95, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Cartoni Mancinelli, A.; Mattioli, S.; Dal Bosco, A.; Piottoli, L.; Ranucci, D.; Branciari, R.; Cotozzolo, E.; Castellini, C. Rearing Romagnola geese in vineyard: Pasture and antioxidant intake, performance, carcass and meat quality. Ital. J. Anim. Sci. 2019, 18, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Skřivan, M.; Pickinpauhg, S.H.; Pavlů, V.; Skřivanová, E.; Englmaierová, M. A mobile system for rearing meat chickens on pasture. Czech J. Anim. Sci. 2015, 60, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Castellini, C.; Dal Bosco, A.; Mugnai, C.; Bernardini, M. Performance and behaviour of chickens with different growing rate reared according to organic system. Ital. J. Anim. Sci. 2002, 1, 291–300. [Google Scholar] [CrossRef]
- Mattioli, S.; Dal Bosco, A.; Ruggeri, S.; Martino, M.; Moscati, L.; Pesca, C.; Castellini, C. Adaptive response to exercise of fast-growing and slow-growing chicken strains: Blood oxidative status and non-enzymatic antioxidant defense. Poult. Sci. 2017, 96, 4096–4102. [Google Scholar] [CrossRef] [PubMed]
- Givens, D.I.; Gibbs, R.A.; Rymer, C.; Brown, R.H. Effect of intensive vs. free range production on the fat and fatty acid composition of whole birds and edible portions of retail chickens in the UK. Food Chem. 2011, 127, 1549–1554. [Google Scholar] [CrossRef]
- Funaro, A.; Cardenia, V.; Petracci, M.; Rimini, S.; Rodriguez-Estrada, M.T.; Cavani, C. Comparison of meat quality characteristics and oxidative stability between conventional and free-range chickens. Poult. Sci. 2014, 93, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Lizardo, R.; van Milgen, J.; Mourot, J.; Noblet, J.; Bonneau, M. A nutritional model of fatty acid composition in the growing-finishing pig. Livest. Prod. Sci. 2002, 75, 167–182. [Google Scholar] [CrossRef]
- Zuidhof, M.J.; Betti, M.; Korver, D.R.; Hernandez, F.I.L.; Schneider, B.L.; Carney, V.L.; Renema, R.A. Omega-3-enriched broiler meat: 1. Optimization of a production system. Poult. Sci. 2009, 88, 1108–1120. [Google Scholar] [CrossRef]
- Skiba, G.; Poławska, E.; Sobol, M.; Raj, S.; Weremko, D. Omega-6 and omega-3 fatty acids metabolism pathways in the body of pigs fed diets with different sources of fatty acids. Arch. Anim. Nutr. 2015, 69, 1–16. [Google Scholar] [CrossRef]
- Boschetti, E.; Bordoni, A.; Meluzzi, A.; Castellini, C.; Dal Bosco, A.; Sirri, F. Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity. Animal 2016, 10, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Ponte, P.I.P.; Mendes, I.; Quaresma, M.; Aguiar, M.N.M.; Lemos, J.P.C.; Ferreira, L.M.A.; Soares, M.A.C.; Alfaia, C.M.; Prates, J.A.M.; Fontes, C.M.G.A. Cholesterol levels and sensory characteristics of meat from broilers consuming moderate to high levels of alfalfa. Poult. Sci. 2004, 83, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Kerry, J.P.; Buckley, D.J.; Morrissey, P.A. Improvement of oxidative stability of beef and lamb with vitamin E. In Antioxidants in Muscle Foods; Decker, E.A., Faustman, C., Lopez-Bote, C., Eds.; Wiley-Interscience: New York, NY, USA, 2000; pp. 229–262. [Google Scholar]
- Qureshi, A.A.; Bradlow, B.A.; Salser, W.A.; Brace, L.D. Novel tocotrienols of rice bran modulate cardiovascular disease parameters of hypercholesterolemic humans. Nutr. Biochem. 1997, 8, 290–298. [Google Scholar] [CrossRef]
Ingredient (g/kg) | Starter | Grower | Finisher |
---|---|---|---|
Soybean meal | 360.0 | 248.0 | 215.0 |
Maize | 277.5 | 210.0 | 210.0 |
Wheat | 290.0 | 420.0 | 486.7 |
Wheat bran | - | 50.0 | 39.6 |
Rapeseed oil | 30.0 | 30.0 | 18.0 |
Sodium chloride | 3.0 | 3.0 | 3.0 |
Monocalcium phosphate | 13.0 | 11.0 | 7.5 |
Limestone | 17.0 | 18.5 | 12.5 |
L-Lysine hydrochloride | 1.3 | 2.1 | 1.0 |
DL-Methionine | 2.9 | 2.1 | 1.7 |
L-Threonine | 0.3 | 0.3 | - |
Vitamin-mineral premix 1 | 5.0 | 5.0 | 5.0 |
Analysed Nutrient Content (g/kg) | Starter | Grower | Finisher | Freeze Dried Pasture Herbage |
---|---|---|---|---|
Dry matter (g/kg) | 887 | 890 | 885 | 924 |
Crude protein (g/kg) | 203 | 171 | 161 | 116 |
Fat (g/kg) | 23.59 | 24.50 | 19.60 | 32.46 |
AME (by calculation MJ/kg) | 12.5 | 12.1 | 11.9 | 3.8 |
SFA (mg/100 g) | 843 | 1144 | 853 | 616 |
MUFA (mg/100 g) | 1608 | 1693 | 1566 | 262 |
PUFA (mg/100 g) | 1774 | 1733 | 1736 | 1609 |
n6/n3 | 5.41 | 5.04 | 6.59 | 0.260 |
α-Tocopherol (mg/kg) | 44.9 | 34.8 | 33.0 | 52.6 |
Retinol (mg/kg) | 2.06 | 2.95 | 1.98 | - |
Zeaxanthin (mg/kg) | 0.640 | 0.600 | 0.592 | 157.4 |
Lutein (mg/kg) | 0.976 | 0.910 | 0.809 | 161.7 |
Characteristic | Dominant | SEM | Probability | ||
---|---|---|---|---|---|
Sussex D 104 | Brown D 102 | Tinted D 723 | |||
Body Weight (g) | |||||
Day 0 | 40.1 a | 40.0 a | 38.7 b | 0.20 | 0.008 |
Day 28 | 430 b | 442 a | 402 c | 2.5 | <0.001 |
Day 49 | 951 a | 965 a | 874 b | 4.6 | <0.001 |
Day 70 | 1578 b | 1629 a | 1415 c | 9.0 | <0.001 |
Day 77 | 1796 b | 1842 a | 1614 c | 10.2 | <0.001 |
From 0 to 49th Day | |||||
Feed intake (g/day/bird) | 43.0 | 38.3 | 41.2 | ||
F:G (g/g) | 2.32 | 2.04 | 2.37 | ||
From 50th to 77th Day | |||||
Feed intake (g/day/bird) | 93.8 | 98.5 | 87.5 | ||
F:G (g/g) | 3.81 | 3.95 | 3.99 | ||
From 0 to 77th Day | |||||
Feed intake (g/day/bird) | 59.8 | 58.1 | 56.8 | ||
F:G (g/g) | 2.91 | 2.79 | 3.01 | ||
Average Pasture Herbage Intake (g DM/Day/Bird) | |||||
From 50th to 63rd day | 4.65 | 6.40 | 5.69 | ||
From 64th to 77th day | 5.95 | 7.41 | 7.52 |
Characteristic | Dominant | SEM | Probability | ||
---|---|---|---|---|---|
Sussex D 104 | Brown D 102 | Tinted D 723 | |||
pH24 | 5.62 b | 5.66 b | 5.78 a | 0.019 | 0.001 |
Cooking loss (%) | 22.1 | 20.2 | 21.5 | 0.51 | NS |
Warner-Bratzler shear force (N) | |||||
Fresh meat | 18.14 | 16.75 | 17.74 | 0.558 | NS |
Boiled meat | 39.44 a | 37.92 a,b | 33.46 b | 1.036 | 0.049 |
Muscle fibre (type IIB) characteristics | |||||
Number of fibres (per 1 mm2) | 557 | 512 | 521 | 17.9 | NS |
Cross-sectional area (μm2) | 1312 b | 1410 a | 1430 a | 12.8 | <0.001 |
Diameter (μm) | 39.0 b | 40.6 a | 40.9 a | 0.22 | <0.001 |
Sensory analysis 1 | |||||
Odour | 5.74 | 5.64 | 5.61 | 0.110 | NS |
Tenderness | 5.69 a,b | 5.35 b | 6.16 a | 0.121 | 0.022 |
Juiciness | 5.53 | 5.40 | 5.85 | 0.104 | NS |
Flavour | 5.80 | 5.61 | 5.94 | 0.109 | NS |
Total acceptability | 5.89 | 5.50 | 6.05 | 0.110 | NS |
Characteristic | Dominant | SEM | Probability | ||
---|---|---|---|---|---|
Sussex D 104 | Brown D 102 | Tinted D 723 | |||
Lutein (mg/kg) | 0.158 | 0.139 | 0.203 | 0.0123 | NS |
Zeaxanthin (mg/kg) | 0.139 | 0.130 | 0.193 | 0.0120 | NS |
Retinol (mg/kg) | 0.040 | 0.041 | 0.044 | 0.0016 | NS |
α-Tocopherol (mg/kg) | 3.44 b | 4.52 a | 4.64 a | 0.148 | <0.001 |
MDA (day 0, mg/kg) | 0.313 a | 0.282 b | 0.273 b | 0.0061 | 0.012 |
MDA (day 5, mg/kg) | 0.366 | 0.372 | 0.356 | 0.0093 | NS |
Characteristic | Dominant | SEM | Probability | |||
---|---|---|---|---|---|---|
Sussex D 104 | Brown D 102 | Tinted D 723 | ||||
Fatty Acid (mg/100 g) | ||||||
Myristic | C 14:0 | 11.37 a | 4.20 b | 3.18 c | 0.780 | <0.001 |
Palmitic | C 16:0 | 196 a | 143 b | 121 b | 8.3 | <0.001 |
Margaric | C 17:0 | 2.27 a | 1.26 b | 1.17 b | 0.122 | <0.001 |
Stearic | C 18:0 | 102.8 a | 54.0 b | 55.0 b | 5.50 | <0.001 |
Arachidic | C 20:0 | 1.22 a | 0.79 b | 0.65 b | 0.065 | <0.001 |
Palmitoleic | C 16:1 | 15.8 b | 20.8 a | 10.0 c | 1.16 | <0.001 |
Oleic | C 18:1 | 268 a | 207 b | 161 c | 12.0 | <0.001 |
Eicosenoic | C 20:1 | 1.78 | 2.11 | 1.54 | 0.132 | NS |
Erucic | C 22:1 | 0.083 a | 0.055 b | 0.044 b | 0.0045 | <0.001 |
Linoleic | C 18:2 | 91.2 a | 81.4 a,b | 66.6 b | 3.74 | 0.018 |
α-Linolenic | C 18:3 | 2.77 b | 3.10 a | 2.95 b | 0.094 | 0.013 |
γ-Linolenic | C 18:3 | 7.19 | 8.67 | 6.49 | 0.324 | NS |
Eicosadienic | C 20:2 | 2.69 a | 2.00 b | 1.65 c | 0.105 | <0.001 |
Arachidonic | C 20:4 | 47.5 a | 28.5 b | 23.4 c | 2.28 | <0.001 |
Eicosapentaenoic | C 20:5 | 2.42 a | 1.55 b | 1.23 b | 0.135 | <0.001 |
Clupanodonic | C 22:5 | 11.06 a | 6.73 b | 6.30 b | 0.548 | <0.001 |
Docosahexaenoic | C 22:6 | 13.10 a | 6.70 b | 5.27 b | 0.766 | <0.001 |
Sums and Ratios of Fatty Acids | ||||||
SFA | 319 a | 206 b | 184 b | 14.6 | <0.001 | |
MUFA | 304 a | 246 b | 185 c | 13.6 | <0.001 | |
PUFA | 183 a | 143 b | 117 c | 7.4 | <0.001 | |
n3 | 34.4 a | 24.1 b | 19.7 b | 1.56 | <0.001 | |
n6 | 148 a | 118 b | 97 c | 5.8 | <0.001 | |
n6/n3 | 4.31 b | 4.91 a | 4.95 a | 0.077 | <0.001 | |
h/H | 2.13 b | 2.32 a | 2.15 b | 0.029 | 0.008 | |
AI | 0.500 a | 0.412 c | 0.449 b | 0.0087 | <0.001 | |
TI | 0.941 a | 0.789 b | 0.910 a | 0.0171 | <0.001 | |
Fat (g/kg DM) | 8.50 | 9.50 | 9.69 | 0.386 | NS | |
Cholesterol (mg/kg) | 441 a | 396 b | 306 c | 13.0 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Englmaierová, M.; Skřivan, M.; Taubner, T.; Skřivanová, V. Performance and Meat Quality of Dual-Purpose Cockerels of Dominant Genotype Reared on Pasture. Animals 2020, 10, 387. https://doi.org/10.3390/ani10030387
Englmaierová M, Skřivan M, Taubner T, Skřivanová V. Performance and Meat Quality of Dual-Purpose Cockerels of Dominant Genotype Reared on Pasture. Animals. 2020; 10(3):387. https://doi.org/10.3390/ani10030387
Chicago/Turabian StyleEnglmaierová, Michaela, Miloš Skřivan, Tomáš Taubner, and Věra Skřivanová. 2020. "Performance and Meat Quality of Dual-Purpose Cockerels of Dominant Genotype Reared on Pasture" Animals 10, no. 3: 387. https://doi.org/10.3390/ani10030387
APA StyleEnglmaierová, M., Skřivan, M., Taubner, T., & Skřivanová, V. (2020). Performance and Meat Quality of Dual-Purpose Cockerels of Dominant Genotype Reared on Pasture. Animals, 10(3), 387. https://doi.org/10.3390/ani10030387