Lamb Fattening Under Intensive Pasture-Based Systems: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Advantages of Pastures on Meat Characteristics
3. Nutrient Intake, Digestion and Rumen Environment of Sheep Consuming Temperate Pastures
4. Performance of Lambs on Pasture-Based Systems
5. The Addition of Other Feedstuffs to Temperate Forage-Based Diets
5.1. Digestion of Temperate Forages Plus Other Feedstuffs
5.2. Performance of Lambs Fed Fresh Forage Plus Other Feedstuffs
6. Combining Pastures with TMR Diets for Finishing Lambs
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef]
- Cabrera, M.C.; Saadoun, A. An overview of the nutritional value of beef and lamb meat from South America. Meat Sci. 2014, 98, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Hersleth, H.; Næs, T.; Rødbotten, M.; Lind, V.; Monteleone, E. Lamb meat—Importance of origin and grazing system for italian and norwegian consumers. Meat Sci. 2012, 90, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Baumont, R.; Lewis, E.; Delaby, L.; Prache, S.; Horan, B. Sustainable intensification of grass-based ruminant production. In Proceedings of the 25th General Meeting of the European Grassland Federation, Aberystwyth, Wales, 7–11 September 2014; Volume 19, pp. 521–532. [Google Scholar]
- Martin-Collado, D.; Boettcher, P.; Bernués, A. Opinion paper: Livestock agroecosystems provide ecosystem services but not their components-the case of species and breeds. Animal 2019, 13, 2111–2113. [Google Scholar] [CrossRef] [Green Version]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [Google Scholar] [CrossRef]
- Capstaff, N.M.; Miller, A.J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 2018, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2019, 75, 1–17. [Google Scholar] [CrossRef]
- van Gastelen, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Navarro, S.A.; Lopez, R.; Sankey, C.; Capitan, B.M.; Holland, B.P.; Balstad, L.A.; Krehbiel, C.R. Comparative digestibility by cattle versus sheep: Effect of forage quality. J. Anim. Sci. 2014, 92, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Aguerre, M.; Cajarville, C.; Kozloski, G.V.; Repetto, J.L. Intake and digestive responses by ruminants fed fresh temperate pasture supplemented with increased levels of sorghum grain: A comparison between cattle and sheep. Anim. Feed Sci. Technol. 2013, 186, 12–19. [Google Scholar] [CrossRef]
- Carrasco, S.; Ripoll, G.; Sanz, A.; Álvarez-Rodríguez, J.; Panea, B.; Revilla, R.; Joy, M. Effect of feeding system on growth and carcass characteristics of Churra Tensina light lambs. Livest. Sci. 2009, 121, 56–63. [Google Scholar] [CrossRef]
- Murphy, T.A.; Loerch, S.C.; Smith, F.E. Effects of feeding high-concentrate diets at restricted intakes on digestibility and nitrogen metabolism in growing lambs. J. Anim. Sci. 1994, 72, 1583–1590. [Google Scholar] [CrossRef] [Green Version]
- Kolver, E.S. Nutritional limitations to increased production on pasture-based systems. Proc. Nutr. Soc. 2003, 62, 291–300. [Google Scholar] [CrossRef] [Green Version]
- De Brito, G.F.; Ponnampalam, E.N.; Hopkins, D.L. The Effect of Extensive Feeding Systems on Growth Rate, Carcass Traits, and Meat Quality of Finishing Lambs. Compr. Rev. Food Sci. Food Saf. 2017, 16, 23–38. [Google Scholar] [CrossRef]
- Howes, N.L.; Bekhit, A.E.D.A.; Burritt, D.J.; Campbell, A.W. Opportunities and Implications of Pasture-Based Lamb Fattening to Enhance the Long-Chain Fatty Acid Composition in Meat. Compr. Rev. Food Sci. Food Saf. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Jacques, J.; Chouinard, P.Y.; Gariépy, C.; Cinq-Mars, D. Meat quality, organoleptic characteristics, and fatty acid composition of Dorset lambs fed different forage to concentrate ratios or fresh grass. Can. J. Anim. Sci. 2017, 97, 290–301. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance-A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Fisher, A.V.; Enser, M.; Richardson, R.I.; Wood, J.D.; Nute, G.R.; Kurt, E.; Sinclair, L.A.; Wilkinson, R.G. Fatty acid composition and eating quality of lamb types derived from four diverse breed × production systems. Meat Sci. 2000, 55, 141–147. [Google Scholar] [CrossRef]
- Archimède, H.; Pellonde, P.; Despois, P.; Etienne, T.; Alexandre, G. Growth performances and carcass traits of Ovin Martinik lambs fed various ratios of tropical forage to concentrate under intensive conditions. Small Rumin. Res. 2008, 75, 162–170. [Google Scholar] [CrossRef]
- Resconi, V.C.; Campo, M.M.; i. Furnols, M.F.; Montossi, F.; Sañudo, C. Sensory evaluation of castrated lambs finished on different proportions of pasture and concentrate feeding systems. Meat Sci. 2009, 83, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Mendes, I.A.; Bessa, R.J.B. The effect of genotype, feeding system and slaughter weight on the quality of light lambs. 1. Growth, carcass composition and meat quality. Livest. Prod. Sci. 2002, 76, 17–25. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Belanche, A.; Kingston-Smith, A.H.; Griffith, G.W.; Newbold, C.J. A multi-kingdom study reveals the plasticity of the rumen microbiota in response to a shift from non-grazing to grazing diets in sheep. Front. Microbiol. 2019, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, P.; Stanton, C.; Lawless, F.; O’Riordan, E.G.; Monahan, F.J.; Caffrey, P.J.; Moloney, A.P. Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grazed grass, grass silage, or concentrate-based diets. J. Anim. Sci. 2000, 78, 2849–2855. [Google Scholar] [CrossRef]
- Schmid, A.; Collomb, M.; Sieber, R.; Bee, G. Conjugated linoleic acid in meat and meat products: A review. Meat Sci. 2006, 73, 29–41. [Google Scholar] [CrossRef]
- Fraser, M.D.; Speijers, M.H.M.; Theobald, V.J.; Fychan, R.; Jones, R. Production performance and meat quality of grazing lambs finished on red clover, lucerne or perennial ryegrass swards. Grass Forage Sci. 2004, 59, 345–356. [Google Scholar] [CrossRef]
- De Brito, G.F.; Holman, B.W.B.; McGrath, S.R.; Friend, M.A.; van de Ven, R.; Hopkins, D.L. The effect of forage-types on the fatty acid profile, lipid and protein oxidation, and retail colour stability of muscles from White Dorper lambs. Meat Sci. 2017, 130, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Popova, T. Effect of the rearing system on the fatty acid composition and oxidative stability of the M. longissimus lumborum and M. semimembranosus in lambs. Small Rumin. Res. 2007, 71, 150–157. [Google Scholar] [CrossRef]
- Popova, T.; Gonzales-Barron, U.; Cadavez, V. A meta-analysis of the effect of pasture access on the lipid content and fatty acid composition of lamb meat. Food Res. Int. 2015, 77, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.L.; Waghorn, G.C.; Brookes, I.M.; Kolver, E.S.; Attwood, G.T. An evaluation of sulla (Hedysarum coronarium) with pasture, white clover and lucerne for lambs. In Proceedings of the New Zealand Society of Animal Production, Palmerston North, New Zealand, 24–26 June 2002; Volume 62, pp. 152–156. [Google Scholar]
- Speijers, M.H.M.; Fraser, M.D.; Theobald, V.J.; Haresign, W. The effects of grazing forage legumes on the performance of finishing lambs. J. Agric. Sci. 2004, 142, 483–493. [Google Scholar] [CrossRef]
- Niderkorn, V.; Martin, C.; Le Morvan, A.; Rochette, Y.; Awad, M.; Baumont, R. Associative effects between fresh perennial ryegrass and white clover on dynamics of intake and digestion in sheep. Grass Forage Sci. 2017, 72, 691–699. [Google Scholar] [CrossRef]
- Amaral, G.A.; Kozloski, G.V.; Santos, A.B.; Castagnino, D.S. Metabolizable protein and energy supply in lambs fed annual ryegrass (Lolium multiflorum Lam.) supplemented with sources of protein and energy. J. Agric. Sci. 2011, 149, 519–527. [Google Scholar] [CrossRef]
- Pérez-Ruchel, A.; Repetto, J.L.; Cajarville, C. Supplementing high-quality fresh forage to growing lambs fed a total mixed ration diet led to higher intake without altering nutrient utilization. Animal 2017, 11, 2175–2183. [Google Scholar] [CrossRef]
- Fernandez-Turren, G.; Arroyo, J.M.; Fontes, A.; Grignola, S.; Pérez-Ruchel, A.; Repetto, J.L.; Cajarville, C. Dry matter intake and ruminal environment of lambs fed a total mixed ration (amylaceous or fibrous) supplemented with fresh forage. In Proceedings of the 10th International Symposium on the Nutrition of Herbivores, Clermont-Ferrand, France, 2–6 September 2018; Volume 621. [Google Scholar]
- Pérez-Ruchel, A.; Repetto, J.L.; Cajarville, C. Suitability of live yeast addition to alleviate the adverse effects due to the restriction of the time of access to feed in sheep fed only pasture. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1043–1050. [Google Scholar] [CrossRef]
- Jonker, A.; Cheng, L.; Molano, G.; Sandoval, E. Nitrogen partitioning in sheep offered three perennial ryegrass cultivars at two allowances in spring and autumn. In Proceedings of the New Zealand Society of Animal Production, Dunedin, New Zealand, 28 June 2015; Volume 75, pp. 74–78. [Google Scholar]
- Catanese, F.; Distel, R.A.; Arzadún, M. Preferences of lambs offered Italian ryegrass (Lolium multiflorum L.) and barley (Hordeum vulgare L.) herbage as choices. Grass Forage Sci. 2009, 64, 304–309. [Google Scholar] [CrossRef]
- Marley, C.L.; Fraser, M.D.; Fychan, R.; Theobald, V.J.; Jones, R. Effect of forage legumes and anthelmintic treatment on the performance, nutritional status and nematode parasites of grazing lambs. Vet. Parasitol. 2005, 131, 267–282. [Google Scholar] [CrossRef]
- Tebot, I.; Cajarville, C.; Repetto, J.L.; Cirio, A. Supplementation with non-fibrous carbohydrates reduced fiber digestibility and did not improve microbial protein synthesis in sheep fed fresh forage of two nutritive values. Animal 2012, 6, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Cajarville, C.; Pérez, A.; Aguerre, M.; Britos, A.; Repetto, J.L. Effect of the timing of cut on ruminal environment of lambs consuming temperate pastures. In Proceedings of the Joint Annual Meeting Abstracts, American Society of Animal Science and American Dairy Science Association, Minneapolis, MN, USA, 9–13 July 2006; Volume 84, p. 103. [Google Scholar]
- Niderkorn, V.; Martin, C.; Bernard, M.; Le Morvan, A.; Rochette, Y.; Baumont, R. Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. Animal 2019, 13, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Z.; Hoskin, S.O.; Zhang, G.G.; Molano, G.; Muetzel, S.; Pinares-Patiño, C.S.; Clark, H.; Pacheco, D. Sheep fed forage chicory (Cichorium intybus) or perennial ryegrass (Lolium perenne) have similar methane emissions. Anim. Feed Sci. Technol. 2012, 172, 217–225. [Google Scholar] [CrossRef]
- Sun, X.; Henderson, G.; Cox, F.; Molano, G.; Harrison, S.J.; Luo, D.; Janssen, P.H. Lambs fed fresh winter forage rape (Brassica napus L.) emit less methane than those fed perennial ryegrass (Lolium perenne L.), and possible mechanisms behind the difference. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pérez Ruchel, A. pH, amoniaco, ácidos grasos volátiles y producción de proteína microbiana en el rumen de corderos, según el horario de corte de la pastura consumida. Bachelor’s Thesis, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay, 2006. [Google Scholar]
- Elizalde, J.C.; Santini, F.J.; Pasinato, A.M. The effect of stage of harvest on the process of digestion in cattle fed winter oats indoors. II. Nitrogen digestion and microbial protein synthesis. Anim. Feed Sci. Technol. 1996, 63, 245–255. [Google Scholar] [CrossRef]
- Kokko, C.; Soder, K.J.; Brito, A.F.; Hover, R.C.; Berthiaume, R. Effect of time of cutting and maceration on nutrient flow, microbial protein synthesis, and digestibility in dual-flow continuous culture. J. Anim. Sci. 2013, 91, 1765–1774. [Google Scholar] [CrossRef]
- Cohen, D.C. Degradability of crude protein from clover herbages used in irrigated dairy production systems in northern Victoria. Aust. J. Agric. Res. 2001, 52, 415–425. [Google Scholar] [CrossRef]
- Repetto, J.L.; Cajarville, C.; D’Alessandro, J.; Curbelo, A.; Soto, C.; Garín, D. Effect of wilting and ensiling on ruminal degradability of temperate grass and legume mixtures. Anim. Res. 2005, 54, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ruchel, A.; Repetto, J.L.; Cajarville, C. Feeding behavior and ruminal environment of lambs fed only pasture indoors or grazing. Veterinaria (Montev.) 2017, 54, 32–38. [Google Scholar]
- Berthiaume, R.; Benchaar, C.; Chaves, A.V.; Tremblay, G.F.; Castonguay, Y.; Bertrand, A.; Belanger, G.; Milchaud, R.; Lafreniere, C.; McAllister, T.A.; et al. Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture. J. Dairy Sci. 2010, 93, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Niderkorn, V.; Baumont, R.; le Morvan, A.; Macheboeuf, D. Occurrence of associative effects between grasses and legumes in binary mixtures on in vitro rumen fermentation characteristics. J. Anim. Sci. 2011, 89, 1138–1145. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef] [PubMed]
- Rutter, S.M. Diet preference for grass and legumes in free-ranging domestic sheep and cattle: Current theory and future application. Appl. Anim. Behav. Sci. 2006, 97, 17–35. [Google Scholar] [CrossRef]
- Hill, J.; Chapman, D.F.; Cosgrove, G.P.; Parsons, A.J. Do ruminants alter their preference for pasture species in response to the synchronization of delivery and release of nutrients? Rangel. Ecol. Manag. 2009, 62, 418–427. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Min, B.R.; Pinchak, W.E.; Fulford, J.D.; Puchala, R. Wheat pasture bloat dynamics, in vitro ruminal gas production, and potential bloat mitigation with condensed tannins. J. Anim. Sci. 2005, 83, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Orr, R.; Griffith, B.; Rivero, M.; Lee, M. Livestock Performance for Sheep and Cattle Grazing Lowland Permanent Pasture: Benchmarking Potential of Forage-Based Systems. Agronomy 2019, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Karnezos, T.P.; Matches, A.G.; Preston, R.L.; Brown, C.P. Corn supplementation of lambs grazing alfalfa. J. Anim. Sci. 1994, 72, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Marley, C.L.; Fraser, M.D.; Fisher, W.J.; Forbes, A.B.; Jones, R.; Moorby, J.M.; MacRae, J.C.; Theodorou, M.K. Effects of continuous or rotational grazing of two perennial ryegrass varieties on the chemical composition of the herbage and the performance of finishing lambs. Grass Forage Sci. 2007, 62, 255–264. [Google Scholar] [CrossRef]
- Cosgrove, G.P.; Taylor, P.S.; Jonker, A. Sheep performance on perennial ryegrass differing in concentration of water soluble carbohydrate. J. NZ Grassl. 2015, 77, 123–130. [Google Scholar]
- Proctor, L.E.; Craig, H.J.B.; McLean, N.J.; Fennessy, P.F.; Kerslake, J.I.; Behrent, M.J.; Chuah, J.C.L.; Campbell, A.W. The effect of grazing high-sugar ryegrass on lamb performance. In Proceedings of the New Zealand Society of Animal Production, Dunedin, New Zealand, 28 June 2015; Volume 75, pp. 235–238. [Google Scholar]
- Fraser, T.; Rowarth, J. Legumes, herbs or grass for lamb performance? In Proceedings of the New Zealand Grassland Association, Oamaru, New Zealand, 21–24 October 1996; Volume 58, pp. 49–52. [Google Scholar]
- Grace, C.; Lynch, M.B.; Sheridan, H.; Lott, S.; Fritch, R.; Boland, T.M. Grazing multispecies swards improves ewe and lamb performance. Animal 2019, 13, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Devincenzi, T.; Prunier, A.; Meteau, K.; Prache, S. How does barley supplementation in lambs grazing alfalfa affect meat sensory quality and authentication? Animal 2019, 13, 427–434. [Google Scholar] [CrossRef]
- Jacques, J.; Berthiaume, R.; Cinq-Mars, D. Growth performance and carcass characteristics of Dorset lambs fed different concentrates: Forage ratios or fresh grass. Small Rumin. Res. 2011, 95, 113–119. [Google Scholar] [CrossRef]
- McClure, K.E.; Van Keuren, R.W.; Althouse, P.G. Performance and carcass characteristics of weaned lambs either grazed on orchardgrass, ryegrass, or alfalfa or fed all-concentrate diets in drylot. J. Anim. Sci. 1994, 72, 3230–3237. [Google Scholar] [CrossRef] [PubMed]
- Urioste, M.J.; Arroyo, J.M.; Pérez-Ruchel, A.; Fariña, V.; Fernandez, G.; Fontes, A.; Martinez, V.; Grignola, S.; Repetto, J.L.; Cajarville, C. Dieta totalmente mezcladas vs. dietas mixtas difiriendo en la fuente de energía: Desempeño en engorde intensivo de corderos. Rev. Argent. Prod. Anim. 2017, 37, 140. [Google Scholar]
- Wang, Y.; Douglas, G.B.; Waghorn, G.C.; Barry, T.N.; Foote, A.G.; Purchas, R.W. Effect of condensed tannins upon the performance of lambs grazing Lotus corniculatus and lucerne (Medicago sativa). J. Agric. Sci. 1996, 126, 87–98. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Jones, E.L.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; Scollan, N.D. Production responses from lambs grazed on Lolium perenne selected for an elevated water-soluble carbohydrate concentration. Anim. Res. 2001, 50, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.Z.; Abdullah, M.; Ahmad, N.; Sattar, S. Effect of feeding frequency on dry matter intake weight gain feed conversion efficiency and its relation with body measurements in lohi lambs. Pak. J. Agric. Sci. 2017, 54, 689–692. [Google Scholar]
- Golding, K.P.; Wilson, E.D.; Kemp, P.D.; Pain, S.J.; Kenyon, P.R.; Morris, S.T.; Hutton, P.G. Mixed herb and legume pasture improves the growth of lambs post-weaning. Anim. Prod. Sci. 2011, 51, 717–723. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef]
- Rhind, S.M.; Archer, Z.A.; Adam, C.L. Seasonality of food intake in ruminants: Recent developments in understanding. Nutr. Res. Rev. 2002, 15, 43–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, W.M.; Hodgson, J.; Arnold, G.C. The influence of sward canopy structure on foraging decisions by grazing cattle. I. Patch selection. Grass Forage Sci. 2003, 58, 112–124. [Google Scholar] [CrossRef]
- Hodgson, J. The control of herbage intake in the grazing ruminant. Proc. Nutr. Soc. 1985, 44, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Manteca, X.; Smith, A.J. Effects of poor forage conditions on the behaviour of grazing ruminants. Trop. Anim. Health Prod. 1994, 26, 129–138. [Google Scholar] [CrossRef]
- Burnett, V.F.; Seymour, G.R.; Norng, S.; Jacobs, J.L.; Ponnampalam, E.N. Lamb growth performance and carcass weight from rotationally grazed perennial pasture systems compared with annual pasture systems with supplements. Anim. Prod. Sci. 2012, 52, 248–254. [Google Scholar] [CrossRef]
- Forbes, J.M. A personal view of how ruminant animals control their intake and choice of food: Minimal total discomfort. Nutr. Res. Rev. 2007, 20, 132–146. [Google Scholar] [CrossRef] [Green Version]
- Arthington, J.D.; Brown, W.F. Estimation of feeding value of four tropical forage species at two stages of maturity. J. Anim. Sci. 2005, 83, 1726–1731. [Google Scholar] [CrossRef]
- Jung, H.G.; Allen, M.S. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 1995, 73, 2774–2790. [Google Scholar] [CrossRef]
- Marley, C.L.; Fychan, R.; Fraser, M.D.; Sanderson, R.; Jones, R. Effects of feeding different ensiled forages on the productivity and nutrient-use efficiency of finishing lambs. Grass Forage Sci. 2007, 62, 1–12. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Delaby, L.; Moloney, A.; Boland, T.; Lewis, E. Nutritive value of forage legumes used for grazing and silage. Irish J. Agric. Food Res. 2009, 48, 167–187. Available online: https://www.jstor.org/stable/20720367 (accessed on 8 October 2019).
- Papadopoulos, Y.A.; Charmley, E.; McRae, K.B.; Farid, A.; Price, M.A. Addition of white clover to orchardgrass pasture improves the performance of grazing lambs, but not herbage production. Can. J. Anim. Sci. 2001, 81, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Graves, M.E.; McLean, N.; Jones, G.; Martin, R.C. Pasture and sheep performance response to sod-seeding red clover (Trifolium pratense L.) or white clover (Trifolium repens L.) into naturalized pastures in eastern Canada. Anim. Feed Sci. Technol. 2012, 177, 7–14. [Google Scholar] [CrossRef]
- Marley, C.L.; Cook, R.; Keatinge, R.; Barrett, J.; Lampkin, N.H. The effect of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) on parasite intensities and performance of lambs naturally infected with helminth parasites. Vet. Parasitol. 2003, 112, 147–155. [Google Scholar] [CrossRef]
- Feng, C.; Ding, S.; Zhang, T.; Li, Z.; Wang, D.; Wang, L.; Liu, C.; Sun, J.; Peng, F. High plant diversity stimulates foraging motivation in grazing herbivores. Basic Appl. Ecol. 2016, 17, 43–51. [Google Scholar] [CrossRef]
- Cabrera Estrada, J.I.; Delagarde, R.; Faverdin, P.; Peyraud, J.L. Dry matter intake and eating rate of grass by dairy cows is restricted by internal, but not external water. Anim. Feed Sci. Technol. 2004, 114, 59–74. [Google Scholar] [CrossRef]
- Pasha, T.N.; Prigge, E.C.; Russell, R.W.; Bryan, W.B. Influence of moisture content of forage diets on intake and digestion by sheep. J. Anim. Sci. 1994, 72, 2455–2463. [Google Scholar] [CrossRef] [Green Version]
- Kenney, P.A.; Black, J.L.; Colebrook, W.F. Factors affecting diet selection by sheep. 3. Dry matter content and particle length of forage. Aust. J. Agric. Res. 1984, 35, 831–838. [Google Scholar] [CrossRef]
- Félix, A.; Repetto, J.L.; Hernández, N.; Pérez-Ruchel, A.; Cajarville, C. Restricting the time of access to fresh forage reduces intake and energy balance but does not affect the digestive utilization of nutrients in beef heifers. Anim. Feed Sci. Technol. 2017, 226, 103–112. [Google Scholar] [CrossRef]
- Iason, G.R.; Mantecon, A.R.; Sim, D.A.; Gonzalez, J.; Foreman, E.; Bermudez, F.F.; Elston, D.A. Can grazing sheep compensate for a daily foraging time constraint? J. Anim. Ecol. 1999, 68, 87–93. [Google Scholar] [CrossRef]
- Luciano, G.; Biondi, L.; Pagano, R.I.; Scerra, M.; Vasta, V.; López-Andrés, P.; Valenti, B.; Lanza, M.; Priolo, A.; Avondo, M. The restriction of grazing duration does not compromise lamb meat colour and oxidative stability. Meat Sci. 2012, 92, 30–35. [Google Scholar] [CrossRef]
- Allden, W.G.; McDWhittaker, I.A. The determinants of herbage intake by grazing sheep: The interrelationship of factors influencing herbage intake and availability. Aust. J. Agric. Res. 1970, 21, 755–766. [Google Scholar] [CrossRef]
- Pain, S.J.; Corkran, J.R.; Kenyon, P.R.; Morris, S.T.; Kemp, P.D. The influence of season on lambs’ feeding preference for plantain, chicory and red clover. Anim. Prod. Sci. 2015, 55, 1241–1249. [Google Scholar] [CrossRef]
- Brito, A.F.; Tremblay, G.F.; Bertrand, A.; Castonguay, Y.; Belanger, G.; Milchaud, R.; Lapierre, H.; Benchaar, C.; Petit, H.V.; Ouellet, D.R.; et al. Alfalfa cut at sundown and harvested as baleage improves milk yield of late-lactation dairy cows. J. Dairy Sci. 2008, 91, 3968–3982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, S.; Tremblay, G.F.; Belanger, G.; Bertrand, A.; Castonguay, Y.; Pageau, D.; Drapeau, R. Forage nonstructural carbohydrates and nutritive value as affected by time of cutting and species. Agron. J. 2010, 102, 1388–1398. [Google Scholar] [CrossRef]
- Morin, C.; Belanger, G.; Tremblay, G.F.; Bertrand, A.; Castonguay, Y.; Drapeau, R.; Milchaud, R.; Berthiaume, R.; Allard, G. Short Communication: Diurnal variations of nonstructural carbohydrates and nutritive value in timothy. Can. J. Plant Sci. 2012, 92, 883–887. [Google Scholar] [CrossRef]
- Cajarville, C.; Britos, A.; Errandonea, N.; Gutiérrez, L.; Cozzolino, D.; Repetto, J.L. Diurnal changes in water-soluble carbohydrate concentration in lucerne and tall fescue in autumn and the effects on in vitro fermentation. N. Zeal. J. Agric. Res. 2015, 58, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Ciavarella, T.A.; Dove, H.; Leury, B.J.; Simpson, R.J. Diet selection by sheep grazing Phalaris aquatica L. pastures of differing water-soluble carbohydrate content. Aust. J. Agric. Res. 2000, 51, 757–764. [Google Scholar] [CrossRef]
- Edwards, G.R.; Parsons, A.J.; Bryant, R.H. Manipulating dietary preference to improve animal performance. Aust. J. Exp. Agric. 2008, 48, 773–779. [Google Scholar] [CrossRef]
- Hall, M.B.; Huntington, G.B. Nutrient synchrony: Sound in theory, elusive in practice. J. Anim. Sci. 2008, 86, 287–292. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Merry, R.J.; Davies, D.R.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; MacRae, J.C.; Scollan, N.D. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Anim. Feed Sci. Technol. 2003, 104, 59–70. [Google Scholar] [CrossRef]
- Qiao, G.H.; Xiao, Z.G.; Li, Y.; Li, G.J.; Zhao, L.C.; Xie, T.M.; Wang, D.W. Effect of diet synchrony on rumen fermentation, production performance, immunity status and endocrine in Chinese Holstein cows. Anim. Prod. Sci. 2018, 59, 664–672. [Google Scholar] [CrossRef]
- Valkeners, D.; Théwis, A.; Piron, F.; Beckers, Y. Effect of imbalance between energy and nitrogen supplies on microbial protein synthesis and nitrogen metabolism in growing double-muscled Belgian Blue bulls. J. Anim. Sci. 2004, 82, 1818–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, L.A.; Garnsworthy, P.C.; Newbold, J.R.; Buttery, P.J. Effects of synchronizing the rate of dietary energy and nitrogen release in diets with a similar carbohydrate composition on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 1995, 124, 463–472. [Google Scholar] [CrossRef]
- Witt, M.W.; Sinclair, L.A.; Wilkinson, R.G.; Buttery, P.J. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the production and metabolism of sheep: Food characterization and growth and metabolism of ewe lambs given food ad libitum. Anim. Sci. 1999, 69, 223–235. [Google Scholar] [CrossRef]
- Richardson, J.M.; Wilkinson, R.G.; Sinclair, L.A. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. J. Anim. Sci. 2003, 81, 1332–1347. [Google Scholar] [CrossRef]
- Henning, P.H.; Steyn, D.G.; Meissner, H.H. Effect of synchronization of energy and nitrogen supply on ruminal characteristics and microbial growth. J. Anim. Sci. 1993, 71, 2516–2528. [Google Scholar] [CrossRef] [Green Version]
- Trevaskis, L.M.; Fulkerson, W.J.; Gooden, J.M. Provision of certain carbohydrate-based supplements to pasture-fed sheep, as well as time of harvesting of the pasture, influences pH, ammonia concentration and microbial protein synthesis in the rumen. Aust. J. Exp. Agric. 2001, 41, 21–27. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef] [Green Version]
- Santana, A.; Cajarville, C.; Mendoza, A.; Repetto, J.L. Combination of legume-based herbage and total mixed ration (TMR) maintains intake and nutrient utilization of TMR and improves nitrogen utilization of herbage in heifers. Animal 2017, 11, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Felix, T.L.; Zerby, H.N.; Moeller, S.J.; Loerch, S.C. Effects of increasing dried distillers grains with solubles on performance, carcass characteristics, and digestibility of feedlot lambs. J. Anim. Sci. 2012, 90, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Jaborek, J.R.; Zerby, H.N.; Moeller, S.J.; Wick, M.P.; Fluharty, F.L.; Garza, H.; Garcia, L.G.; England, E.M. Effect of energy source and level, and animal age and sex on meat characteristics of sheep. Small Rumin. Res. 2018, 166, 53–60. [Google Scholar] [CrossRef]
- Bargo, F.; Muller, L.D.; Delahoy, J.E.; Cassidy, T.W. Performance of high producing dairy cows with three different feeding systems combining pasture and total mixed rations. J. Dairy Sci. 2002, 85, 2948–2963. [Google Scholar] [CrossRef]
- Mendoza, A.; Cajarville, C.; Repetto, J.L. Digestive response of dairy cows fed diets combining fresh forage with a total mixed ration. J. Dairy Sci. 2016, 99, 8779–8789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastorini, M.; Pomiés, N.; Repetto, J.L.; Mendoza, A.; Cajarville, C. Productive performance and digestive response of dairy cows fed different diets combining a total mixed ration and fresh forage. J. Dairy Sci. 2019, 102, 4118–4130. [Google Scholar] [CrossRef] [PubMed]
- Britos, A.; Dearmas, B.; Repetto, J.L.; Cajarville, C. PSX-2 In vitro evaluation of the inclusion of a fibrous concentrate to partial Total Mixed Ration for lambs. J. Anim. Sci. 2018, 96, 414–415. [Google Scholar] [CrossRef]
Diet | FF 10 | C 11 | Chemical Composition of Fresh Forage | Nutrient Intake | DMI m 17 | DMd | Rumen Environment | MNS | ENMS 21 | Ref | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DM 12 | N 13 | NDF 14 | ADF 15 | WSC 16 | DM | N | NDF | pH | NH3-N 18 | VFA 19 | A:P 20 | ||||||||
Ryegrass/white clover | 100 | L | 240 | 24.8 | 480 | - | 121 | 39.0 | 0.957 | 18.7 | OR | - | 6.44 | 17.0 | 79.0 | 4.10 | - | - | [33] |
White clover | 100 | L | 146 | 44.6 | 264 | - | 145 | 51.9 | 2.31 | 13.7 | OR | - | 6.35 | 28.5 | 96.0 | 3.30 | - | - | [33] |
Alfalfa | 100 | L | 212 | 39.1 | 323 | - | 123 | 48.1 | 1.88 | 15.5 | OR | - | 6.37 | 27.5 | 97.0 | 3.40 | - | - | [33] |
Lotus | 100 | L | - | - | - | - | 57.0 | 38.2 | - | - | NA | 0.749 | - | - | - | - | - | - | [34] |
Alfalfa | 100 | L | - | - | - | - | 38.0 | 50.6 | - | - | NA | 0.763 | - | - | - | - | - | - | [34] |
Red clover | 100 | L | - | 39.4 | - | - | 42.0 | 45.0 | - | - | NA | 0.745 | - | - | - | - | - | - | [34] |
Ryegrass | 100 | L | - | 30.2 | - | - | 112 | 27.7 | - | - | NA | 0.732 | - | - | - | - | - | - | [34] |
Alfalfa | 100 | L | - | - | - | - | - | 54.6 | - | - | NA | 0.755 | - | - | - | - | - | - | [29] |
Red clover | 100 | L | - | - | - | - | - | 65.4 | - | - | NA | 0.783 | - | - | - | - | - | - | [29] |
Ryegrass | 100 | L | - | - | - | - | - | 36.8 | - | - | NA | 0.745 | - | - | - | - | - | - | [29] |
Ryegrass | 100 | L | 211 | 24.3 | 482 | 219 | - | 32.9 | 0.801 | 15.9 | SE | 0.757 | 6.01 | 14.6 | 85.8 | 2.96 | - | - | [35] |
75% Ryegrass + 25% white clover | 100 | L | 193 | 28.5 | 458 | 218 | - | 33.9 | 0.966 | 15.5 | SE | 0.765 | 6.04 | 18.3 | 98.1 | 2.93 | - | - | [35] |
50% Ryegrass + 50% white clover | 100 | L | 175 | 32.6 | 434 | 218 | - | 35.9 | 1.17 | 15.6 | SE | 0.766 | 6.07 | 26.5 | 104 | 3.01 | - | - | [35] |
25% Ryegrass + 75% white clover | 100 | L | 157 | 36.8 | 410 | 217 | - | 36.3 | 1.34 | 14.9 | SE | 0.771 | 6.57 | 26.5 | 106 | 3.02 | - | - | [35] |
White clover | 100 | L | 139 | 41.0 | 386 | 216 | - | 36.9 | 1.51 | 14.2 | SE | 0.770 | 6.05 | 33.3 | 115 | 3.10 | - | - | [35] |
Ryegrass | 100 | L | 168 | 34.1 | 503 | 240 | - | 29.3 | 1.03 | 14.7 | OR | 0.710 | - | - | - | - | 12.1 | 24.0 | [36] |
Ryegrass + CM 1 | 79.1 | L | 168 | 34.1 | 503 | 240 | - | 31.3 | 0.923 | - | OR | 0.750 | - | - | - | - | 13.4 | 23.0 | [36] |
Ryegrass + CM + CG 2 | 80.5 | L | 168 | 34.1 | 503 | 240 | - | 33.5 | 1.19 | - | OR | 0.720 | - | - | - | - | 13.3 | 22.0 | [36] |
Ryegrass + CM + CC 3 | 80.3 | L | 168 | 34.1 | 503 | 240 | - | 33.2 | 1.19 | - | OR | 0.750 | - | - | - | - | 13.2 | 22.0 | [36] |
Ryegrass + CG 4 | 81.9 | L | 168 | 34.1 | 503 | 240 | - | 35.2 | 1.27 | - | OR | 0.730 | - | - | - | - | 12.9 | 21.0 | [36] |
Alfalfa | 100 | L | 296 | 33.4 | 374 | 211 | 96.8 | 42.8 | 1.46 | 14.9 | OR | 0.690 | 6.04 | 17.6 | 165 | 1.41 | - | - | [37] |
Alfalfa + TMR75 5 | 62.0 | L | 296 | 33.4 | 374 | 211 | 96.8 | 35.2 | 1.08 | 11.9 | OR | 0.730 | 6.27 | 23.5 | 161 | 1.60 | - | - | [37] |
Alfalfa + TMR50 6 | 44.0 | L | 296 | 33.4 | 374 | 211 | 96.8 | 36.4 | 1.19 | 11.8 | OR | 0.700 | 6.20 | 30.5 | 179 | 1.58 | - | - | [37] |
Alfalfa | 100 | L | 214 | 36.2 | 366 | 223 | - | 27.2 | 0.985 | 8.97 | OR | 0.688 | 6.49 | 28.4 | 146 | 3.19 | - | - | [38] |
Alfalfa + TMRa 7 | 46.0 | L | 214 | 36.2 | 366 | 223 | - | 38.0 | 1.11 | 11.65 | OR | 0.753 | 6.31 | 21.8 | 154 | 2.46 | - | - | [38] |
Alfalfa + TMRf 8 | 46.7 | L | 214 | 36.2 | 366 | 223 | - | 37.9 | 1.10 | 13.5 | OR | 0.690 | 6.14 | 16.1 | 152 | 2.01 | - | - | [38] |
Lotus | 100 | W | 318 | 20.2 | 418 | 288 | - | 40.9 | 0.821 | 17.1 | OR | 0.680 | 6.80 | 37.4 | 90.4 | 3.50 | 17.6 | 14.1 | [13] |
Lotus + 5 g/kg sorghum grain | 87.6 | W | 318 | 20.2 | 418 | 288 | - | 35.6 | 0.635 | 13.8 | OR | 0.678 | 6.46 | 35.4 | 98.5 | 3.50 | 12.7 | 11.6 | [13] |
Lotus + 10 g/kg sorghum grain | 70.3 | W | 318 | 20.2 | 418 | 288 | - | 32.3 | 0.461 | 11.2 | OR | 0.706 | 6.09 | 39.7 | 113 | 3.26 | 11.9 | 12.1 | [13] |
Lotus + 15 g/kg sorghum grain | 58.2 | W | 318 | 20.2 | 418 | 288 | - | 32.3 | 0.384 | 10.2 | OR | 0.752 | 6.16 | 36.8 | 141 | 3.21 | 10.5 | 9.29 | [13] |
Lotus + clover + ryegrass | 100 | W | - | 20.5 | 444 | 285 | - | 24.0 | 0.566 | 10.7 | OR | 0.640 | 6.65 | 23.7 | - | - | 7.16 | 9.52 | [39] |
Lotus + clover + ryegrass | 100 * | W | - | 20.5 | 444 | 285 | - | 17.7 | 0.397 | 7.84 | OR | 0.610 | 6.66 | 23.5 | - | - | 3.19 | 6.54 | [39] |
Ryegrass diploid (spring) | 100 | W | 144 | 24.3 | 467 | 244 | 253 | 24.5 | 0.594 | 11.4 | OR | - | - | - | - | - | - | - | [40] |
Ryegrass high-sugar (spring) | 100 | W | 166 | 22.4 | 418 | 227 | 304 | 27.2 | 0.609 | 11.4 | OR | - | - | - | - | - | - | - | [40] |
Ryegrass tetraploid (spring) | 100 | W | 189 | 25.6 | 458 | 246 | 229 | 22.7 | 0.582 | 10.4 | OR | - | - | - | - | - | - | - | [40] |
Ryegrass diploid (autumn) | 100 | W | 177 | 33.1 | 631 | 298 | 133 | 22.0 | 0.727 | 13.9 | OR | - | - | - | - | - | - | - | [40] |
Ryegrass high-sugar (autumn) | 100 | W | 183 | 35.7 | 580 | 300 | 135 | 23.1 | 0.820 | 13.4 | OR | - | - | - | - | - | - | - | [40] |
Ryegrass tetraploid (autumn) | 100 | W | 160 | 38.1 | 611 | 290 | 128 | 20.9 | 0.797 | 12.8 | OR | - | - | - | - | - | - | - | [40] |
Italian ryegrass | 100 | L | 243 | 27.5 | 502 | - | 300 | 64.7 | 0.739 | 32.5 | OR | 0.661 | - | - | - | - | - | - | [41] |
Barley | 100 | L | 262 | 25.4 | 557 | - | 186 | 64.9 | 0.731 | 36.2 | OR | 0.783 | - | - | - | - | - | - | [41] |
Alfalfa | 100 | L | 223 | 34.1 | 356 | 277 | 53.0 | 55.6 | 1.51 | 19.8 | NA | 0.700 | - | - | - | - | - | - | [42] |
Red clover | 100 | L | 150 | 34.9 | 263 | 198 | 74.0 | 58.2 | 1.74 | 15.3 | NA | 0.730 | - | - | - | - | - | - | [42] |
White clover | 100 | L | 134 | 39.8 | 223 | 185 | 90.0 | 56.7 | 2.13 | 12.6 | NA | 0.730 | - | - | - | - | - | - | [42] |
Ryegrass | 100 | L | 187 | 29.8 | 363 | 198 | 166 | 49.5 | 1.30 | 18.0 | NA | 0.750 | - | - | - | - | - | - | [42] |
Oats + white clover | 100 * | E | 159 | 18.6 | 554 | 296 | 47.0 | 15.5 | 1.33 | 8.57 | F | 0.670 | - | - | - | - | 6.29 | 16.4 | [43] |
Oats + white clover + Barley | 70.0 * | E | 159 | 18.6 | 554 | 296 | 47.0 | 15.5 | 1.32 | 6.74 | F | 0.720 | - | - | - | - | 6.09 | 13.9 | [43] |
oats + white clover + barley + MBP 9 | 70.0 * | E | 159 | 18.6 | 554 | 296 | 47.0 | 15.5 | 1.42 | 6.40 | F | 0.710 | - | - | - | - | 5.93 | 13.4 | [43] |
Oats + white clover | 100 * | E | 148 | 23.7 | 546 | 279 | 82.0 | 15.5 | 1.85 | 8.44 | F | 0.710 | 6.33 | 17.4 | - | - | 8.30 | 20.8 | [43] |
Oats + white clover + barley | 70.0 * | E | 148 | 23.7 | 546 | 279 | 82.0 | 15.5 | 1.52 | 6.67 | F | 0.750 | 6.15 | 18.5 | - | - | 8.09 | 16.7 | [43] |
oats + white clover + barley + MBP 9 | 70.0 * | E | 148 | 23.7 | 546 | 279 | 82.0 | 15.5 | 1.64 | 6.31 | F | 0.710 | 6.51 | 18.0 | - | - | 7.55 | 16.2 | [43] |
Mixed grass + legumes (forage cut at 7:00 h) | 100 * | L | 147 * | 23.0 * | 499 * | 268 * | 14.4 * | 22.1 | 0.510 | 6.47 | OR | - | 6.47 | 17.8 | 92.5 | 2.34 | 4.71 ** | 11.6 ** | [44] |
Mixed grass + legumes (forage cut at 18:00 h) | 100 * | L | 147 * | 23.0 * | 499 * | 268 * | 16.8 * | 20.0 | 0.460 | 6.29 | OR | - | 6.28 | 18.5 | 95.4 | 2.36 | 4.16 ** | 14.5 ** | [44] |
Ryegrass | 100 | W | 203 | 19.8 | 505 | 248 | - | 24.7 | 0.494 | 12.4 | SE | 0.767 | - | 7.81 | 92.7 | 3.20 | - | - | [45] |
Ryegrass + chicory | 100 | W | 153 | 21.3 | 430 | 228 | - | 27.4 | 0.743 | 11.9 | SE | 0.766 | - | 16.0 | 100 | 3.20 | - | - | [45] |
Ryegrass + white clover + chicory | 100 | W | 156 | 26.8 | 435 | 231 | - | 29.3 | 0.627 | 12.4 | SE | 0.765 | - | 7.92 | 99.7 | 3.40 | - | - | [45] |
Chicory | 100 | W | 103 | 22.7 | 353 | 208 | - | 30.9 | 0.698 | 10.5 | SE | 0.773 | - | 6.86 | 104 | 3.60 | - | - | [45] |
Chicory | 100 * | W | 119 | 18.2 | 239 | 188 | 153 | 13.3 | 0.256 | 3.18 | OR | 0.765 | 6.44 | 9.80 | 95.2 | 3.21 | - | - | [46] |
Chicory | 100 * | W | 119 | 18.2 | 239 | 188 | 153 | 22.3 | 0.407 | 5.32 | OR | 0.761 | 6.30 | 5.60 | 106 | 3.75 | - | - | [46] |
Ryegrass | 100 * | W | 165 | 31.5 | 423 | 218 | 114 | 13.7 | 0.426 | 5.80 | OR | 0.741 | 6.35 | 28.3 | 83.8 | 3.67 | - | - | [46] |
Ryegrass | 100 * | W | 165 | 31.5 | 423 | 218 | 114 | 21.1 | 0.680 | 8.91 | OR | 0.753 | 6.18 | 27.1 | 92.2 | 3.38 | - | - | [46] |
Ryegrass | 100 | L | 148 | 29.0 | 464 | 242 | 83.0 | 25.0 | 0.730 | 11.6 | OR | 0.646 | 6.71 | - | 74.5 | 3.53 | - | - | [47] |
Ryegrass | 100 | L | 198 | 25.6 | 445 | 231 | 123 | 31.5 | 0.810 | 14.0 | OR | 0.750 | 6.71 | - | 58.3 | 2.93 | - | - | [47] |
Diet | FF 9 | Allowance | C 10 | Chemical Composition of Forage | N 16 | Breed | BW 17 | DMI | DMI m 18 | ADG | Ref | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DM 11 | N 12 | NDF 13 | ADF 14 | WSC 15 | |||||||||||
Ryegrass var. AberDart (continuous grazing system) | 100 * | 1.67 | L | 220 | 32.3 | 537 | 284 | 115 | 20 | Brecknock Cheviot | 25.5 | 22.0 | NA | 47.1 | [64] |
Ryegrass var. AberDart (rotational grazing system) | 100 | 2.13 | L | 187 | 33.4 | 482 | 263 | 113 | 20 | Brecknock Cheviot | 25.5 | 29.4 | NA | 98.4 | [64] |
Ryegrass var. Fennema (continuous grazing system) | 100 * | 1.57 | L | 216 | 34.1 | 533 | 278 | 100 | 20 | Brecknock Cheviot | 25.5 | 27.1 | NA | 51.5 | [64] |
Ryegrass var. Fennema (rotational grazing system) | 100 | 2.15 | L | 188 | 30.1 | 496 | 271 | 100 | 20 | Brecknock Cheviot | 25.5 | 30.2 | NA | 71.7 | [64] |
Ryegrass high WSC (spring) | 100 | - | L | - | 34.6 | 434 | - | 196 | 40 | - | 42.0 | - | - | 170 | [65] |
Ryegrass diploid (spring) | 100 | - | L | - | 34.1 | 458 | - | 182 | 40 | - | 42.0 | - | - | 158 | [65] |
Ryegrass tetraploid (spring) | 100 | - | L | - | 36.0 | 440 | - | 178 | 40 | - | 42.0 | - | - | 164 | [65] |
Ryegrass high WSC (autumn) | 100 | - | E | - | 40.3 | 416 | - | 186 | 40 | - | 30.7 | - | - | 179 | [65] |
Ryegrass diploid (autumn) | 100 | - | L | - | 42.7 | 439 | - | 155 | 40 | - | 30.7 | - | - | 179 | [65] |
Ryegrass tetraploid (autumn) | 100 | - | L | - | 43.8 | 416 | - | 162 | 40 | - | 30.7 | - | - | 206 | [65] |
Ryegrass high WSC (spring) | 100 | - | L | - | 28.0 | 462 | - | 251 | 60 | - | 28.7 | - | - | 133 | [65] |
Ryegrass diploid (spring) | 100 | - | L | - | 28.3 | 497 | - | 221 | 60 | - | 28.7 | - | - | 120 | [65] |
Ryegrass tetraploid (spring) | 100 | - | L | - | 30.2 | 485 | - | 213 | 60 | - | 28.7 | - | - | 118 | [65] |
Ryegrass | 100 | 1.80 | L | - | 25.6 | 450 | 270 | 80.0 | 400 | - | - | - | - | 215 | [66] |
High sugar ryegrass | 100 | 1.80 | L | - | 25.6 | 450 | 270 | 96.0 | 400 | - | - | - | - | 238 | [66] |
Ryegrass | 100 | 1.80 | L | - | 25.6 | 450 | 270 | 80.0 | 400 | - | - | - | - | 171 | [66] |
High sugar ryegrass | 100 | 1.80 | L | - | 25.6 | 450 | 270 | 109 | 400 | - | - | - | - | 210 | [66] |
Alfalfa | 100 | 1.12 | L | 223 | 34.1 | 356 | 277 | 53.0 | 24 | Suffolk × Mule | 27.5 | 55.6 | NA | 210 | [42] |
Red clover | 100 | 1.32 | L | 150 | 34.9 | 263 | 198 | 74.0 | 24 | Suffolk × Mule | 27.5 | 58.2 | NA | 292 | [42] |
White clover | 100 | 1.37 | L | 134 | 39.8 | 223 | 185 | 90.0 | 24 | Suffolk × Mule | 27.5 | 56.7 | NA | 282 | [42] |
Ryegrass | 100 | 0.940 | L | 187 | 29.8 | 363 | 198 | 166 | 24 | Suffolk × Mule | 27.5 | 49.5 | NA | 201 | [42] |
Chicory | 100 | - | L | - | 38.9 | - | - | - | 20 | Coopworth | 22.5 | 86.2 | Cr2O3 | 182 | [67] |
White clover | 100 | - | L | - | 44.8 | - | - | - | 20 | Coopworth | 22.5 | 78.7 | Cr2O3 | 219 | [67] |
Lotus | 100 | - | L | - | 41.1 | - | - | - | 20 | Coopworth | 22.5 | - | Cr2O3 | - | [67] |
Ryegrass | 100 | - | L | - | 32.2 | - | - | - | 20 | Coopworth | 22.5 | 45.8 | Cr2O3 | 128 | [67] |
Lotus | 100 | 1.43 | L | - | - | - | - | - | 10 | Suffolk × Mule | 30.3 | - | - | 278 | [34] |
Alfalfa | 100 | 2.16 | L | - | - | - | - | - | 10 | Suffolk × Mule | 30.8 | - | - | 200 | [34] |
Red clover | 100 | 1.78 | L | - | 39.4 | 246 | - | - | 10 | Suffolk × Mule | 30.5 | - | - | 228 | [34] |
Ryegrass | 100 | 1.41 | L | - | 30.2 | 189 | - | - | 10 | Suffolk × Mule | 30.3 | - | - | 182 | [34] |
Alfalfa | 100 | 2.37 | L | - | - | - | - | - | 20 | Suffolk × Mule | 31.5 | - | - | 243 | [29] |
Red clover | 100 | 2.19 | L | - | 31.5 | - | - | - | 20 | Suffolk × Mule | 31.5 | - | - | 305 | [29] |
Ryegrass | 100 | 1.31 | L | - | - | - | - | - | 20 | Suffolk × Mule | 31.5 | - | - | 184 | [29] |
Ryegrass | 100 | 1.20 | L | - | 32.6 | 426 | 193 | - | 30 | Suffolk, Texel, others | 30.9 | - | - | 183 | [68] |
Ryegrass + white clover | 100 | 1.20 | L | - | 31.8 | 445 | 192 | - | 30 | Suffolk, Texel, others | 32.5 | - | - | 192 | [68] |
6 species of forage 1 | 100 | 1.20 | L | - | 31.4 | 405 | 194 | - | 30 | Suffolk, Texel, others | 33.3 | - | - | 193 | [68] |
9 species of forage 2 | 100 | 1.20 | L | - | 30.2 | 400 | 190 | - | 30 | Suffolk, Texel, others | 32.1 | - | - | 193 | [68] |
Alfalfa | 100 | - | L | - | 39.8 | - | - | - | 36 | Rambouillet × Suffolk | 30.7 | 42.2 | Cut | 141 | [63] |
Alfalfa + 123 g corn | - | - | L | - | 39.5 | - | - | - | 36 | Rambouillet × Suffolk | 30.7 | 41.6 | Cut | 154 | [63] |
Alfalfa + 247 g corn | - | - | L | - | 39.4 | - | - | - | 36 | Rambouillet × Suffolk | 30.7 | 43.5 | Cut | 169 | [63] |
Alfalfa grazing | 100 | - | L | - | - | - | - | - | 12 | Romane | 21.5 | - | - | 299 | [69] |
Alfalfa + barley | 62.1 | - | L | - | - | - | - | - | 12 | Romane | 21.5 | - | - | 294 | [69] |
Dactylis + alfalfa 3 | 100 | 1.53 | L | 197 | 28.5 | 476 | 308 | - | 10 | Dorset | 23.6 | 75.2 | NDFi | 267 | [70] |
Dactylis + alfalfa 4 | 100 | 1.53 | L | 197 | 28.5 | 476 | 308 | - | 10 | Dorset | 23.6 | 74.0 | NDFi | 295 | [70] |
Orchandgrass | 100 | - | L | 192 | 35.7 | 567 | 305 | - | 8 | - | 25.9 | - | - | 147 | [71] |
Ryegrass | 100 | - | L | 158 | 36.6 | 489 | 286 | - | 8 | - | 25.5 | - | - | 152 | [71] |
Alfalfa | 100 | - | L | 181 | 47.7 | 314 | 234 | - | 8 | - | 25.4 | - | - | 239 | [71] |
Orchandgrass | 100 | - | L | 209 | 37.4 | 559 | 307 | - | 4 | Suffolk × St. Croix × Ramb | 29.2 | - | - | 149 | [71] |
Ryegrass | 100 | - | L | 191 | 33.4 | 473 | 283 | - | 4 | Suffolk × St. Croix × Ramb | 27.7 | - | - | 150 | [71] |
Alfalfa | 100 | - | L | 196 | 46.6 | 293 | 228 | - | 4 | Suffolk × St. Croix × Ramb | 22.9 | - | - | 175 | [71] |
Orchandgrass | 100 | - | L | 237 | 39.0 | 507 | 284 | - | 8 | - | 21.9 | - | - | 112 | [71] |
Ryegrass | 100 | - | L | 213 | 37.9 | 443 | 269 | - | 8 | - | 21.4 | - | - | 85 | [71] |
Alfalfa | 100 | - | L | 230 | 42.9 | 281 | 197 | - | 8 | - | 21.8 | - | - | 256 | [71] |
Alfalfa + TMRa 5 | 40 | - | L | 214 | 36.2 | 366 | 223 | - | 18 | Corriedale × Ile de France | 29.5 | 46.9 | Cut | 336 | [72] |
Alfalfa + TMRf 6 | 41 | - | L | 214 | 36.2 | 366 | 223 | - | 18 | Corriedale × Ile de France | 29.5 | 42.6 | Cut | 305 | [72] |
Lotus | 100 | 5.27 | L | - | 56.0 | 449 | 350 | - | 20 | Romney | 22.8 | 58.2 | Cr2O3 | 203 | [73] |
Alfalfa | 100 | 5.24 | L | - | 49.8 | 423 | 311 | - | 20 | Romney | 22.8 | 65.5 | Cr2O3 | 185 | [73] |
Ryegrass WSC | 100 | - | L | - | 23.8 | 411 | 222 | 143 | 5 | Bluefaced Leicester | 14.0 | 69.2 | EC | 312 | [74] |
Ryegrass control WSC | 100 | - | L | - | 27.0 | 487 | 255 | 89.0 | 5 | Bluefaced Leicester | 14.0 | 82.9 | EC | 271 | [74] |
Ryegrass WSC | 100 | - | L | - | 32.0 | 473 | 250 | 113 | 5 | Bluefaced Leicester | 14.0 | 120 | EC | 244 | [74] |
Ryegrass control WSC | 100 | - | L | - | 26.6 | 540 | 279 | 75.0 | 5 | Bluefaced Leicester | 14.0 | 94.0 | EC | 194 | [74] |
Ryegrass WSC | 100 | - | L | - | 29.0 | 506 | 267 | 92.0 | 5 | Bluefaced Leicester | 14.0 | 77.9 | EC | 186 | [74] |
Ryegrass control WSC | 100 | - | L | - | 31.0 | 514 | 274 | 84.0 | 5 | Bluefaced Leicester | 14.0 | 82.9 | EC | 175 | [74] |
Trifolium alexandrium + concentrate | 65.4 | - | L | - | - | - | - | - | 9 | Lohi | 21.0 | 37.1 | Cut | 130 | [75] |
Trifolium alexandrium + concentrate | 66.0 | - | L | - | - | - | - | - | 9 | Lohi | 21.0 | 37.6 | Cut | 160 | [75] |
Trifolium alexandrium + concentrate | 66.7 | - | L | - | - | - | - | - | 9 | Lohi | 21.0 | 38.6 | Cut | 180 | [75] |
Herb/clover 7 | 100 | 3.45 | L | - | 25.3 | 281 | - | - | 6 | Romney | 33.0 | - | - | 247 | [76] |
Plantain/pasture 8 | 100 | 3.79 | L | - | 20.6 | 399 | - | - | 6 | Romney | 33.0 | - | - | 107 | [76] |
Tetraploid ryegrass and white clover | 100 | 3.79 | L | - | 31.4 | 481 | - | - | 6 | Romney | 33.0 | - | - | 119 | [76] |
Diploid ryegrass, other grass species, and white clover | 100 | 5.55 | L | - | 22.6 | 537 | - | - | 6 | Romney | 33.0 | - | - | 119 | [76] |
Ryegrass/white clover | 100 | L | 240 | 24.8 | 480 | - | 121 | 18 | - | 28.5 | 39.0 | OR | 105 | [33] | |
White clover | 100 | L | 146 | 44.6 | 264 | - | 145 | 18 | - | 28.5 | 51.9 | OR | 256 | [33] | |
Alfalfa | 100 | L | 212 | 39.1 | 323 | - | 123 | 18 | - | 28.5 | 48.1 | OR | 191 | [33] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Turren, G.; Repetto, J.L.; Arroyo, J.M.; Pérez-Ruchel, A.; Cajarville, C. Lamb Fattening Under Intensive Pasture-Based Systems: A Review. Animals 2020, 10, 382. https://doi.org/10.3390/ani10030382
Fernandez-Turren G, Repetto JL, Arroyo JM, Pérez-Ruchel A, Cajarville C. Lamb Fattening Under Intensive Pasture-Based Systems: A Review. Animals. 2020; 10(3):382. https://doi.org/10.3390/ani10030382
Chicago/Turabian StyleFernandez-Turren, Gonzalo, José L. Repetto, José M. Arroyo, Analía Pérez-Ruchel, and Cecilia Cajarville. 2020. "Lamb Fattening Under Intensive Pasture-Based Systems: A Review" Animals 10, no. 3: 382. https://doi.org/10.3390/ani10030382
APA StyleFernandez-Turren, G., Repetto, J. L., Arroyo, J. M., Pérez-Ruchel, A., & Cajarville, C. (2020). Lamb Fattening Under Intensive Pasture-Based Systems: A Review. Animals, 10(3), 382. https://doi.org/10.3390/ani10030382