Effect of Dietary Crude Protein on Productive Efficiency, Nutrient Digestibility, Blood Metabolites and Gastrointestinal Immune Markers in Light Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets and Experimental Design
2.2. Feed Intakes and Growth Performance
2.3. Blood Samples
2.4. Feces, Concentrate and Straw Samples
2.5. Calculation of Apparent Digestibility, Estimation of Fecal Nitrogen Volatilization and Estimation of Urine Urea Nitrogen
2.6. Chemical Analysis of Food and Feces
2.7. Histology and RT-qPCR Analysis
2.7.1. Histological and Morphometric Analysis
2.7.2. Cytokine Gene Expression
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat Data Base—European Commission. Data on Sheepmeat Production in Europe. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00045/default/table?lang=en (accessed on 15 October 2019).
- Cardenas, L.M.; Chadwick, D.; Scholefield, D.; Fychan, R.; Marley, C.L.; Jones, R.; Bol, R.; Well, R.; Vallejo, A. The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils. Atmos. Environ. 2007, 41, 7096–7107. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, A.; et al. Mitigation of Greenhouse Gas Emissions in Livestock Production—A Review of Technical Options for Non-CO2 Emissions; Gerber, P.J., Henderson, B., Makkar, H.P., Eds.; FAO Animal Production and Health Paper No. 177; FAO: Rome, Italy, 2013. [Google Scholar]
- Bello, J.M.; Mantecón, A.R.; Rodriguez, M.; Cuestas, R.; Beltran, J.A.; Gonzalez, J.M. Fattening lamb nutrition. Approaches and strategies in feedlot. Small Rumin. Res. 2016, 142, 78–82. [Google Scholar] [CrossRef]
- Ferret, A.; Calsamiglia, S.; Bach, A.; Devant, M.; Fernández, C.; García Rebollar, P. Necesidades Nutricionales para Rumiantes en Cebo: Normas FEDNA; Ed: Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2008. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goat, Cervids and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [CrossRef]
- INRA. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Darmon, N.; Pelissier, M.A.; Heyman, M.; Albrecht, R.; Desjeux, J.F. Oxidative stress may contribute to the intestinal dysfunction of weanling rats fed a low protein diet. J. Nutr. 1993, 123, 1068–1075. [Google Scholar] [PubMed]
- Flynn, R.J.; Mulcahy, G. The roles of IL-10 and TGF-β in controlling IL-4 and IFN-γ production during experimental Fasciola hepatica infection. Int. J. Parasitol. 2008, 38, 1673–1680. [Google Scholar] [CrossRef]
- Castillo, C.; Hernández, J.; Valverde, I.; Pereira, V.; Sotillo, J.; Löpez Alonso, M.; Benedito, J.L. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Yonny, M.E.; García, E.M.; López, A.; Arroquy, J.I.; Nazareno, M.A. Measurement of malondialdehyde as oxidative stress biomarker in goat plasma by HPLC-DAD. Microchem. J. 2016, 129, 281–285. [Google Scholar] [CrossRef]
- Bertolín, J.R.; Joy, M.; Blanco, M. Malondialdehyde determination in raw and processed meat products by UPLC-DAD and UPLC-FLD. Food Chem. 2019, 298, 125009. [Google Scholar] [CrossRef]
- Todd, R.W.; Cole, N.A.; Harper, L.A.; Flesch, T.K.; BaeK, B.H. Ammonia and Gaseous Nitrogen Emissions from a Commercial Beef Cattle Feed Yard Estimated Using the Flux-Gradient Method and N: P Ratio Analysis. In Proceedings of the Animal Manure and Waste Management, San Antonio, TX, USA, 5–7 June 2005; National Center for Manure and Animal Waste Management: San Antonio, TX, USA, 2005; pp. 1–8. [Google Scholar]
- AOAC. Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Ankom. 1998. Available online: https://www.ankom.com/ (accessed on 15 April 2019).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, J.; Mir, L.; Seradj, A.R.; Morazán, H.; Balcells, J.; Babot, D. Nutritional strategies to cope with reduced litter weight gain and total tract digestibility in lactating sows. J. Anim. Physiol. Anim. Nutr. 2017, 101, 914–924. [Google Scholar] [CrossRef]
- Scocco, P.; Mercati, F.; Brusaferro, A.; Ceccarelli, P.; Belardinelli, C.; Malfatti, A. Keratinisation degree of rumen epithelium and body condition score in sheep grazing on Brachypodium rupestre. Vet. Ital. 2013, 49, 211–217. [Google Scholar] [CrossRef]
- Chomzynski, P.; Sacchi, N. Single-Step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Puech, C.; Dedieu, L.; Chantal, I.; Rodrigues, V. Design and evaluation of a unique SYBR Green real-time RT-PCR assay for quantification of five major cytokines in cattle, sheep and goats. BMC Vet. Res. 2015, 11, 65. [Google Scholar] [CrossRef]
- Primer3plus. Available online: www.bioinformatics.nl/primer3plus (accessed on 1 May 2019).
- Serrano-Pérez, B.; Hansen, P.J.; Mur-Novales, R.; García-Ispierto, I.; de Sousa, N.M.; Beckers, J.F.; Almería, S.; López-Gatius, F. Crosstalk between uterine serpin (SERPINA14) and pregnancy-associated glycoproteins at the fetal-maternal interface in pregnant dairy heifers experimentally infected with Neospora caninum. Theriogenology 2016, 86, 824–830. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analysing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Esteban, C. Razas Ganaderas Españolas Ovinas, 1st ed.; Federación Española de Asociaciones de Ganado Selecto y Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2003. [Google Scholar]
- Purroy, A.; Echaide, H.; Muñoz, F.; Arana, A.; Mendizabal, J.A. The effect of protein level and source of legume seeds on the growth and fattening of lambs. Livest. Prod. Sci. 1993, 34, 93–100. [Google Scholar] [CrossRef]
- Hajji, H.; Mahouachi, M.; Saidi, C.; Ben Hammouda, M.; Atti, N. Effect of protein level on growth performance, non-carcass components and carcass characteristics of young sheep from three breeds. Anim. Prod. Sci. 2016, 56, 2115–2121. [Google Scholar] [CrossRef]
- Zhou, K.; Bao, Y.; Zhao, G. Effects of dietary crude protein and tannic acid on rumen fermentation, rumen microbiota and nutrient digestion in beef cattle. Arch. Anim. Nutr. 2019, 73, 30–43. [Google Scholar] [CrossRef]
- Bernard, M.; Cheng, L.; Chantelauze, C.; Song, Y.; Jeanleboeuf, A.; Sagot, L.; Cantalapiedra-Híjar, G. Nitrogen partitioning and isotopic discrimination are affected by age and dietary protein content in growing lambs. Animal 2019, 1–10. [Google Scholar] [CrossRef]
- Karim, S.A.; Santra, A. Nutrient requirements for growth of lambs under hot semiarid environment. Asian-Austral. J. Anim. 2003, 16, 665–671. [Google Scholar] [CrossRef]
- López, F.; Rodríguez, P.L.; Agudo, B.; Aceituno, O.; García, G.; Chaso, M.A.; Pascual, M.R. Estudio de la relación proteína: Energía óptima para la fase inicial de cebo de corderos merinos. XVI Jornadas sobre Producción Animal de la Asociación Interprofesional para el Desarrollo Agrario (AIDA) 2015, 1, 173–175. [Google Scholar]
- Bilancio, G.; Lombardi, C.; Pisot, R.; De Santo, N.G.; Cavallo, P.; Cirillo, M. Effects of bed-rest on urea and creatinine: Correlation with changes in fat-free mass. PLoS ONE 2014, 9(9), e108805. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 5th ed.; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, D.J.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine as a marker of muscle mass in chronic kidney disease: Results of a cross-sectional study and review of literature. J. Cach. Sarcop. Muscl. 2013, 4, 19–29. [Google Scholar] [CrossRef]
- Mahmoud, A.E. Impact of dietary protein levels on digestibility, blood parameters, insulin like growth factore-1 and growth performance of growing rahmani lambs. Egyp. J. Nutr. Feeds 2013, 16, 195–202. [Google Scholar]
- Haro, A.; Gonzalez, J.; de Evan, T.; de la Fuente, J.; Carro, M.D. Effects of feeding rumen-protected sunflower seed and meal protein on feed intake, diet digestibility, ruminal, cecal fermentation, and growth performance of lambs. Animals 2019, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Haddad, S.G.; Nasr, R.E.; Muwalla, M.M. Optimum dietary crude protein level for finishing Awassi lambs. Small Rumin. Res. 2001, 39, 41–46. [Google Scholar] [CrossRef]
- Kaya, I.; Ünal, Y.; Sahin, T.; Elmali, D. Effect of different protein levels on fattening performance, digestibility and rumen parameters in finishing lambs. J. Anim. Vet. Adv. 2009, 8, 309–312. [Google Scholar]
- Cole, N.A.; Defoor, P.J.; Galyean, M.L.; Duff, G.C.; Gleghorn, J.F. Effects of phase-feeding of crude protein on performance, carcass characteristics, serum urea nitrogen concentrations, and manure nitrogen of finishing beef steers. J. Anim. Sci. 2006, 84, 3421–3432. [Google Scholar] [CrossRef] [Green Version]
- Celi, P.; Gabai, G. Oxidant/antioxidant balance in animal nutrition and health: The role of protein oxidation. Front. Vet. Sci. 2015, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Rodríguez, J.; Monleón, E.; Sanz, A.; Badiola, J.J.; Joy, M. Rumen fermentation and histology in light lambs as affected by forage supply and lactation length. Res. Vet. Sci. 2012, 92, 247–253. [Google Scholar] [CrossRef]
Growing (14–19 kg of BW) | Finishing (19–25 kg of BW) | |||
---|---|---|---|---|
20% CP | 18% CP | 19% CP | 17% CP | |
Ingredients | ||||
Wheat | 29.9 | 30.0 | 29.9 | 29.9 |
Barley | 20.5 | 21.8 | 23.1 | 25.5 |
Maize | 20.5 | 21.9 | 23.3 | 23.6 |
Soybean meal 47 | 16.0 | 13.3 | 10.7 | 7.9 |
Dry maize distillery grains | 6.0 | 6.0 | 6.0 | 6.0 |
European rapeseed meal | 3.0 | 3.0 | 3.0 | 3.0 |
Calcium carbonate | 2.3 | 2.3 | 2.4 | 2.4 |
Salt | 0.5 | 0.5 | 0.5 | 0.5 |
Ammonium chloride | 0.5 | 0.5 | 0.5 | 0.5 |
Vitamin-mineral premix * | 0.3 | 0.3 | 0.3 | 0.3 |
Oil/surfactant premix | 0.2 | 0.2 | 0.2 | 0.2 |
Analyzed Chemical Composition | ||||
Dry matter (DM, % on fresh matter) | 88.6 | 89.2 | 90.9 | 90.4 |
Ash (% on DM basis) | 5.6 | 5.9 | 5.4 | 5.5 |
Crude protein (% on DM basis) | 20.4 | 18.3 | 19.1 | 17.4 |
Ether extract (% on DM basis) | 2.87 | 2.67 | 2.81 | 2.69 |
Starch (% on DM basis) | 49.2 | 49.9 | 52.2 | 55.9 |
Neutral-detergent fiber (% on DM basis) | 14.5 | 13.6 | 14.2 | 13.8 |
Acid-detergent fiber (% on DM basis) | 5.3 | 4.8 | 4.6 | 4.6 |
Phosphorus (% on DM basis) | 0.42 | 0.45 | 0.42 | 0.42 |
Gene | Forward and Reverse Primer (5′–3′) | bp | Access. No. | E (%) | n M | Source |
---|---|---|---|---|---|---|
GAPDH | F: ATCTCGCTCCTGGAAGATG R: TCGGAGTGAACGGATTCG | 200 | NM_001190390.1 | 1.90 | 600 300 | [20] |
ACTB | F: CTGGACTTCGAGCAGGAGAT R: GATGTCGACGTCACACTTC | 194 | NM_001009784 | 1.94 | 600 | [20] |
IL10 | F: TTAAGGGTTACCTGGGTTGC R: TTCACGTGCTCCTTGATGTC | 109 | NM_001009327.1 | 1.96 | 200 | [21] |
TGFB | F: TTGACGTCACTGGAGTTGTG R: CGTTGATGTCCACTTGAAGC | 120 | NM_001009400.2 | 2.04 | 200 | [21] |
TNFA | F: CAAATAACAAGCCGGTAGCC R: TGGTTGTCTTTCAGCTCCAC | 118 | NM_001024860.1 | 1.96 | 200 | [21] |
Item | CP20/19 | CP18/17 | SE | p-Value |
---|---|---|---|---|
Growing (14 to 19 kg) | ||||
Initial BW (kg) | 15.0 | 15.0 | 0.15 | 0.97 |
Within-pen coefficient of variation of BW (%) | 5.8 | 6.5 | 0.73 | 0.49 |
ADG (g) | 235 | 234 | 13.0 | 0.92 |
Finishing (19 to 25 kg) | ||||
Initial BW (kg) | 19.8 | 19.7 | 0.28 | 0.75 |
Within-pen coefficient of variation of BW (%) | 9.6 | 10.0 | 1.09 | 0.83 |
ADG (g) | 254 | 269 | 8.3 | 0.23 |
Slaughter BW (kg) | 24.5 | 24.8 | 0.24 | 0.40 |
Within-pen coefficient of variation of BW (%) | 8.6 | 8.0 | 0.85 | 0.60 |
Item | CP20/19 | CP18/17 | SE | p-Value |
---|---|---|---|---|
Growing (14 to 19 kg) | ||||
Concentrate intake (g/day) | 715 | 710 | 22 | 0.89 |
Straw intake (g/day) | 108 | 107 | 6 | 0.97 |
FCR (g/g) | 3.11 | 3.06 | 0.13 | 0.82 |
Finishing (19 to 25 kg) | ||||
Concentrate intake (g/day) | 878 | 854 | 24 | 0.48 |
Straw intake (g/day) | 125 | 125 | 8 | 0.95 |
FCR (g/g) | 3.50x | 3.21y | 0.11 | 0.07 |
Item | CP20/19 | CP18/17 | SE | p-Value |
---|---|---|---|---|
Slaughter weight (kg) | 24.8 | 24.9 | 0.27 | 0.41 |
Carcass weight (kg) | 11.8 | 11.7 | 0.19 | 0.43 |
Carcass dressing (%) | 47.8 | 47.0 | 0.69 | 0.47 |
Item | CP20/19 | CP18/17 | SE | p-Value |
---|---|---|---|---|
Growing (14 to 19 kg) | ||||
Urea (mg/dL) | 41 a | 32.3 b | 1.19 | 0.0004 |
Creatinine (mg/dL) | 0.84 | 0.84 | 0.02 | 0.93 |
Rate U/C | 48.8 a | 38.8 b | 1.59 | 0.0012 |
FMDA (µM/L) | 0.52 | 0.54 | 0.01 | 0.27 |
PBMDA (µM/L) | 6.77 | 6.85 | 0.21 | 0.78 |
TMDA (µM/L) | 7.30 | 7.40 | 0.21 | 0.73 |
Finishing (19 to 25 kg) | ||||
Urea (mg/dL) | 32.5 a | 28 b | 1.45 | 0.05 |
Creatinine (mg/dL) | 0.79 x | 0.88 y | 0.03 | 0.07 |
Rate U/C | 40.4 a | 29.5 b | 1.56 | 0.0023 |
FMDA (µM/L) | 0.66 | 0.68 | 0.05 | 0.85 |
PBMDA (µM/L) | 6.39 | 6.74 | 0.31 | 0.44 |
TMDA (µM/L) | 7.06 | 7.43 | 0.32 | 0.43 |
Item | CP20/19 | CP18/17 | SE | p-Value |
---|---|---|---|---|
Growing (14 to 19 kg) | ||||
DM of feces (DM; %) | 32.9 | 32.7 | 0.72 | 0.91 |
Digestibility of OM (%) | 67.7 a | 71.4 b | 1.21 | 0.04 |
Digestibility of CP (%) | 59.1 | 61.4 | 2.15 | 0.46 |
Digestibility of P (%) | 37.7 | 39.5 | 4.37 | 0.77 |
N:P of diet | 7.89 a | 6.85 b | 0.003 | 0.0001 |
N:P of feces | 4.03 | 4.11 | 0.25 | 0.83 |
Fecal N volatilization (% of intake) | 48.8 x | 39.9 y | 3.30 | 0.07 |
Estimated ureic N (g/N/d/kg) | 0.28 a | 0.24 b | 0.005 | 0.0004 |
Finishing (19 to 25 kg) | ||||
DM of feces (%) | 32.6 | 33.3 | 0.91 | 0.58 |
Digestibility of OM (%) | 64.1 a | 69.4 b | 1.64 | 0.03 |
Digestibility of CP (%) | 55.1 | 60.1 | 2.43 | 0.17 |
Digestibility of P (%) | 21.2 a | 37.9 b | 4.71 | 0.02 |
N:P of diet | 7.14 a | 6.84 b | 0.002 | 0.0001 |
N:P of feces | 3.69 | 4.18 | 0.22 | 0.13 |
Fecal N volatilization (% of intake) | 48.2 a | 38.8 b | 3.21 | 0.049 |
Estimated ureic N (g/N/d/kg) | 0.24 x | 0.22 y | 0.007 | 0.050 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelegrin-Valls, J.; Serrano-Pérez, B.; Villalba, D.; Martín-Alonso, M.J.; Bertolín, J.R.; Joy, M.; Álvarez-Rodríguez, J. Effect of Dietary Crude Protein on Productive Efficiency, Nutrient Digestibility, Blood Metabolites and Gastrointestinal Immune Markers in Light Lambs. Animals 2020, 10, 328. https://doi.org/10.3390/ani10020328
Pelegrin-Valls J, Serrano-Pérez B, Villalba D, Martín-Alonso MJ, Bertolín JR, Joy M, Álvarez-Rodríguez J. Effect of Dietary Crude Protein on Productive Efficiency, Nutrient Digestibility, Blood Metabolites and Gastrointestinal Immune Markers in Light Lambs. Animals. 2020; 10(2):328. https://doi.org/10.3390/ani10020328
Chicago/Turabian StylePelegrin-Valls, Jonathan, Beatriz Serrano-Pérez, Daniel Villalba, María José Martín-Alonso, Juan Ramón Bertolín, Margalida Joy, and Javier Álvarez-Rodríguez. 2020. "Effect of Dietary Crude Protein on Productive Efficiency, Nutrient Digestibility, Blood Metabolites and Gastrointestinal Immune Markers in Light Lambs" Animals 10, no. 2: 328. https://doi.org/10.3390/ani10020328
APA StylePelegrin-Valls, J., Serrano-Pérez, B., Villalba, D., Martín-Alonso, M. J., Bertolín, J. R., Joy, M., & Álvarez-Rodríguez, J. (2020). Effect of Dietary Crude Protein on Productive Efficiency, Nutrient Digestibility, Blood Metabolites and Gastrointestinal Immune Markers in Light Lambs. Animals, 10(2), 328. https://doi.org/10.3390/ani10020328