Field Pea Can Be Included in Fattening Concentrate without Deleterious Effects on the Digestibility and Performance of Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Diets
2.2. Animals, Experimental Design and Sampling
2.2.1. In Vivo Digestibility Trial
2.2.2. Performance Trial
2.3. Chemical Analyses
2.4. Statistical Analyses
3. Results
3.1. In Vivo Digestibility Trial
3.2. Performance Trial
4. Discussion
4.1. In Vivo Digestibility Trial
4.2. Performance Trial
4.3. Blood Metabolites
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henriksson, M.; Cederberg, C.; Swensson, C. Carbon Footprint and Land Requirement for Dairy Herd Rations: Impacts of Feed Production Practices and Regional Climate Variations. Animal 2014, 8, 1329–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasu-Boakye, Y.; Cederberg, C.; Wirsenius, S. Localising Livestock Protein Feed Production and the Impact on Land Use and Greenhouse Gas Emissions. Animal 2014, 8, 1339–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steen-Olsen, K.; Weinzettel, J.; Cranston, G.; Ercin, A.E.; Hertwich, E.G. Carbon, Land, and Water Footprint Accounts for the European Union: Consumption, Production, and Displacements through International Trade. Environ. Sci. Technol. 2012, 46, 10883–10891. [Google Scholar] [CrossRef] [PubMed]
- van Krimpen, M.M.; Bikker, P.; van der Meer, I.M.; van der Peet-Schwering, C.M.C.; Vereijken, J.M. Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Crops as Alternatives for Imported Soybean Products; Report no. 662; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2013. [Google Scholar]
- López-Bellido, F.J.; López-Bellido, L.; López-Bellido, R.J. Competition, Growth and Yield of Faba Bean (Vicia Faba L.). Eur. J. Agron. 2005, 23, 359–378. [Google Scholar] [CrossRef]
- Carrouée, B.; Crépon, K.; Peyronnet, C. Les Protéagineux: Intérêt Dans Les Systèmes De Production Fourragers Français Et Européens. Fourrages 2003, 174, 163–182. (In French) [Google Scholar]
- Loe, E.R.; Bauer, M.L.; Lardy, G.P.; Caton, J.S.; Berg, P.T. Field Pea (Pisum Sativum) Inclusion in Corn-Based Lamb Finishing Diets. Small Rum. Res. 2004, 53, 39–45. [Google Scholar] [CrossRef]
- Greenwell, H.L.; Gramkow, J.L.; Jolly-Breithaupt, M.L.; MacDonald, J.C.; Jenkins, K.H. Effects of Field Pea Supplementation on Digestibility and Rumen Volatile Fatty Acid Concentrations of Beef-Cattle Diets Containing High and Low Quality Forages. Prof. Anim. Scient. 2018, 34, 631–641. [Google Scholar] [CrossRef]
- Goelema, J.O.; Spreeuwenberg, M.A.M.; Hof, G.; Van Der Poel, A.F.B.; Tamminga, S. Effect of Pressure Toasting on the Rumen Degradability and Intestinal Digestibility of Whole and Broken Peas, Lupins and Faba Beans and a Mixture of These Feedstuffs. Anim. Feed Sci. Technol. 1998, 76, 35–50. [Google Scholar] [CrossRef]
- Saastamoinen, M.; Eurola, M.; Hietaniemi, V. The Chemical Quality of Some Legumes, Peas, Fava Beans, Blue and White Lupins and Soybeans Cultivated in Finland. J. Agric. Sci. Technol. 2013, 3, 92–100. [Google Scholar]
- Nocek, J.E.; Tamminga, S. Site of Digestion of Starch in the Gastrointestinal Tract of Dairy Cows and Its Effect on Milk Yield and Composition. J. Dairy Sci. 1991, 74, 3598–3629. [Google Scholar] [CrossRef]
- Purroy, A.; Surra, J.; Muñoz, F.; Morago, E. Use of Crops in the Fattening Diets for Lambs. Iii. Pea Seeds. Animal 1992, 88, 63–69. [Google Scholar]
- Zagorakis, K.; Liamadis, D.; Milis, C.; Dotas, V.; Dotas, D. Nutrient Digestibility and in Situ Degradability of Alternatives to Soybean Meal Protein Sources for Sheep. Small Rum. Res. 2015, 124, 38–44. [Google Scholar] [CrossRef]
- FEDNA. Tablas Fedna De Composición Y Valor Nutritivo De Alimentos Para La Fabricación De Piensos Compuestos. 2010. Available online: http://www.fundacionfedna.org/tablas-fedna-composicion-alimentos-valor-nutritivo (accessed on 17 February 2020). (In Spanish).
- Karlsson, L.; Martinsson, K. Growth Performance of Lambs Fed Different Protein Supplements in Barley-Based Diets. Livest. Sci. 2011, 138, 125–131. [Google Scholar] [CrossRef]
- Lestingi, A.; Facciolongo, A.M.; Jambrenghi, A.C.; Ragni, M.; Toteda, F. The Use of Peas and Sweet Lupin Seeds Alone or in Association for Fattening Lambs: Effects on Performance, Blood Parameters and Meat Quality. Small Rum. Res. 2016, 143, 15–23. [Google Scholar] [CrossRef]
- Scerra, M.; Caparra, P.; Foti, F.; Cilione, C.; Zappia, G.; Motta, C.; Scerra, V. Intramuscular Fatty Acid Composition of Lambs Fed Diets Containing Alternative Protein Sources. Meat Sci. 2011, 87, 229–233. [Google Scholar] [CrossRef]
- Facciolongo, A.M.; Rubino, G.; Zarrilli, A.; Vicenti, A.; Ragni, M.; Toteda, F. Alternative Protein Sources in Lamb Feeding 1. Effects on Productive Performances, Carcass Characteristics and Energy and Protein Metabolism. Prog. Nutr. 2014, 16, 105–115. [Google Scholar]
- Colonna, M.A.; Giannico, F.; Marsico, G.; Vonghia, G.; Ragni, M.; Jambrenghi, A.C. Effect of Pea (Pisum Sativum, L.) as Alternative to Soybean Meal on the Productive Performances and Meat Quality Traits of Merino Crossbred Lamb Types. Prog. Nutr. 2014, 16, 39–51. [Google Scholar]
- Directorate-general for Agriculture and Rural Development (European Commission). Community Scale for the Classification of Carcases of Light Lambs. 2011. Available online: https://op.europa.eu/en/publication-detail/-/publication/355ee973-dbf3-477a-b356-a672156b6cc/language-en/format-PDF/source-search (accessed on 17 February 2020).
- Horwitz, W. AOAC. Official Methods of Analysis; Association of Official Analytical Chemist: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOCS. Approved Procedure Am 5-04, Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction. 2005. Available online: http://www.ssco.com.tw/Ankom/PDF_file/Crude%20Fat%20Method.pdf (accessed on 17 February 2020).
- McCleary, B.V.; Gibson, T.S.; Mugford, D.C. Measurement of Total Starch in Cereal Products by Amyloglucosidase-A-Amylase Method: Collaborative Study. J. AOAC Int. 1997, 80, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Solanas, E.; Castrillo, C.; Balcells, J.; Guada, J.A. In Situ Ruminal Degradability and Intestinal Digestion of Raw and Extruded Legume Seeds and Soya Bean Meal Protein. J. Anim. Physiol. Anim. Nutr. 2005, 89, 166–171. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Gordon, A.W.; O’Connell, N.E.; Yan, T. Nitrogen Utilization Efficiency and Prediction of Nitrogen Excretion in Sheep Offered Fresh Perennial Ryegrass (Lolium Perenne). J. Anim. Sci. 2016, 94, 5321–5331. [Google Scholar] [CrossRef] [PubMed]
- Purroy, A.; Surra, J. Use of Peas and Broad Beans in the Fattening Feed for Lambs. Arch. Zootec. 1990, 39, 59–66. [Google Scholar]
- Bonanno, A.; Tornambè, G.; di Grigoli, A.; Genna, V.; Bellina, V.; di Miceli, G.; Giambalvo, D. Effect of Legume Grains as a Source of Dietary Protein on the Quality of Organic Lamb Meat. J. Sci. Food Agric. 2012, 92, 2870–2875. [Google Scholar] [CrossRef] [PubMed]
- Moriel, P.; Stevens, B.K.; Lake, S.L.; Weston, T.R.; Nayigihugu, V.; Cappellozza, B.I.; Krall, J.M.; Hess, B.W. Growth Performance and Carcass Characteristics of Lambs Fed Carnival or Forager Peas. Prof. Anim. Scient. 2011, 27, 52–56. [Google Scholar] [CrossRef]
- Hart, K.J.; Sinclair, L.A.; Wilkinson, R.G.; Huntington, J.A. Effect of Whole-Crop Pea (Pisum Sativum L.) Silages Differing in Condensed Tannin Content as a Substitute for Grass Silage and Soybean Meal on the Performance, Metabolism, and Carcass Characteristics of Lambs. J. Anim. Sci. 2011, 89, 3663–3676. [Google Scholar] [CrossRef] [Green Version]
- Oliver, R.; Ripoll, G.; Casasús, I.; Joy, M.; y Blanco, M. Estudio De La Inclusión De Guisante En La Dieta De Cebo Sobre La Calidad De La Canal Y La Carne De Corderos De Razas Ojinegra De Teruel Y Rasa Aragonesa. 2017. Available online: https://citarea.cita-aragon.es/citarea/bitstream/10532/3708/1/2017_151.pdf (accessed on 17 February 2020).
- Antunović, Z.; Klir, Ž.; Šperanda, M.; Ćavar, S.; Mioč, B.; Novoselec, J. Production Traits, Blood Metabolic Profile and Fatty Acids of Meat and Tallow in Response to the Partial Replacement of Soybean Meal with Peas in Organic Lambs’ Feed. Arch. Anim. Breed. 2017, 60, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, R.S.; McFarlane, J.R.; Banks, R.; Harden, S. Association of Plasma Metabolites and Hormones with the Growth and Composition of Lambs as Affected by Nutrition and Sire Genetics. Aust. J. Agric. Res. 2006, 57, 683–690. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, J.A.; Sanz, A.; Tamanini, C.; Casasús, I. Metabolic, Endocrine, and Reproductive Responses of Beef Heifers Submitted to Different Growth Strategies During the Lactation and Rearing Periods. J. Anim. Sci. 2015, 93, 3871–3885. [Google Scholar] [CrossRef]
Item | Concentrates | Straw | |||
---|---|---|---|---|---|
0% Pea | 10% Pea | 20% Pea | 30% Pea | ||
Ingredients, % | |||||
Barley | 27.3 | 23.0 | 15.5 | 11.4 | - |
Corn | 25.7 | 15.0 | 7.5 | 9.2 | - |
Soybean meal | 22.4 | 17.5 | 13.0 | 10.0 | - |
Wheat | 20.0 | 20.0 | 25.0 | 30.0 | - |
Field pea | 0.0 | 10.0 | 20.0 | 30.0 | - |
Wheat bran | 0.0 | 8.5 | 12.8 | 6.1 | - |
Calcic carbonate | 1.5 | 1.5 | 1.3 | 1.3 | - |
Sugarcane molasses | 1.5 | 1.5 | 1.5 | 0.0 | - |
Palm oil | 1.0 | 2.4 | 2.6 | 1.4 | - |
Salt | 0.3 | 0.3 | 0.3 | 0.3 | - |
Vitamin, mineral supplements | 0.3 | 0.3 | 0.3 | 0.3 | - |
Chemical composition 1 | |||||
Dry matter (DM) (g/kg) | 851 (2.0) | 849 (2.3) | 848 (2.0) | 848 (1.3) | 853 (8.1) |
Ash (g/kg DM) | 53 (0.4) | 53 (0.3) | 51 (0.4) | 54 (0.9) | 67 (2.5) |
Crude protein (g/kg DM) | 199 (1.6) | 194 (2.1) | 195 (1.3) | 188 (1.0) | 28 (2.3) |
NDFom (g/kg DM) | 212 (8.6) | 226 (8.9) | 237 (9.3) | 216 (6.3) | 795 (3.3) |
ADFom (g/kg DM) | 44 (0.9) | 54 (2.3) | 62 (1.4) | 60 (0.9) | 479 (3.7) |
Lignin (sa) (g/kg DM) | 2 (0.4) | 4 (0.8) | 7 (0.9) | 5 (0.8) | 61 (0.6) |
Ether extract (g/kg DM) | 28 (1.4) | 38 (0.2) | 46 (0.1) | 31 (1.2) | - |
Starch (g/kg DM) | 441 (15.0) | 419 (14.3) | 410 (13.3) | 446(18.3) | - |
Gross energy (MJ/kg DM) | 19 (0.6) | 19 (0.9) | 20 (1.0) | 19 (1.2) | - |
Item | Pea in the Concentrate | RSD 1 | Contrast (p-Values) | |||||
---|---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | Linear | Quadratic | Cubic | ||
Dry matter | 0.670 | 0.676 | 0.663 | 0.710 | 0.0348 | 0.18 | 0.23 | 0.31 |
Organic matter | 0.683 | 0.689 | 0.674 | 0.719 | 0.0317 | 0.20 | 0.24 | 0.28 |
Crude protein | 0.678 | 0.698 | 0.685 | 0.729 | 0.0458 | 0.12 | 0.55 | 0.33 |
Neutral detergent fibre | 0.440 | 0.472 | 0.429 | 0.503 | 0.0531 | 0.29 | 0.48 | 0.18 |
Acid detergent fibre | 0.345 | 0.348 | 0.323 | 0.412 | 0.0668 | 0.32 | 0.28 | 0.43 |
Item | Pea in the Concentrate | RSD 1 | Contrast (p-Values) | |||||
---|---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | Linear | Quadratic | Cubic | ||
Consumed N (g/d) | 21.3 a | 20.8 b | 20.7 b | 20.1 c | 0.10 | <0.001 | 0.44 | 0.004 |
Urinary N (g/d) | 9.9 | 9.4 | 9.6 | 9.4 | 1.26 | 0.57 | 0.81 | 0.71 |
Faecal N (g/d) | 6.5 a | 6.0 ab | 6.2 ab | 5.2 b | 0.86 | 0.03 | 0.53 | 0.23 |
Retained N (g/d) | 4.9 | 5.4 | 4.9 | 5.5 | 1.13 | 0.65 | 0.94 | 0.46 |
Ratio of urinary to faecal N | 1.6 | 1.6 | 1.6 | 1.9 | 0.33 | 0.13 | 0.45 | 0.58 |
Item | Pea in the Concentrate | RSD 1 | Contrast (p-Values) | |||||
---|---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | Linear | Quadratic | Cubic | ||
Beginning of the trial | ||||||||
Total protein (g/L) | 38.3 | 33.8 | 42.0 | 42.0 | 7.35 | 0.17 | 0.47 | 0.15 |
Urea (mmol/L) | 6.6 | 6.5 | 6.6 | 6.2 | 0.64 | 0.41 | 0.52 | 0.56 |
Creatinine (µmol/L) | 94.9 | 111.5 | 117.5 | 112.8 | 16.95 | 0.12 | 0.20 | 1.00 |
Cholesterol (mmol/L) | 1.1 | 1.0 | 1.1 | 1.0 | 0.26 | 0.89 | 0.47 | 0.52 |
β-hydroxybutyrate (mmol/L) | 0.26 | 0.22 | 0.18 | 0.23 | 0.051 | 0.36 | 0.08 | 0.48 |
End of the trial | ||||||||
Total protein (g/L) | 38.7 | 40.7 | 42.2 | 40.5 | 6.14 | 0.55 | 0.48 | 0.83 |
Urea (mmol/L) | 6.9 | 6.9 | 6.6 | 6.5 | 0.65 | 0.31 | 0.88 | 0.72 |
Creatinine (µmol/L) | 118.2 | 118.6 | 113.9 | 122.0 | 22.33 | 0.87 | 0.69 | 0.68 |
Cholesterol (mmol/L) | 1.1 | 1.1 | 1.3 | 1.1 | 0.18 | 0.59 | 0.11 | 0.07 |
β-hydroxybutyrate (mmol/L) | 0.19 | 0.21 | 0.23 | 0.21 | 0.040 | 0.54 | 0.33 | 0.70 |
Item | Pea in the Concentrate | SEM 2 | Contrast (p-Values) | |||||
---|---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | Linear | Quadratic | Cubic | ||
Initial BW (kg) | 13.4 | 13.4 | 13.4 | 13.3 | 0.16 | 0.90 | 0.84 | 0.97 |
Final BW (kg) | 23.2 | 23.2 | 23.0 | 23.1 | 0.11 | 0.68 | 0.95 | 0.54 |
Average daily gain (g/d) | 240 | 252 | 247 | 248 | 6.5 | 0.74 | 0.68 | 0.68 |
Fattening period length (d) | 43 | 40 | 42 | 42 | 1.3 | 0.95 | 0.63 | 0.76 |
Total DM intake 1 (kg) | 24.4 | 23.4 | 23.5 | 25.7 | 0.96 | 0.66 | 0.43 | 0.90 |
Plasma metabolites | ||||||||
Total protein (g/L) | 29.6 | 31.2 | 26.1 | 28.3 | 0.95 | 0.29 | 0.88 | 0.10 |
Urea (mmol/L) | 4.27 | 4.68 | 4.65 | 4.65 | 0.14 | 0.38 | 0.48 | 0.72 |
Creatinine (µmol/L) | 64.1 b | 62.0 b | 75.4 ab | 79.8 a | 2.69 | 0.02 | 0.55 | 0.32 |
Cholesterol (mmol/L) | 0.58 b | 0.77 a | 0.59 b | 0.59 b | 0.02 | 0.49 | 0.06 | 0.01 |
β-hydroxybutyrate (mmol/L) | 0.26 | 0.20 | 0.34 | 0.18 | 0.10 | 0.87 | 0.67 | 0.39 |
Item | Pea in the Concentrate | SEM 1 | Contrast (p-Values) | |||||
---|---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | Linear | Quadratic | Cubic | ||
Hot carcass weight, kg | 10.54 ab | 10.93 a | 10.46 b | 10.63 ab | 0.1 | 0.80 | 0.51 | 0.04 |
Cold carcass weight, kg | 10.24 | 10.57 | 10.17 | 10.30 | 0.1 | 0.74 | 0.50 | 0.07 |
Dressing percentage, % | 45.5 b | 47.0 a | 45.4 b | 46.0 ab | 0.3 | 1.00 | 0.40 | 0.02 |
Carcass shrinkage, % | 2.8 | 3.1 | 2.7 | 3.1 | 0.1 | 0.51 | 0.90 | 0.10 |
Fatness score (1–12 scale) | 5.1 | 5.2 | 5.6 | 5.6 | 0.1 | 0.09 | 0.75 | 0.62 |
Perirenal fat weight, g | 83 | 87 | 84 | 79 | 3.2 | 0.59 | 0.44 | 0.85 |
Fat depth, cm | 2.07 | 2.16 | 2.08 | 1.75 | 0.1 | 0.43 | 0.47 | 0.96 |
pH | 5.64 | 5.64 | 5.66 | 5.63 | 0.01 | 0.89 | 0.32 | 0.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobón, S.; Joy, M.; Casasús, I.; Rufino-Moya, P.J.; Blanco, M. Field Pea Can Be Included in Fattening Concentrate without Deleterious Effects on the Digestibility and Performance of Lambs. Animals 2020, 10, 243. https://doi.org/10.3390/ani10020243
Lobón S, Joy M, Casasús I, Rufino-Moya PJ, Blanco M. Field Pea Can Be Included in Fattening Concentrate without Deleterious Effects on the Digestibility and Performance of Lambs. Animals. 2020; 10(2):243. https://doi.org/10.3390/ani10020243
Chicago/Turabian StyleLobón, Sandra, Margalida Joy, Isabel Casasús, Pablo Jose Rufino-Moya, and Mireia Blanco. 2020. "Field Pea Can Be Included in Fattening Concentrate without Deleterious Effects on the Digestibility and Performance of Lambs" Animals 10, no. 2: 243. https://doi.org/10.3390/ani10020243
APA StyleLobón, S., Joy, M., Casasús, I., Rufino-Moya, P. J., & Blanco, M. (2020). Field Pea Can Be Included in Fattening Concentrate without Deleterious Effects on the Digestibility and Performance of Lambs. Animals, 10(2), 243. https://doi.org/10.3390/ani10020243