The Occurrence of Antimicrobial-Resistant Salmonella enterica in Hatcheries and Dissemination in an Integrated Broiler Chicken Operation in Korea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
- (i)
- A total of 220 cloacal swab test samples were collected from 44 hatcheries. Twenty-five cloacal swab samples were randomly collected from the entire area of each hatchery, and samples from five chicks were pooled into one test sample (S, n = 5).
- (ii)
- A total of 200 test samples, including 125 cloacal swab samples and 75 litter samples, were collected from 25 breeder farms. Twenty-five cloacal swab samples and fifteen litter samples were randomly collected from the entire areas of each breeder farm, and five samples obtained from the similar area were pooled into one test sample. Finally, cloacal swabs (S, n = 5) and litter (L, n = 3) were collected from each farm.
2.2. Isolation and Identification of Salmonella
2.3. Antimicrobial Susceptibility Test
2.4. Molecular Characterization of Resistance
2.5. Pulsed-Field Gel Electrophoresis and BioNumerics Analysis
2.6. Statistical Analysis
3. Results
3.1. Prevalence and Serovars of Salmonella
3.2. Antimicrobial Susceptibility Analysis
3.3. Quinolone-Resistance Determining Region (QRDR) Mutations, Plasmid-Mediated QuinoloneRresistance (PMQR), and Extended-Spectrum β-Lactamase (ESBL)-Producing Isolates
3.4. Correlations among Salmonella Isolates from Hatcheries and Downstream Stages along an Integrated Broiler Chicken Operation Based on Genotypic Characteristics
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. National Salmonella Surveillance Annual Report and Appendices 2013; US Department of Health and Human Services: Atlanta, GA USA, 2016.
- Li, K.; Ye, S.; Alali, W.Q.; Wang, Y.; Wang, X.; Xia, X.; Yang, B. Antimicrobial susceptibility, virulence gene and pulsed-field gel electrophoresis profiles of Salmonella enterica serovar Typhimurium recovered from retail raw chickens, China. Food Control 2017, 72, 36–42. [Google Scholar] [CrossRef]
- Jackson, B.R.; Griffin, P.M.; Cole, D.; Walsh, K.A.; Chai, S.J. Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1239. [Google Scholar] [CrossRef] [Green Version]
- Min, K.-J.; Hwang, I.-G.; Lee, S.-H.; Cho, J.-I.; Yoon, K.-S. Determination of risk ranking of combination of potentially hazardous foods and foodborne pathogens using a risk ranger. J. Food Hyg. Saf. 2011, 26, 91–99. [Google Scholar]
- Sunyoung Choi, T.M. South Korea: Poultry and Products Annual 2019. Available online: http://agriexchange.apeda.gov.in/marketreport/Reports/Poultry_and_Products_Annual_Seoul_Korea_Republic_of_8-29-2019.pdf (accessed on 6 August 2020).
- Shang, K.; Wei, B.; Jang, H.-K.; Kang, M. Phenotypic characteristics and genotypic correlation of antimicrobial resistant (AMR) Salmonella isolates from a poultry slaughterhouse and its downstream retail markets. Food Control 2019, 100, 35–45. [Google Scholar] [CrossRef]
- Centers for Disease Control. National Antimicrobial Resistance Monitoring System: Enteric Bacteria. 2012; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2014. Available online: https://www.cdc.gov/narms/pdf/2012-annual-report-narms-508c.pdf (accessed on 21 August 2020).
- Eller, C.; Simon, S.; Miller, T.; Frick, J.-S.; Prager, R.; Rabsch, W.; Guerra, B.; Werner, G.; Pfeifer, Y. Presence of β-lactamases in extended-spectrum-cephalosporin-resistant Salmonella enterica of 30 different serovars in Germany 2005–11. J. Antimicrob. Chemother. 2013, 68, 1978–1981. [Google Scholar] [CrossRef] [PubMed]
- Djeffal, S.; Bakour, S.; Mamache, B.; Elgroud, R.; Agabou, A.; Chabou, S.; Hireche, S.; Bouaziz, O.; Rahal, K.; Rolain, J.-M. Prevalence and clonal relationship of ESBL-producing Salmonella strains from humans and poultry in northeastern Algeria. BMC Vet. Res. 2017, 13, 132. [Google Scholar] [CrossRef]
- Hindermann, D.; Gopinath, G.; Chase, H.; Negrete, F.; Althaus, D.; Zurfluh, K.; Tall, B.D.; Stephan, R.; Nüesch-Inderbinen, M. Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: Poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Front. Microbiol. 2017, 8, 1322. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Critically Important Antimicrobials for Human Medicine: Ranking of Antimicrobial Agents for Risk Management of Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Eguale, T.; Birungi, J.; Asrat, D.; Njahira, M.N.; Njuguna, J.; Gebreyes, W.A.; Gunn, J.S.; Djikeng, A.; Engidawork, E. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrob. Resist. Infect. Control 2017, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Youn, S.Y.; Jeong, O.M.; Choi, B.K.; Jung, S.C.; Kang, M.S. Comparison of the antimicrobial and sanitizer resistance of Salmonella isolates from chicken slaughter processes in Korea. J. Food Sci. 2017, 82, 711–717. [Google Scholar] [CrossRef]
- Racicot, M.; Comeau, G.; Tremblay, A.; Quessy, S.; Cereno, T.; Charron-Langlois, M.; Venne, D.; Hébert, G.; Vaillancourt, J.P.; Fravalo, P. Identification and selection of food safety-related risk factors to be included in the Canadian Food Inspection Agency’s Establishment-based Risk Assessment model for Hatcheries. Zoonoses Public Health 2020, 67, 14–24. [Google Scholar] [CrossRef]
- Mueller-Doblies, D.; Clouting, C.; Davies, R. Investigations of the distribution and persistence of Salmonella and ciprofloxacin-resistant Escherichia coli in turkey hatcheries in the UK. Zoonoses Public Health 2013, 60, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, K. Hatchery hygiene evaluation by microbiological examination of hatchery samples. Poult. Sci. 2010, 89, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.; Bailey, J.; Blankenship, L.; Meinersmann, R.; Stern, N.; McHan, F. Research note: Fifty percent colonization dose for Salmonella Typhimurium administered orally and intracloacally to young broiler chicks. Poult. Sci. 1990, 69, 1809–1812. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Yin, K.; Yin, C.; Hu, Y.; Li, J.; Zhou, Z.; Tian, Y.; Geng, S.; Chen, X.; Pan, Z. Analyses of prevalence and molecular typing reveal the spread of antimicrobial-resistant Salmonella infection across two breeder chicken farms. Poult. Sci. 2018, 97, 4374–4383. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Ha, J.S.; Kim, B.Y.; Lee, D.H.; Park, J.K.; Youn, H.N.; Hong, Y.H.; Lee, S.B.; Lee, J.B.; Park, S.Y.; et al. Prevalence and characterization of Salmonella species in entire steps of a single integrated broiler supply chain in Korea. Poult. Sci. 2014, 93, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.; Bailey, J.; Berrang, M. Bactericidal treatment of hatching eggs I. Chemical immersion treatments and Salmonella. J. Appl. Poult. Res. 1998, 7, 347–350. [Google Scholar] [CrossRef]
- Davies, R.; Breslin, M. Environmental contamination and detection of Salmonella enterica serovar enteritidis in laying flocks. Vet. Rec. 2001, 149, 699–704. [Google Scholar] [CrossRef]
- Davies, R.; Nicholas, R.; McLaren, I.; Corkish, J.; Lanning, D.; Wray, C. Bacteriological and serological investigation of persistent Salmonella Enteritidis infection in an integrated poultry organisation. Vet. Microbiol. 1997, 58, 277–293. [Google Scholar] [CrossRef]
- Bailey, J.; Stern, N.; Fedorka-Cray, P.; Craven, S.; Cox, N.; Cosby, D.; Ladely, S.; Musgrove, M. Sources and movement of Salmonella through integrated poultry operations: A multistate epidemiological investigation. J. Food Prot. 2001, 64, 1690–1697. [Google Scholar] [CrossRef]
- Kim, A.; Lee, Y.J.; Kang, M.S.; Kwag, S.I.; Cho, J.K. Dissemination and tracking of Salmonella spp. in integrated broiler operation. J. Vet. Sci. 2007, 8, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.S.; Seo, K.W.; Kim, Y.B.; Kang, M.S.; Song, C.-S.; Lee, Y.J. Prevalence and characterization of Salmonella in two integrated broiler operations in Korea. Irish Vet. J. 2018, 71, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.S.; Lim, T.H.; Jang, J.H.; Lee, D.H.; Kim, B.Y.; Kwon, J.H.; Choi, S.W.; Noh, J.Y.; Hong, Y.H.; Lee, S.B.; et al. Prevalence and antimicrobial resistance of Salmonella species isolated from chicken meats produced by different integrated broiler operations in Korea. Poult. Sci. 2012, 91, 2370–2375. [Google Scholar] [CrossRef] [PubMed]
- Shang, K.; Wei, B.; Kang, M. Distribution and dissemination of antimicrobial-resistant Salmonella in broiler farms with or without enrofloxacin use. BMC Vet. Res. 2018, 14, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization. Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.; European Committee for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Shanmugasamy, M.; Velayutham, T.; Rajeswar, J. Inv A gene specific PCR for detection of Salmonella from broilers. Vet. World 2011, 4, 562. [Google Scholar] [CrossRef]
- Ewing, W. Edwards and Ewing’s Identification of Enterobacteriaceae; Elsevier Science Publishing Co. Inc.: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, Approved Standard M100-S30; 30th Informational Supplement; CLSI Wayne: Chester County, PA, USA, 2020. [Google Scholar]
- Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. In Approved Standard Vet01-A4; CLSI Wayne: Chester County, PA, USA, 2018. [Google Scholar]
- Ojo, O.E.; Ogunyinka, O.G.; Agbaje, M.; Okuboye, J.O.; Kehinde, O.O.; Oyekunle, M.A. Antibiogram of Enterobacteriaceae isolated from free-range chickens in Abeokuta, Nigeria. Vet. Arhiv 2012, 82, 577–589. [Google Scholar]
- Jeong, H.S.; Kim, J.A.; Shin, J.H.; Chang, C.L.; Jeong, J.; Cho, J.-H.; Kim, M.-N.; Kim, S.; Kim, Y.R.; Lee, C.H. Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in Salmonella isolated from 12 tertiary-care hospitals in Korea. Microb. Drug Resist. 2011, 17, 551–557. [Google Scholar] [CrossRef]
- Dierikx, C.; van Essen-Zandbergen, A.; Veldman, K.; Smith, H.; Mevius, D. Increased detection of extended spectrum beta-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry. Vet. Microbiol. 2010, 145, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Liljebjelke, K.A.; Hofacre, C.L.; Liu, T.; White, D.G.; Ayers, S.; Young, S.; Maurer, J.J. Vertical and horizontal transmission of Salmonella within integrated broiler production system. Foodborne Pathog. Dis. 2005, 2, 90–102. [Google Scholar] [CrossRef]
- Fei, X.; He, X.; Guo, R.; Yin, C.; Geng, H.; Wu, K.; Yin, K.; Geng, S.; Pan, Z.; Li, Q. Analysis of prevalence and CRISPR typing reveals persistent antimicrobial-resistant Salmonella infection across chicken breeder farm production stages. Food Control 2017, 77, 102–109. [Google Scholar] [CrossRef]
- Hurd, H.; McKean, J.; Griffith, R.; Rostagno, M. Estimation of the Salmonella enterica prevalence in finishing swine. Epidemiol. Infect. 2004, 132, 127–135. [Google Scholar] [CrossRef]
- Moe, A.Z.; Paulsen, P.; Pichpol, D.; Fries, R.; Irsigler, H.; Baumann, M.P.; Oo, K.N. Prevalence and antimicrobial resistance of Salmonella isolates from chicken carcasses in retail markets in Yangon, Myanmar. J. Food Prot. 2017, 80, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Nidaullah, H.; Abirami, N.; Shamila-Syuhada, A.K.; Chuah, L.-O.; Nurul, H.; Tan, T.P.; Abidin, F.W.Z.; Rusul, G. Prevalence of Salmonella in poultry processing environments in wet markets in Penang and Perlis, Malaysia. Vet. World 2017, 10, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ta, Y.T.; Nguyen, T.T.; To, P.B.; Pham, D.X.; Le, H.T.H.; Thi, G.N.; Alali, W.Q.; Walls, I.; Doyle, M.P. Quantification, serovars, and antibiotic resistance of Salmonella isolated from retail raw chicken meat in Vietnam. J. Food Prot. 2014, 77, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, S.; Hwang, W.; Tsai, S.; Hsih, Y.; Chiou, C.; Tsen, H. Contamination of Salmonella Schwarzengrund cells in chicken meat from traditional marketplaces in Taiwan and comparison of their antibiograms with those of the human isolates. Poult. Sci. 2010, 89, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.-H.; Chiu, C.-H.; Horn, Y.-M.; Chiou, C.-S.; Lee, C.-Y.; Yeh, C.-M.; Yu, C.-Y.; Wu, C.-P.; Chang, C.-C.; Chu, C. Characterization of 13 multi-drug resistant Salmonella serovars from different broiler chickens associated with those of human isolates. BMC Microbiol. 2010, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Na, S.H.; Moon, D.C.; Kang, H.Y.; Song, H.-J.; Kim, S.-J.; Choi, J.-H.; Yoon, J.W.; Yoon, S.-S.; Lim, S.-K. Molecular characteristics of extended-spectrum β-lactamase/AmpC-producing Salmonella enterica serovar Virchow isolated from food-producing animals during 2010–2017 in South Korea. Int. J. Food Microbiol. 2020, 322, 108572. [Google Scholar] [CrossRef]
- Sodagari, H.R.; Mashak, Z.; Ghadimianazar, A. Prevalence and antimicrobial resistance of Salmonella serotypes isolated from retail chicken meat and giblets in Iran. J. Infect. Dev. Ctries. 2015, 9, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Cheong, H.J.; Lee, Y.J.; Hwang, I.S.; Kee, S.Y.; Cheong, H.W.; Song, J.Y.; Kim, J.M.; Park, Y.H.; Jung, J.-H.; Kim, W.J. Characteristics of non-typhoidal Salmonella isolates from human and broiler-chickens in southwestern Seoul, Korea. J. Korean Med. Sci. 2007, 22, 773–778. [Google Scholar] [CrossRef] [Green Version]
- Poroś-Głuchowska, J.; Markiewicz, Z. Antimicrobial resistance of Listeria monocytogenes. Acta Microbiol. Pol. 2003, 52, 113–129. [Google Scholar]
- Wilkins, M.; Bidol, S.; Boulton, M.; Stobierski, M.; Massey, J.; Robinson-Dunn, B. Human salmonellosis associated with young poultry from a contaminated hatchery in Michigan and the resulting public health interventions, 1999 and 2000. Epidemiol. Infect. 2002, 129, 19–27. [Google Scholar] [CrossRef]
- Ren, X.; Li, M.; Xu, C.; Cui, K.; Feng, Z.; Fu, Y.; Zhang, J.; Liao, M. Prevalence and molecular characterization of Salmonella enterica isolates throughout an integrated broiler supply chain in China. Epidemiol. Infect. 2016, 144, 2989–2999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Negrea, A.; Rhen, M.; Andersson, D.I. Genetic analysis of colistin resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 2009, 53, 2298–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, F.; Jin, H.; Hu, J.; Yuan, Z.; Shi, W.; Yang, X.; Meng, J.; Xu, X. Laboratory monitoring of bacterial gastroenteric pathogens Salmonella and Shigella in Shanghai, China 2006–2012. Epidemiol. Infect. 2015, 143, 478–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hordijk, J.; Veldman, K.; Dierikx, C.; van Essen-Zandbergen, A.; Wagenaar, J.A.; Mevius, D. Prevalence and characteristics of quinolone resistance in Escherichia coli in veal calves. Vet. Microbiol. 2012, 156, 136–142. [Google Scholar] [CrossRef]
- Lin, D.; Chen, K.; Chan, E.W.-C.; Chen, S. Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zhang, P.; Li, J.; Chengtao, S.; Wu, C. Prevalence and characterization of fluoroquinolone resistant Salmonella isolated from an integrated broiler chicken supply chain. Front. Microbiol. 2019, 10, 1865. [Google Scholar] [CrossRef] [Green Version]
- Tamang, M.D.; Nam, H.-M.; Kim, A.; Lee, H.-S.; Kim, T.-S.; Kim, M.-J.; Jang, G.-C.; Jung, S.-C.; Lim, S.-K. Prevalence and mechanisms of quinolone resistance among selected nontyphoid Salmonella isolated from food animals and humans in Korea. Foodborne Pathog. Dis. 2011, 8, 1199–1206. [Google Scholar] [CrossRef]
- Bae, D.-H.; Dessie, H.K.; Baek, H.-J.; Kim, S.-G.; Lee, H.-S.; Lee, Y.-J. Prevalence and characteristics of Salmonella spp. isolated from poultry slaughterhouses in Korea. J. Vet. Med. Sci. 2013, 13–0093. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-Y.; Park, J.-H.; Kwak, H.-S.; Woo, G.-J. Characterization of the quinolone resistance mechanism in foodborne Salmonella isolates with high nalidixic acid resistance. Int. J. Food Microbiol. 2011, 146, 52–56. [Google Scholar] [CrossRef]
- Deshpande, L.M.; Sader, H.S.; Debbia, E.; Nicoletti, G.; Fadda, G.; Jones, R.N. Emergence and epidemiology of fluoroquinolone-resistant Streptococcus pneumoniae strains from Italy: Report from the SENTRY Antimicrobial Surveillance Program (2001–2004). Diagn. Microbiol. Infect. Dis. 2006, 54, 157–164. [Google Scholar] [CrossRef]
- Baker, S.; Duy, P.T.; Nga, T.V.T.; Dung, T.T.N.; Phat, V.V.; Chau, T.T.; Turner, A.K.; Farrar, J.; Boni, M.F. Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure. Elife 2013, 2, e01229. [Google Scholar] [CrossRef]
- Kim, J.S.; Yun, Y.-S.; Kim, S.J.; Jeon, S.-E.; Lee, D.-Y.; Chung, G.T.; Yoo, C.-K.; Kim, J.; Group, P.K.W. Rapid emergence and clonal dissemination of CTX-M-15–producing Salmonella enterica serotype Virchow, South Korea. Emerg. Infect. Dis. 2016, 22, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prunić, B.; Milanov, D.; Velhner, M.; Pajić, M.; Pavlović, L.; Mišić, D. Clonal persistence of Salmonella enterica serovars Montevideo, Tennessee, and Infantis in feed factories. J. Infect. Dev. Ctries. 2016, 10, 662–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesse, L.L.; Nordby, K.; Heir, E.; Bergsjoe, B.; Vardund, T.; Nygaard, H.; Holstad, G. Molecular analyses of Salmonella enterica isolates from fish feed factories and fish feed ingredients. Appl. Environ. Microbiol. 2003, 69, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Cason, J.; Cox, N.; Bailey, J. Transmission of Salmonella Typhimurium during hatching of broiler chicks. Avian Dis. 1994, 583–588. [Google Scholar] [CrossRef]
- Heyndrickx, M.; Vandekerchove, D.; Herman, L.; Rollier, I.; Grijspeerdt, K.; De Zutter, L. Routes for Salmonella contamination of poultry meat: Epidemiological study from hatchery to slaughterhouse. Epidemiol. Infect. 2002, 129, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Cox, N.; Berrang, M. Hatchery-acquired salmonellae in broiler chicks. Poult. Sci. 1994, 73, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
Serovar (Serogroup) | Sampling Site, n a (%) | ||
---|---|---|---|
Hatchery | Breeder Farm | Total | |
Albany (C2–C3) | 17 (47.2) | 0 | 17 (40.5) |
Montevideo (C1) | 11 (30.6) | 3 (50.0) | 14 (33.3) |
Senftenberg (E4) | 5 (13.9) | 0 | 5 (11.9) |
Virchow (C1) | 0 | 3 (50.0) | 3 (7.1) |
Omuna (C1) | 1 (2.8) | 0 | 1 (2.4) |
Untypable | 2 (5.6) | 0 | 2 (4.8) |
Total | 36 | 6 | 42 |
Serovar | n | No. (%) of Isolates Resistant to Antimicrobials | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NAL | CIP | ENR | NEO | GEN | STR | TET | AMC | CEP | FOX | XNL | AMP | SXT | COL | FFN | CHL | MDR | ||
Hatchery | ||||||||||||||||||
Albany | 17 | 17 (100.0) | 0 | 0 | 0 | 0 | 11 (64.7) | 17 (100.0) | 0 | 0 | 0 | 0 | 17 (100.0) | 17 (100.0) | 0 | 3 (17.6) | 17 (100.0) | 17 (100.0) |
Montevideo | 11 | 11 (100.0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (9.1) | 0 | 0 | 0 | 0 |
Senftenberg | 5 | 5 (100.0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Omuna | 1 | 1 (100.0) | 0 | 0 | 0 | 0 | 1 (100.0) | 1 (100.0) | 0 | 0 | 0 | 0 | 1 (100.0) | 1 (100.0) | 0 | 0 | 1 (100.0) | 1 (100.0) |
Untypable | 2 | 1 (50.0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (50.0) | 0 | 1 (50.0) | 1 (50.0) | 1 (50.0) | 0 | 0 | 1 (50.0) |
Subtotal | 36 | 35 (97.2) | 0 | 0 | 0 | 0 | 15 (41.7) | 18 (50.0) | 0 | 0 | 1 (2.8) | 0 | 19 (52.8) | 20 (55.6) | 1 (2.8) | 3 (8.3) | 18 (50.0) | 19 (52.8) |
Breeder farm | ||||||||||||||||||
Montevideo | 3 | 3 (100.0) | 0 | 0 | 3 (100.0) | 0 | 3 (100.0) | 3 (100.0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 (100.0) |
Virchow | 3 | 2 (66.7) | 0 | 0 | 3 (100.0) | 0 | 2 (66.7) | 3 (100.0) | 0 | 0 | 0 | 2 (66.7) | 2 (66.7) | 0 | 0 | 0 | 0 | 2 (66.7) |
Subtotal | 6 | 5 (83.3) | 0 | 0 | 6 (100.0) | 0 | 5 (83.3) | 6 (100.0) | 0 | 0 | 0 | 2 (33.3) | 2 (33.3) | 0 | 0 | 0 | 0 | 5 (83.3) |
Total | 42 | 40 (95.2) | 0 | 0 | 6 (14.3) | 0 | 17 (40.5) | 24 (57.1) | 0 | 0 | 1 (2.4) | 2 (4.8) | 21 (50.0) | 23 (54.8) | 1 (2.4) | 3 (7.1) | 18 (42.9) | 24 (57.1) |
No. | Antimicrobial Resistance Profile a | Hatchery (n b = 36) | Breeder Farm (n = 6) | ||
---|---|---|---|---|---|
n (%) | Serovars (n) | n (%) | Serovars (n) | ||
1 | NAL | 13 (36.1) | Montevideo (7), Senftenberg (5), untypable (1) | 0 | - |
2 | NAL-STR-TET-SXT-AMP-CHL | 12 (33.3) | Albany (11), Omuna (1) | 0 | - |
3 | NAL-SXT | 4 (11.1) | Montevideo (4) | 0 | - |
4 | NAL-TET-SXT-AMP-CHL | 3 (8.3) | Albany (3) | 0 | - |
5 | NAL-TET-SXT-AMP-CHL-FFN | 3 (8.3) | Albany (3) | 0 | - |
6 | SXT-AMP-FOX-COL | 1 (2.7) | Untypable (1) | 0 | - |
7 | NAL-NEO-STR-TET | 0 | - | 3 (50.0) | Montevideo (3) |
8 | NAL-NEO-STR-TET-AMP-XNL | 0 | - | 1 (16.7) | Virchow (1) |
9 | NEO-STR-TET | 0 | - | 1 (16.7) | Virchow (1) |
10 | NAL-NEO-TET-AMP-XNL | 0 | - | 1 (16.7) | Virchow (1) |
Patterns | ENR MIC (µg/mL) | PMQR | QRDR Mutations | |||||||
---|---|---|---|---|---|---|---|---|---|---|
gyrA | parC | No. of Isolates | ||||||||
Ser-83-Tyr | Ser-83-Phe | Ser-87-Gly | Tyr-57-Ser | Tyr-57-Thy | Hatchery | Breeder Farm | Total | |||
P1 | 0.25−0.50 | □ | □ | □ | ■ | ■ | □ | 15 | 3 | 18 |
P2 | 0.25−0.50 | □ | □ | ■ | □ | □ | ■ | 9 | 1 | 10 |
P3 | 0.25−0.50 | □ | □ | ■ | □ | ■ | □ | 8 | 0 | 8 |
P4 | 0.25 | □ | ■ | □ | □ | ■ | □ | 1 | 0 | 1 |
P5 | 0.50 | □ | □ | □ | □ | ■ | □ | 0 | 1 | 1 |
n, % | 0 | 1 (2.6) | 18 (47.4) | 18 (47.4) | 37 (97.4) | 1 (2.6) | 33 | 5 | 38 |
Serovar | PFGE Type | Sampling Site | ||||
---|---|---|---|---|---|---|
Breeder Farm | Hatchery | Broiler Farm | Slaughterhouse | Retail Market | ||
Montevideo | SM | 3 b, 7 | 3, 7, 11, 12, 13, 14 | 3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 24, 25, 26, 27, 28, 29, 30 | 1, 2, 4, 7, 8, 10, 12, 21, 23 | 7, 12, 19, 22 |
Albany | SA | - a | 6, 8, 9, 10, 11 | - | 1, 2, 3, 4, 5, 7, 10, 11 | 1, 2, 4, 5, 9, 10, 11 |
Virchow | SV | 8, 9 | - | 2 | 2, 3, 4, 6, 7 | 1, 2, 4, 5 |
Serovar | Overlap or Not | PFGE Type | Downstream (Broiler Farm, Slaughterhouse, Retail Market) | |
---|---|---|---|---|
Number of Isolates/per PFGE Type | Percentage (%) | |||
Montevideo | Overlap | SM-7 | 25 | 25.0 |
SM-12 | 14 | 14.0 | ||
SM-13 | 5 | 5.0 | ||
SM-3, 11 | 4 | 4.0 | ||
Subtotal | 52 | 52.0 | ||
Non-overlap | SM-6, 15, 22, 26, 28 | 4 | 4.0 | |
SM-27 | 3 | 3.0 | ||
SM-1, 5, 10, 16, 19, 23, 29 | 2 | 2.0 | ||
SM-2, 4, 8, 9, 17, 18, 20, 21, 24, 25, 30 | 1 | 1.0 | ||
Subtotal | 48 | 48.0 | ||
Total | 100 | 100.0 | ||
Albany | Overlap | SA-11 | 14 | 19.7 |
SA-10 | 4 | 5.6 | ||
SA-9 | 3 | 4.2 | ||
Subtotal | 21 | 29.6 | ||
Non-overlap | SA-4 | 24 | 33.8 | |
SA-7 | 9 | 12.7 | ||
SA-1 | 8 | 11.3 | ||
SA-5 | 4 | 5.6 | ||
SA-2 | 3 | 4.2 | ||
SA-3 | 2 | 2.8 | ||
Subtotal | 50 | 70.4 | ||
Total | 71 | 100.0 | ||
Virchow | Non-overlap | SV-2 | 11 | 44.0 |
SV-4 | 6 | 24.0 | ||
SV-1 | 4 | 16.0 | ||
SV-3, 5, 6, 7 | 1 | 4.0 | ||
Total | 25 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, K.; Wei, B.; Cha, S.-Y.; Zhang, J.-F.; Park, J.-Y.; Lee, Y.-J.; Jang, H.-K.; Kang, M. The Occurrence of Antimicrobial-Resistant Salmonella enterica in Hatcheries and Dissemination in an Integrated Broiler Chicken Operation in Korea. Animals 2021, 11, 154. https://doi.org/10.3390/ani11010154
Shang K, Wei B, Cha S-Y, Zhang J-F, Park J-Y, Lee Y-J, Jang H-K, Kang M. The Occurrence of Antimicrobial-Resistant Salmonella enterica in Hatcheries and Dissemination in an Integrated Broiler Chicken Operation in Korea. Animals. 2021; 11(1):154. https://doi.org/10.3390/ani11010154
Chicago/Turabian StyleShang, Ke, Bai Wei, Se-Yeoun Cha, Jun-Feng Zhang, Jong-Yeol Park, Yea-Jin Lee, Hyung-Kwan Jang, and Min Kang. 2021. "The Occurrence of Antimicrobial-Resistant Salmonella enterica in Hatcheries and Dissemination in an Integrated Broiler Chicken Operation in Korea" Animals 11, no. 1: 154. https://doi.org/10.3390/ani11010154
APA StyleShang, K., Wei, B., Cha, S. -Y., Zhang, J. -F., Park, J. -Y., Lee, Y. -J., Jang, H. -K., & Kang, M. (2021). The Occurrence of Antimicrobial-Resistant Salmonella enterica in Hatcheries and Dissemination in an Integrated Broiler Chicken Operation in Korea. Animals, 11(1), 154. https://doi.org/10.3390/ani11010154