The Effect of Different Concentrations of Total Polyphenols from Paulownia Hybrid Leaves on Ruminal Fermentation, Methane Production and Microorganisms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Analysis of Total Polyphenols and Basic Nutrient Components
2.2. Batch Culture Experiments
2.3. Methane Production, Rumen Fermentation, and Microbial Population
2.4. Statistical Analysis
3. Results
3.1. Basic Nutrient and Phytochemical Components Analysis
3.2. Batch Culture Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramesh, B.; Ross, C.; Colombo, S. Estimating values of environmental impacts of dairy farming in New Zealand. N. Z. J. Agric. Res. 2009, 52, 377–389. [Google Scholar]
- Garnsworthy, P.C. The environmental impact of fertility in dairy cows: A modelling approach to predict methane and ammonia emissions. Anim. Feed Sci. Technol. 2004, 112, 211–223. [Google Scholar] [CrossRef]
- Mroczek, K.; Rudy, M.; Stanisławczyk, R.; Mroczek, J.R. Produkcja i konsumpcja mięsa w aspekcie zrównoważonego rozwoju. Pol. J. Sustain. Devlop. 2019, 22, 101–108. [Google Scholar] [CrossRef]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy intensification: Drivers, impacts and alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Véras, R.M.L.; Gois, G.C.; Nascimento, D.B.; Magalhães, A.L.R.; Teodoro, A.L.; Pinto, C.S.; Oliveira, L.P.; Campos, F.S.; Andrade, A.P.; Lima, I.E. Potential alternative feed sources for ruminant feeding from the biodiesel production chain by-products. S. Afr. J. Anim. Sci. 2020, 50, 69–77. [Google Scholar]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 2, 1–17. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Sahfi, M.E.; Elnesr, S.S.; Alqaisi, O.; El-Kassas, S.; Al-Wajeeh, A.S.; Taha, A.E.; Abd E-Hack, M.E. Phytochemical characteristics of Paulownia trees wastes and its use as unconventional feedstuff in animal feed. Anim. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Huang, H.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Lechniak, D.; Vazirigohar, M.; Varadyova, Z.; Kozłowska, M.; Cieślak, A. Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Anim. Feed Sci. Technol. 2021, 279, 115038. [Google Scholar] [CrossRef]
- Patra, A.K. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front. Vet. Sci. 2016, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Ślusarczyk, S.; Cieślak, A.; Yanza, Y.R.; Szumacher-Strabel, M.; Varadyova, Z.; Stafiniak, M.; Wojnicz, D.; Matkowski, A. Phytochemical profile and antioxidant activities of coleus amboinicus lour. Cultivated in Indonesia and Poland. Molecules 2021, 26, 2915. [Google Scholar] [CrossRef] [PubMed]
- Association of Offical Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005; ISBN 0-935584-77-3. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Cieslak, A.; Zmora, P.; Matkowski, A.; Nawrot-Hadzik, I.; Pers-Kamczyc, E.; El-Sherbiny, M.; Bryszak, M.; Szumacher-Strabel, M. Tannins from Sanguisorba officinalis affect in vitro rumen methane production and fermentation. J. Anim. Plant Sci. 2016, 26, 54–62. [Google Scholar]
- Damtoft, S.; Jensen, S.R. Tomentoside and 7-hydroxytomentoside, two iridoid glucosides from Paulownia tomentosa. Phytochemistry 1993, 34, 1636–1638. [Google Scholar] [CrossRef]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Stevenson, J.S. Invited review: Learning from the future—A vision for dairy farms and cows in 2067. J. Dairy Sci. 2018, 101, 3722–3741. [Google Scholar] [CrossRef] [Green Version]
- Sauvant, D.; Perez, J.M.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses and Fish; Wageningen Academic Publishers: Cambridge, MA, USA, 2004. [Google Scholar]
- Harper, K.; McNeill, D. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture 2015, 5, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Berchez, M.; Urcan, A.C.; Corcionivoschi, N.; Criste, A. In vitro effects of phenolic acids and IgY immunoglobulins on aspects of rumen fermentation. Rom. Biotechnol. Lett. Digit. ProScholar Media 2019, 24, 513–521. [Google Scholar] [CrossRef]
- Adach, W.; Zuchowski, J.; Moniuszko-Szajwaj, B.; Szumacher-Strabel, M.; Stochmal, A.; Olas, B.; Cieslak, A. Comparative phytochemical, antioxidant, and hemostatic studies of extract and four fractions from paulownia clone in vitro 112 leaves in human plasma. Molecules 2020, 25, 4371. [Google Scholar] [CrossRef]
- Patra, A.K. An Overview of Antimicrobial Properties of Different Classes of Phytochemicals. In Dietary Phytochemicals and Microbes; Patra, A.K., Ed.; Springer: New York, NY, USA, 2012; pp. 1–32. ISBN 978-94-007-3925-3. [Google Scholar]
- Choudhury, P.K.; Salem, A.Z.M.; Jena, R.; Kumar, S.; Singh, R.; Puniya, A.K. Rumen Microbiology: An Overview. In Rumen Microbiology: From Evolution to Revolution; Puniya, A.K., Singh, R., Kamra, D.N., Eds.; Springer: New Delhi, India, 2015; pp. 3–16. ISBN 978-81-322-2400-6. [Google Scholar]
- Patra, A.K.; Yu, Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol. 2015, 6, 1434. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, A.K.; Yu, Z. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations. J. Appl. Microbiol. 2015, 119, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Balcells, J.; Aris, A.; Serrano, A.; Seradj, A.R.; Crespo, J.; Devant, M. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets. J. Anim. Sci. 2012, 90, 4975–4984. [Google Scholar] [CrossRef]
Items | PLL | PLH | PLM | PLLA | PLT | SEM | p-Value |
---|---|---|---|---|---|---|---|
Dry matter (g/kg fresh matter) | 245 b | 289 b | 307 ab | 284 b | 374 a | 11.1 | 0.001 |
Organic matter (g/kg DM) | 878 b | 874 b | 873 b | 892 ab | 902 a | 3.37 | 0.013 |
Ash (g/kg DM) | 121 a | 126 a | 127 a | 108 ab | 98 b | 3.37 | 0.013 |
Crude protein (g/kg DM) | 194 a | 192 a | 168 a | 198 a | 52 b | 14.2 | <0.001 |
Crude fiber (g/kg DM) | 166 b | 162 b | 161 b | 151 b | 321 a | 15.1 | <0.001 |
Crude fat (g/kg DM) | 22 b | 24 b | 26 b | 32 a | 17 c | 1.12 | <0.001 |
NFC (g/kg DM) | 236 ab | 239 ab | 222 ab | 294 a | 215 b | 9.85 | 0.030 |
NDF (g/kg DM) | 425 b | 414 b | 457 b | 368 c | 618 a | 22.1 | <0.001 |
Peak | Rt (min) | λmax (nm) | Molecular ion m/z[M-H] - | MS * Main_ion | MS * Fragments | Formula | Identification | References | mg/g DM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLL | PLH | PLM | PLLA | PLT | SEM | p-Value | |||||||||
1 | 1.5 | 248 | 345.1201 | 183.0664 | 165,137 | C15H22O9 | 7-hydroxytomentoside | [17] | 3.66 d | 13.25 c | 14.01 b | 15.09 a | 0.169 e | 1.66 | <0.001 |
2 | 1.8 | 218,279 | 461.1672 | 315.1079 | 161,135 | C20H30O12 | Dicaffeoylacteoside | HMDB0039233 | 0.03 ab | 0.03 ab | 0.02 b | 0.02 b | 0.049 a | 0.003 | 0.006 |
3 | 2.7 | 326 | 487.1461 | 179.0332 | 161,135 | C21H28O13 | 1-O-Caffeoyl-6-O-alpha-rhamnopyranosyl-beta-glycopyranoside | 0.17 a | 0.14 b | 0.09 c | 0.1 c | 0.015 d | 0.02 | <0.001 | |
4 | 7.3 | 329.1245 | 167.0707 | 149,179 | C15H22O8 | 3-(4-Hydroxyphenyl)-1,2-propanediol 4′-O-glucoside | HMDB0033082 | 0.04 c | 0.34 b | 0.36 ab | 0.43 a | 0.015 c | 0.05 | <0.001 | |
5 | 8.5 | 330 | 639.1935 | 161.0232 | 325,529,179,151 | C29H36O16 | Campneoside isomer | 2.52 d | 6.63 a | 3.91 c | 5.31 b | 0.126 e | 0.61 | <0.001 | |
6 | 9.6 | 267,335 | 621.1112 | 351.0579 | 269,193 | C27H26O17 | Luteolin 4′,7-O-diglucuronide | 2.1 c | 3.25 a | 2.24 bc | 2.81 b | 0.014 d | 0.31 | <0.001 | |
7 | 9.8 | 287,329 | 653.2109 | 161.0238 | 179,459,621 | C30H38O16 | Campneoside I | 5315651 * | 0.51 c | 1.2 a | 0.51 c | 0.84 b | 0.109 d | 0.10 | <0.001 |
8 | 10.3 | 222,330 | 623.2017 | 461.1681 | 161,315 | C29H36O15 | Acteoside | HMDB0034843 | 5.94 c | 17.12 b | 17.36 b | 21.15 a | 1.751 d | 2.02 | <0.001 |
9 | 10.9 | 222,330 | 623.201 | 461.1684 | 161,315 | C29H36O15 | Isoacteoside | HMDB0041025 | 0.25 b | 1.09 a | 1.14 a | 1.29 a | 0.125 b | 0.14 | <0.001 |
10 | 11.3 | 285,327 | 591.1364 | 269.0462 | C27H28O15 | Apigenin 7-[rhamnosyl-(1->2)-galacturonide] | HMDB0038847 | 0.16 | 0.24 | 0.16 | 0.2 | 0.009 | 1.12 | 0.449 | |
11 | 11.7 | 220,330 | 665.2111 | 461.1669 | 161,315 | C31H38O16 | Acetyl acteoside(tubuloside B) | 9831166 * | 0.09 b | 0.59 a | 0.57 a | 0.68 a | 0.178 b | 0.06 | <0.001 |
12 | 12.9 | 220,329 | 651.2324 | 475.1813 | 175,193,160,329,313 | C31H40O15 | Epimeredinoside A | 11399576 * | 0.09 c | 0.71 a | 0.59 b | 0.8 a | 0.139 c | 0.08 | <0.001 |
13 | 13.7 | 220,329 | 591.211 | 429.1736 | 161,285 | C29H36O13 | Didehydroxyacteoside | 0.05 ab | 0.11 ab | 0.11 ab | 0.11 a | 0.014 b | 0.02 | 0.015 | |
Total polyphenols | 11.9 b | 31.35 a | 26.94 a | 33.63 a | 2.53 b | 3.56 | <0.001 |
Item | PLL | PLH | SEM | p-Value |
---|---|---|---|---|
pH | 6.57 | 6.62 | 0.011 | 0.02 |
IVDMD | 0.66 | 0.64 | 0.006 | 0.181 |
Ammonia, mM | 9.92 | 8.38 | 0.289 | 0.005 |
Total gas, ml/g DM | 301 | 290 | 1.227 | <0.001 |
CH4, mmole | 0.96 | 0.89 | 0.010 | <0.001 |
CH4, mmole/g DM | 2.39 | 2.22 | 0.024 | <0.001 |
CH4, mmole/l gas | 7.92 | 7.67 | 0.065 | 0.06 |
CH4, mmole/g IVDDM | 3.63 | 3.45 | 0.037 | 0.02 |
Total VFA, mM | 37.1 | 36.6 | 0.451 | 0.64 |
Acetate (A), % | 65.5 | 62.8 | 0.408 | 0.004 |
Propionate (P), % | 23.2 | 25.2 | 0.379 | 0.006 |
Iso-butyrate, % | 1.32 | 1.07 | 0.137 | 0.360 |
Butyrate, (%) | 7.68 | 8.17 | 0.174 | 0.346 |
Iso-valerate, % | 1.14 | 1.34 | 0.044 | 0.02 |
Valerate, % | 1.20 | 1.43 | 0.039 | 0.002 |
A/P ratio | 2.84 | 2.52 | 0.057 | 0.002 |
Microbial populations | ||||
Entodiniomorpha, 104/mL | 2.79 | 2.30 | 0.096 | 0.007 |
Holotricha, 104/mL | 0.30 | 0.28 | 0.017 | 0.483 |
Total protozoa, 104/mL | 3.09 | 2.57 | 0.110 | 0.01 |
Total bacteria, 108/mL | 3.53 | 3.37 | 0.091 | 0.389 |
Archaea, 107/mL | 2.98 | 2.11 | 0.202 | 0.029 |
Item | PLM | PLLA | PLT | SEM | p-Value |
---|---|---|---|---|---|
pH | 6.54 b | 6.57 ab | 6.61 a | 0.008 | <0.001 |
IVDMD | 0.65 a | 0.65 a | 0.55 b | 0.009 | <0.001 |
Ammonia, mM | 11.2 a | 12.0 a | 9.2 b | 0.252 | <0.001 |
Total gas, ml/g DM | 304 a | 296 b | 276 c | 1.930 | <0.001 |
CH4, mmole | 1.02 a | 0.86 b | 0.76 c | 0.018 | <0.001 |
CH4, mmole/g DM | 2.55 a | 2.14 b | 1.90 c | 0.046 | <0.001 |
CH4, mmole/l gas | 8.37 a | 7.23 b | 6.84 c | 0.114 | <0.001 |
CH4, mmole/g IVDDM | 3.91 a | 3.34 b | 3.48 b | 0.056 | <0.001 |
Total VFA, mM | 38.9 b | 42.1 a | 34.9 c | 0.638 | <0.001 |
Acetate (A), % | 66.8 ab | 65.6 b | 67.6 a | 0.354 | 0.049 |
Propionate (P), % | 21.8 b | 22.9 a | 20.5 c | 0.206 | <0.001 |
Iso-butyrate, % | 0.72 | 0.40 | 0.56 | 0.001 | 0.35 |
Butyrate, % | 8.13 | 8.21 | 8.27 | 0.130 | 0.346 |
Iso-valerate, % | 1.13 b | 1.47 a | 0.87 c | 0.054 | <0.001 |
Valerate, % | 1.17 b | 1.37 a | 0.89 c | 0.042 | <0.001 |
A/P ratio | 3.08 b | 2.87 c | 3.36 a | 0.047 | <0.001 |
Microbial populations | |||||
Entodiniomorpha, 104/mL | 2.09 | 1.82 | 1.92 | 0.099 | 0.235 |
Holotricha, 104/mL | 0.43 | 0.49 | 0.41 | 0.025 | 0.278 |
Total protozoa, 104/mL | 2.59 | 2.31 | 2.33 | 0.095 | 0.264 |
Total bacteria, 108/mL | 2.86 | 3.37 | 4.32 | 0.260 | 0.098 |
Archaea, 107/mL | 2.57 b | 1.86 c | 4.42 a | 0.440 | 0.035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puchalska, J.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Gao, M.; Petrič, D.; Nabzdyk, M.; Cieślak, A. The Effect of Different Concentrations of Total Polyphenols from Paulownia Hybrid Leaves on Ruminal Fermentation, Methane Production and Microorganisms. Animals 2021, 11, 2843. https://doi.org/10.3390/ani11102843
Puchalska J, Szumacher-Strabel M, Patra AK, Ślusarczyk S, Gao M, Petrič D, Nabzdyk M, Cieślak A. The Effect of Different Concentrations of Total Polyphenols from Paulownia Hybrid Leaves on Ruminal Fermentation, Methane Production and Microorganisms. Animals. 2021; 11(10):2843. https://doi.org/10.3390/ani11102843
Chicago/Turabian StylePuchalska, Julia, Małgorzata Szumacher-Strabel, Amlan Kumar Patra, Sylwester Ślusarczyk, Min Gao, Daniel Petrič, Maria Nabzdyk, and Adam Cieślak. 2021. "The Effect of Different Concentrations of Total Polyphenols from Paulownia Hybrid Leaves on Ruminal Fermentation, Methane Production and Microorganisms" Animals 11, no. 10: 2843. https://doi.org/10.3390/ani11102843
APA StylePuchalska, J., Szumacher-Strabel, M., Patra, A. K., Ślusarczyk, S., Gao, M., Petrič, D., Nabzdyk, M., & Cieślak, A. (2021). The Effect of Different Concentrations of Total Polyphenols from Paulownia Hybrid Leaves on Ruminal Fermentation, Methane Production and Microorganisms. Animals, 11(10), 2843. https://doi.org/10.3390/ani11102843