Intramuscular Fatty Acids in Meat Could Predict Enteric Methane Production by Fattening Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
R2adj = 0.74; RMSPE = 0.40 g/d; %RMSPE = 2.83%; CCC = 0.89
R2adj = 0.93; RMSPE = 0.34 g/d; %RMSPE = 2.28%; CCC = 0.98
R2adj = 0.91; RMSPE = 0.29 g/d; %RMSPE = 2.51%; CCC = 0.96
R2adj = 0.97; RMSPE = 0.76 g/d; %RMSPE = 4.04%; CCC = 0.98
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Schultz, M.M.; Neser, F.W.; Makgahlela, M.L. A balanced perspective on the importance of extensive ruminant production for human nutrition and livelihoods and its contribution to greenhouse gas emissions. S. Afr. J. Sci. 2020, 116, 1–3. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtanen, P.; Ramin, M.; Cabezas-Garcia, E.H. Effects of ruminal digesta retention time on methane emissions: A modelling approach. Anim. Prod. Sci. 2016, 56, 501–506. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Bahamondes, P.; Oba, M.; Beauchemin, K.A. Universally applicable methane prediction equations for beef cattle fed high- or low-forage diets. Can. J. Anim. Sci. 2017, 97, 83–94. [Google Scholar] [CrossRef]
- Patra, A.K.; Lalhriatpuii, M. Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agric. Ecosyst. Environ. 2016, 215, 89–99. [Google Scholar] [CrossRef]
- Patra, A.K.; Lalhriatpuii, M.; Debnath, B.C. Predicting enteric methane emission in sheep using linear and non-linear statistical models from dietary variables. Anim. Prod. Sci. 2016, 56, 574. [Google Scholar] [CrossRef]
- Pelchen, A.; Peters, K.J. Methane emissions from sheep. Small Rumin. Res. 1998, 27, 137–150. [Google Scholar] [CrossRef]
- Ramin, M.; Huhtanen, P. Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 2013, 96, 2476–2493. [Google Scholar] [CrossRef]
- Santiago-Juárez, B.; Moraes, L.E.; Appuhamy, J.A.D.R.N.; Pellikaan, W.F.; Casper, D.P.; Tricarico, J.; Kebreab, E. Prediction and evaluation of enteric methane emissions from lactating dairy cows using different levels of covariate information. Anim. Prod. Sci. 2016, 56, 557. [Google Scholar] [CrossRef]
- Bougouin, A.; Appuhamy, J.A.D.R.N.; Ferlay, A.; Kebreab, E.; Martin, C.; Moate, P.J.; Benchaar, C.; Lund, P.; Eugène, M. Individual milk fatty acids are potential predictors of enteric methane emissions from dairy cows fed a wide range of diets: Approach by meta-analysis. J. Dairy Sci. 2019, 102, 10616–10631. [Google Scholar] [CrossRef] [Green Version]
- Castro-Montoya, J.M.; Peiren, N.; Veneman, J.; De Baets, B.; De Campeneere, S.; Fievez, V. Predictions of methane emission levels and categories based on milk fatty acid profiles from dairy cows. Animal 2017, 11, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Requena, F.; Peña, F.; Agüera, E.; Martínez Marín, A.L. A meta-analytic approach to predict methane emissions from dairy goats using milk fatty acid profile. Sustainability 2020, 12, 4834. [Google Scholar] [CrossRef]
- van Lingen, H.J.; Crompton, L.A.; Hendriks, W.H.; Reynolds, C.K.; Dijkstra, J. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J. Dairy Sci. 2014, 97, 7115–7132. [Google Scholar] [CrossRef]
- Negussie, E.; de Haas, Y.; Dehareng, F.; Dewhurst, R.J.; Dijkstra, J.; Gengler, N.; Morgavi, D.P.; Soyeurt, H.; van Gastelen, S.; Yan, T.; et al. Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions. J. Dairy Sci. 2017, 100, 2433–2453. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Requena Domenech, F.; Correro Rueda, M.; de la Fuente, M.A.; Schiavone, A.; Martínez Marín, A.L. Odd- and branched-chain fatty acids in lamb meat as potential indicators of fattening diet characteristics. Foods 2021, 10, 77. [Google Scholar] [CrossRef]
- Avilés Ramírez, C.; Peña Blanco, F.; Horcada, A.; Núñez Sánchez, N.; Requena Domenech, F.; Guzmán Medina, P.; Martínez Marín, A.L. Effects of concentrates rich in by-products on growth performance, carcass characteristics and meat quality traits of light lambs. Anim. Prod. Sci. 2019, 59, 593–599. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Galisteo, O.O.; Avilés Ramirez, C.; Peña Blanco, F.; de la Fuente, M.A.; Núñez Sánchez, N.; Martínez Marín, A.L. Intramuscular fatty acid profile of feedlot lambs fed concentrates with alternative ingredients. Anim. Prod. Sci. 2019, 59, 914–920. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Blanco, C.; Bodas, R.; Prieto, N.; Andrés, S.; López, S.; Giráldez, F.J. Concentrate plus ground barley straw pellets can replace conventional feeding systems for light fattening lambs. Small Rumin. Res. 2014, 116, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Bell, M.; Eckard, R.; Moate, P.; Yan, T. Modelling the effect of diet composition on enteric methane emissions across sheep, beef cattle and dairy cows. Animals 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Sauvant, D.; Giger-Reverdin, S.; Serment, A.; Broudiscou, L. Influences des régimes et de leur fermentation dans le rumen sur sa production de méthane par les ruminants. Prod. Anim. 2011, 24, 433–446. [Google Scholar] [CrossRef]
- Guzmán-Cedillo, A.E.; Corona, L.; Castrejón-Pineda, F.; Rosiles-Martínez, R.; González-Ronquillo, M. Evaluation of chromium oxide and titanium dioxide as inert markers for calculating apparent digestibility in sheep. J. Appl. Anim. Res. 2017, 45, 275–279. [Google Scholar] [CrossRef]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Or-Rashid, M.M.; Odongo, N.E.; Mcbride, B. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J. Anim. Sci. 2007, 85, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Wallace, R.J. Chapter 1. Synthesis of conjugated linoleic acid in ruminants and humans. In Conjugated Linoleic Acids and Conjugated Vegetable Oils; Royal Society of Chemistry: London, UK, 2014; pp. 1–65. [Google Scholar]
- Benaouda, M.; Martin, C.; Li, X.; Kebreab, E.; Hristov, A.N.; Yu, Z.; Yáñez-Ruiz, D.R.; Reynolds, C.K.; Crompton, L.A.; Dijkstra, J.; et al. Evaluation of the performance of existing mathematical models predicting enteric methane emissions from ruminants: Animal categories and dietary mitigation strategies. Anim. Feed Sci. Technol. 2019, 255, 114207. [Google Scholar] [CrossRef]
- Ma, T.; Deng, K.; Diao, Q. Prediction of methane emission from sheep based on data measured in vivo from open-circuit respiratory studies. Asian-Australas. J. Anim. Sci. 2019, 32, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 166–167, 308–320. [Google Scholar] [CrossRef]
- Moe, P.W.; Tyrrell, H.F. Methane production in dairy cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Patra, A.K. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livest. Sci. 2014, 162, 97–103. [Google Scholar] [CrossRef]
- Chilliard, Y.; Martin, C.; Rouel, J.; Doreau, M. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 2009, 92, 5199–5211. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, J.; van Zijderveld, S.M.; Apajalahti, J.A.; Bannink, A.; Gerrits, W.J.J.; Newbold, J.R.; Perdok, H.B.; Berends, H. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 2011, 166–167, 590–595. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Alves, S.P.; Francisco, A.; Almeida, J.; Alfaia, C.M.; Martins, S.V.; Prates, J.A.M.; Santos-Silva, J.; Doran, O.; Bessa, R.J.B. The reduction of starch in finishing diets supplemented with oil does not prevent the accumulation of trans-10 18:1 in lamb meat. J. Anim. Sci. 2017, 95, 3745–3761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.A.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition. Meat Sci. 2017, 123, 166–172. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Francisco, A.; Alves, S.P.; Portugal, P.; Dentinho, T.; Almeida, J.; Soldado, D.; Jerónimo, E.; Bessa, R.J.B. Effect of dietary neutral detergent fibre source on lambs growth, meat quality and biohydrogenation intermediates. Meat Sci. 2019, 147, 28–36. [Google Scholar] [CrossRef]
- INRA. Alimentation des Bovins, Ovins et Caprins. Besoins des Animaux. Valeur des Aliments; Editions Quae: Versailles, France, 2007. [Google Scholar]
- Ferreira, E.M.; Pires, A.V.; Susin, I.; Gentil, R.S.; Parente, M.O.M.; Nolli, C.P.; Meneghini, R.C.M.; Mendes, C.Q.; Ribeiro, C.V.D.M. Growth, feed intake, carcass characteristics, and meat fatty acid profile of lambs fed soybean oil partially replaced by fish oil blend. Anim. Feed Sci. Technol. 2014, 187, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, Z.; Li, X.; Zhu, B.; Guo, L.; Li, F.; Weng, X. Effect of duration of linseed diet supplementation before slaughter on the performances, meat fatty acid composition and rumen bacterial community of fattening lambs. Anim. Feed Sci. Technol. 2020, 263, 114457. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, L.F.; Deng, K.D.; Xu, G.S.; Diao, Q.Y. Development of models of methane emissions from growing sheep. Sci. Agric. Sin. 2019, 52, 1797–1806. [Google Scholar] [CrossRef]
- Storm, I.M.L.D.; Hellwing, A.L.F.; Nielsen, N.I.; Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2012, 2, 160–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Treatments 1 | ||
---|---|---|---|
CON | CAM | FIB | |
Ash | 6.3 | 7.1 | 9.1 |
Crude protein | 17.6 | 17.5 | 17.8 |
Crude fat | 4.8 | 4.6 | 4.4 |
Neutral detergent fiber | 18.2 | 20.5 | 36.8 |
Non-fibrous carbohydrates 2 | 53.9 | 51.1 | 32.8 |
Gross energy 3 | 18.6 | 18.5 | 18.4 |
Parameters | Treatments 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
CON | CAM | FIB | |||||||
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |
C15:0 | 0.34 ± 0.06 | 0.28 | 0.40 | 0.32 ± 0.01 | 0.31 | 0.33 | 0.24 ± 0.04 | 0.21 | 0.31 |
C17:0 | 1.45 ± 0.24 | 1.19 | 1.76 | 1.34 ± 0.06 | 1.24 | 1.39 | 0.84 ± 0.12 | 0.75 | 1.05 |
C14:0 iso | 0.34 ± 0.05 | 0.28 | 0.39 | 0.24 ± 0.03 | 0.20 | 0.27 | 0.23 ± 0.04 | 0.18 | 0.28 |
C17:0 iso | 0.14 ± 0.03 | 0.10 | 0.18 | 0.13 ± 0.02 | 0.10 | 0.15 | 0.14 ± 0.04 | 0.10 | 0.19 |
C17:0 anteiso | 0.27 ± 0.05 | 0.21 | 0.33 | 0.45 ± 0.04 | 0.41 | 0.51 | 0.44 ± 0.07 | 0.36 | 0.56 |
Cis-11 C18:1 | 2.06 ± 0.22 | 1.79 | 2.25 | 2.14 ± 0.11 | 2.00 | 2.29 | 1.57 ± 0.11 | 1.47 | 1.76 |
Trans-10 C18:1 | 3.33 ± 1.22 | 1.20 | 4.21 | 4.77 ± 0.56 | 3.90 | 5.35 | 4.54 ± 0.98 | 3.60 | 5.81 |
Trans-11 C18:1 | 0.67 ± 0.06 | 0.59 | 0.76 | 1.26 ± 0.20 | 1.03 | 1.50 | 3.59 ± 0.62 | 3.25 | 4.70 |
Trans-11,cis-15 C18:2 | 0.04 ± 0.01 | 0.03 | 0.05 | 0.22 ± 0.02 | 0.21 | 0.25 | 0.27 ± 0.04 | 0.23 | 0.33 |
Cis-9,trans-11 18:2 | 0.18 ± 0.04 | 0.14 | 0.24 | 0.28 ± 0.05 | 0.24 | 0.35 | 0.79 ± 0.18 | 0.59 | 1.08 |
Trans-10,cis-12 C18:2 | 0.10 ± 0.01 | 0.09 | 0.11 | 0.10 ± 0.01 | 0.09 | 0.11 | 0.08 ± 0.00 | 0.08 | 0.08 |
Parameters | Treatments 1 | SEM 2 | p | ||
---|---|---|---|---|---|
CON | CAM | FIB | |||
OMD | 76.7 a | 77.2 a | 66.4 b | 1.41 | <0.001 |
DOM | 71.8 a | 71.7 a | 60.4 b | 1.49 | <0.001 |
DMI | 0.80 b | 0.77 b | 0.96 a | 0.03 | <0.001 |
DMI/kg BW | 40.9 b | 38.2 b | 48.5 a | 1.31 | <0.001 |
CH4 [11] | 14.7 a | 14.5 a,b | 13.3 b | 0.24 | <0.001 |
CH4 [27] | 16.1 a | 16.0 a | 13.0 b | 0.43 | <0.001 |
CH4 [28] | 12.5 a | 12.4 a | 10.4 b | 0.30 | <0.001 |
Treatments 1 | OMD | DOM | BW | DMI | DMI/kg BW | CH4 2 |
---|---|---|---|---|---|---|
Costa et al. [41] | ||||||
CON | 77.7 | 71.6 | 33.4 | 1.18 | 35.3 | 22.4 |
DCP | 80.8 | 72.9 | 32.7 | 1.23 | 37.6 | 22.8 |
DBP | 78.3 | 70.5 | 34.8 | 1.31 | 37.7 | 23.5 |
SH | 77.5 | 70.5 | 33.6 | 1.28 | 38.1 | 22.8 |
Oliveira et al. [42] | ||||||
MSMD | 80.9 | 74.9 | 27.3 | 1.1 | 40.4 | 19.9 |
MSHD | 80.3 | 74.0 | 25.3 | 0.99 | 39.1 | 18.1 |
HSMD | 82.6 | 77.0 | 26.4 | 0.88 | 33.3 | 18.6 |
HSHD | 82.3 | 76.7 | 26.9 | 0.93 | 34.6 | 19.1 |
Santos-Silva et al. [43] | ||||||
LA | 79.0 | 71.5 | 30.9 | 1.35 | 43.8 | 21.9 |
MA | 74.6 | 66.8 | 30.9 | 1.47 | 47.6 | 20.5 |
HA | 70.2 | 62.1 | 30.4 | 1.53 | 50.3 | 18.7 |
Treatments 1 | C17:0 iso | C17:0 anteiso | Cis-11 18:1 | Trans-11 18:1 | CH4 2 |
---|---|---|---|---|---|
Costa et al. [41] | |||||
CON | 0.20 | 0.30 | 1.41 | 0.91 | 21.1 |
DCP | 0.17 | 0.23 | 1.27 | 1.77 | 19.5 |
DBP | 0.18 | 0.33 | 1.39 | 1.62 | 21.3 |
SH | 0.27 | 0.32 | 1.29 | 3.56 | 15.3 |
Oliveira et al. [42] | |||||
MSMD | 0.19 | 0.31 | 1.33 | 0.69 | 17.9 |
MSHD | 0.20 | 0.34 | 1.29 | 0.72 | 16.6 |
HSMD | 0.15 | 0.38 | 1.42 | 0.58 | 18.5 |
HSHD | 0.21 | 0.35 | 1.34 | 0.66 | 17.6 |
Santos-Silva et al. [43] | |||||
LA | 0.19 | 0.30 | 1.18 | 0.91 | 20.0 |
MA | 0.19 | 0.27 | 1.06 | 1.67 | 18.7 |
HA | 0.22 | 0.30 | 1.11 | 2.32 | 16.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Requena Domenech, F.; Gómez-Cortés, P.; Martínez-Miró, S.; de la Fuente, M.Á.; Hernández, F.; Martínez Marín, A.L. Intramuscular Fatty Acids in Meat Could Predict Enteric Methane Production by Fattening Lambs. Animals 2021, 11, 2053. https://doi.org/10.3390/ani11072053
Requena Domenech F, Gómez-Cortés P, Martínez-Miró S, de la Fuente MÁ, Hernández F, Martínez Marín AL. Intramuscular Fatty Acids in Meat Could Predict Enteric Methane Production by Fattening Lambs. Animals. 2021; 11(7):2053. https://doi.org/10.3390/ani11072053
Chicago/Turabian StyleRequena Domenech, Francisco, Pilar Gómez-Cortés, Silvia Martínez-Miró, Miguel Ángel de la Fuente, Fuensanta Hernández, and Andrés Luis Martínez Marín. 2021. "Intramuscular Fatty Acids in Meat Could Predict Enteric Methane Production by Fattening Lambs" Animals 11, no. 7: 2053. https://doi.org/10.3390/ani11072053
APA StyleRequena Domenech, F., Gómez-Cortés, P., Martínez-Miró, S., de la Fuente, M. Á., Hernández, F., & Martínez Marín, A. L. (2021). Intramuscular Fatty Acids in Meat Could Predict Enteric Methane Production by Fattening Lambs. Animals, 11(7), 2053. https://doi.org/10.3390/ani11072053