Carnivore Detection at the Domestic/Wildlife Interface within Mpumalanga Province, South Africa
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Field Methodology
2.3. Data Collection
2.4. Data Summarization
2.5. Census
2.6. Data Analysis
2.6.1. Univariate Predictors of Carnivore Species Detection
2.6.2. Multivariable Predictors of Carnivore Species Detection
2.7. Interspecies Correlation
2.8. Spatial Interpolation
3. Results
3.1. Camera Traps
3.2. Census and Comparision with Camera Traps
3.3. Variables Predicting Carnivore Detection
3.4. Interspecies Correlation
3.5. Preferred Locations of Carnivores
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, C.M. Tourism and biodiversity: More significant than climate change? J. Herit. Tour. 2010, 5, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Burton, A.C.; Sam, M.K.; Balangtaa, C.; Brashares, J.S. Hierarchical Multi-Species Modeling of Carnivore Responses to Hunting, Habitat and Prey in a West African Protected Area. PLoS ONE 2012, 7, e38007. [Google Scholar] [CrossRef] [Green Version]
- Caro, T.; Stoner, C.J. The potential for interspecific competition among African carnivores. Biol. Conserv. 2003, 110, 67–75. [Google Scholar] [CrossRef]
- Butler, J.R.A.; du Toit, J.T.; Bingham, J. Free-ranging domestic dogs (Canis familiaris) as predators and prey in rural Zimbabwe: Threats of competition and disease to large wild carnivores. Biol. Conserv. 2004, 115, 369–378. [Google Scholar] [CrossRef]
- Balme, G.A.; Pitman, R.T.; Robinson, H.S.; Miller, J.R.B.; Funston, P.J.; Hunter, L.T.B. Leopard distribution and abundance is unaffected by interference competition with lions. Behav. Ecol. 2017, 28, 1348–1358. [Google Scholar] [CrossRef] [Green Version]
- Owen-Smith, N.; Mills, M.G. Predator-prey size relationships in an African large-mammal food web. J. Anim. Ecol. 2008, 77, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, H.; Chapron, G.; Nowell, K.; Henschel, P.; Funston, P.; Hunter, L.T.B.; Macdonald, D.W.; Packer, C. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. USA 2015, 112, 14894–14899. [Google Scholar] [CrossRef] [Green Version]
- Packer, C.; Loveridge, A.; Canney, S.; Caro, T.; Garnett, S.T.; Pfeifer, M.; Zander, K.K.; Swanson, A.; Macnulty, D.; Balme, G.; et al. Conserving large carnivores: Dollars and fence. Ecol. Lett. 2013, 16, 635–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- du Preez, B.; Purdon, J.; Trethowan, P.; Macdonald, D.W.; Loveridge, A.J. Dietary niche differentiation facilitates coexistence of two large carnivores. J.Mammal. 2017, 302, 149–156. [Google Scholar] [CrossRef]
- Mills, M.G.L. Conservation management of large carnivores in Africa. Koedoe 1991, 34, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Estes, R. The Behavior Guide to African Mammals, Including Hoofed Mammals, Carnivores, Primates, Twentieth Anniversary ed.; The University of California Press: London, UK; Berkeley, CA, USA; Los Angeles, CA, USA, 2012. [Google Scholar]
- Alexander, K.A.; Sanderson, C.E. Conserving Carnivores: More than Numbers. Science 2014, 343, 1199. [Google Scholar] [CrossRef] [PubMed]
- Funston, P.J.; Groom, R.J.; Lindsey, P.A. Insights into the Management of Large Carnivores for Profitable Wildlife-Based Land Uses in African Savannas. PLoS ONE 2013, 8, e59044. [Google Scholar] [CrossRef] [PubMed]
- Woodroffe, R.; Sillero-Zubiri, C. Lycaon Pictus (Amended Version of 2012 Assessment). The IUCN Red List of Threatened Species 2020. Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T12436A166502262.en (accessed on 4 May 2020).
- Durant, S.; Mitchell, N.; Ipavec, A.; Groom, R. Acinonyx Jubatus. The IUCN Red List of Threatened Species 2015. Available online: https://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T219A50649567.en (accessed on 4 May 2020).
- Creel, S.; Becker, M.S.; Durant, S.M.; M’Soka, J.; Matandiko, W.; Dickman, A.J.; Christianson, D.; Dröge, E.; Mweetwa, T.; Pettorelli, N.; et al. Conserving large populations of lions—The argument for fences has holes. Ecol. Lett. 2013, 16, 1413-e3. [Google Scholar] [CrossRef]
- Albertson, A. Northern Botswana: Veterinary Fences: Critical Ecological Impacts; The Wild Foundation/Kalahari Conservation Society: Gabarone, Botswana, 1998; 59p. [Google Scholar]
- Hovardas, T.; Penteriani, V.; Trouwborst, A.; López-Bao, J.V. Editorial: Conservation and Management of Large Carnivores—Local Insights for Global Challenges. Front. Ecol. Evol. 2021, 9, 230. [Google Scholar] [CrossRef]
- van de Bildt, M.W.G.; Kuiken, T.; Visee, A.M.; Lema, S.; Fitzjohn, T.R.; Osterhaus, A.D.M.E. Distemper outbreak and its effect on African wild dog conservation. Emerg. Infect. Dis. 2002, 8, 211–213. [Google Scholar] [CrossRef]
- Barea-Azcón, J.M.; Virgós, E.; Ballesteros-Duperón, E.; Moleón, M.; Chirosa, M. Surveying carnivores at large spatial scales: A comparison of four broad-applied methods. Biodivers. Conserv. 2007, 16, 1213–1230. [Google Scholar] [CrossRef]
- Ogutu, J.O.; Dublin, H.T. The response of lions and spotted hyaenas to sound playbacks as a technique for estimating population size. Afr. J. Ecol. 1998, 36, 83–95. [Google Scholar] [CrossRef]
- Windell, R.M.; Lewis, J.S.; Gramza, A.R.; Crooks, K.R. Carnivore Carrying Behavior as Documented with Wildlife Camera Traps. West. N. Am. Nat. 2019, 79, 471–480. [Google Scholar] [CrossRef]
- Pettorelli, N.; Lobora, A.L.; Msuha, M.J.; Foley, C.; Durant, S.M. Carnivore biodiversity in Tanzania: Revealing the distribution patterns of secretive mammals using camera traps. Anim. Conserv. 2010, 13, 131–139. [Google Scholar] [CrossRef]
- Robley, A.; Gormley, A.; Woodford, L.; Linderman, M.; Whitehead, B.; Albert, R.; Bowd, M.; Smith, A. Evaluation of Camera Trap Sampling Designs Used to Determine Change in Occupancy Rate and Abundance of Feral Cats; Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment: Melbourne, Australia, 2010. [Google Scholar]
- Silveria, L.; Jacomo, A.T.A.; Diniz-Filho, J.A.F. Camera trap, line transect census and track surveys: A comparative evaluation. Biol. Conserv. 2003, 114, 351–355. [Google Scholar] [CrossRef]
- Kukielka, E.; Barasona, J.A.; Cowie, C.E.; Drewe, J.A.; Gortazar, C.; Cotarelo, I.; Vicente, J. Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Prev. Vet. Med. 2013, 112, 213–221. [Google Scholar] [CrossRef]
- Jenks, K.E.; Chanteap, P.; Kanda, D.; Peter, C.; Cutter, P.; Redford, T.; Antony, J.L.; Howard, J.; Leimgruber, P. Using Relative Abundance Indices from Camera-Trapping to Test Wildlife Conservation Hypotheses—An Example from Khao Yai National Park, Thailand. Trop. Conserv. Sci. 2011, 4, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Broadley, K.; Burton, A.C.; Avgar, T.; Boutin, S. Density-dependent space use affects interpretation of camera trap detection rates. Ecol. Evol. 2019, 9, 14031–14041. [Google Scholar] [CrossRef] [Green Version]
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2006; Volume 19. [Google Scholar]
- Cronje, H.P.; Panagos, M.D.; Reilly, B.K. The plant communities of the Andover Game Reserve, South Africa. Koedo Afr. Prot. Area Conserv. Sci. 2008, 50, 18. [Google Scholar] [CrossRef]
- Bronkhorst, F. Management Plans Andover and Manyeleti, Ecology Information; Mpumalanga Tourism and Parks Agency: Nelspruit, South Africa, 2019. [Google Scholar]
- Bredenkamp, G.J.; Theron, G.K. A Quantitative approach to the structural analysis and classification of the vegetation of the Manyeleti Game reserve. S. Afr. J. Bot. 1985, 51, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Statistics, S.A. Available online: http://www.statssa.gov.za/ (accessed on 27 June 2015).
- Taylor, R.D.; Martin, R.B. Effects of veterinary fences on wildlife conservation in Zimbabwe. Environ. Manag. 1987, 11, 327–334. [Google Scholar] [CrossRef]
- Trouwborst, A.; Fleurke, F.; Dubrulle, J. Border Fences and their Impacts on Large Carnivores, Large Herbivores and Biodiversity: An International Wildlife Law Perspective. Reciel 2016, 25, 291–306. [Google Scholar] [CrossRef] [Green Version]
- Edwards, E. A broad-scale structural classification of vegetation for practical purposes. Bothalia 1983, 14, 8. [Google Scholar] [CrossRef]
- Szumilas, M. Explaining odds ratios. J. Am. Acad. Child. Adolesc. Psychiatry 2010, 19, 227–229. [Google Scholar]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Lindsey, P.A.; Petracca, L.S.; Funston, P.J.; Bauer, H.; Dickman, A.; Everatt, K.; Flyman, M.; Henschel, P.; Hinks, A.E.; Kasiki, S.; et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 2017, 209, 137–149. [Google Scholar] [CrossRef]
- Tranquilli, S.; Abedi-Lartey, M.; Abernethy, K.; Amsini, F.; Asamoah, A.; Balangtaa, C.; Blake, S.; Bouanga, E.; Breuer, T.; Brncic, T.M.; et al. Protected Areas in Tropical Africa: Assessing Threats and Conservation Activities. PLoS ONE 2014, 9, e114154. [Google Scholar] [CrossRef]
- Meer, E.V.D.; Badza, M.N.; Ndhlovu, A. Large Carnivores as Tourism Flagship Species for the Zimbabwe Component of the Kavango Zambezi Transfrontier Conservation Area. Afr. J. Wildl. Res. 2016, 46, 114, 121–134. [Google Scholar] [CrossRef]
- Crooks, K.R.; Soulé, M.E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 1999, 400, 563–566. [Google Scholar] [CrossRef]
- Elliot, N.B.; Gopalaswamy, A.M. Toward accurate and precise estimates of lion density. Conserv. Biol. J. Soc. Conserv. Biol. 2017, 31, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Midlane, N.; O’Riain, J.M.; Balme, G.; Robinson, H.; Hunter, L. On tracks: A spoor-based occupancy survey of lion Panthera leo distribution in Kafue National Park, Zambia. Biol. Conserv. 2014, 172, 101–108. [Google Scholar] [CrossRef]
- Geyle, H.M.; Stevens, M.; Duffy, R.; Greenwood, L.; Nimmo, D.G.; Sandow, D.; Thomas, B.; White, J.; Ritchie, E.G. Evaluation of camera placement for detection of free-ranging carnivores; implications for assessing population changes. Ecol. Solut. Evid. 2020, 1, e12018. [Google Scholar] [CrossRef]
- Dröge, E.; Creel, S.; Becker, M.S.; Loveridge, A.J.; Sousa, L.L.; Macdonald, D.W. Assessing the performance of index calibration survey methods to monitor populations of wide-ranging low-density carnivores. Ecol. Evol. 2020, 10, 3276–3292. [Google Scholar] [CrossRef]
- Allen, M.L.; Evans, B.E.; Wheeler, M.E.; Mueller, M.A.; Pemble, K.; Olson, E.; Stappen, J.V.; Deelen, T.V. Survey techniques, detection probabilities, and the relative abundance of the carnivore guild on the Apostle Islands (2014–2016). arXiv 2017, arXiv:1703.10726. [Google Scholar]
- Viljoen, P.C. The effects of changes in prey avialibility on lion predation in a natural ecosystem in northern Botswana. Symp. Zool. Soc. Lond. 1993, 65, 193–213. [Google Scholar]
- Mitchell, B.L.; Shenton, J.B.; Uys, J.C.M. Predation on Large Mammals in the Kafue National Park, Zambia. Afr. Zool. 1965, 1, 297–318. [Google Scholar] [CrossRef]
- Schaller, G.B. The Serengeti Lion: A Study of Predator-Prey Relations; University of Chicago Press: Chicago, IL, USA, 1972. [Google Scholar]
- Radloff, F.G.T.; Du Toit, J.T. Large predators and their prey in a southern African savanna: A predator’s size determines its prey size range. J. Anim. Ecol. 2004, 73, 410–423. [Google Scholar] [CrossRef]
- Sifundza, L.; Van der Zaag, P.; Masih, I. Evaluation of the responses to institutions and actors to the 2015/2016 El nino drought in the Komati catchment in Southern Africa: Lessons to support future drought management. Water SA 2019, 45, 547–559. [Google Scholar] [CrossRef]
- Baudion, M.-A.; Vogel, C.; Nortje, K.; Naik, M. Living with the drought in South Africa: Lessons learnt from the recent El nino drought period. Int. J. Disaster Risk Res. 2017, 23, 128–137. [Google Scholar] [CrossRef]
- Yeakel, J.; Koch, P.; Dominy, N. Sharing the ecological pie: Community-level differences in prey specialization among African carnivores throughout the 20th century. In Proceedings of the Conference: 94th ESA Annual Convention 2009, Albuquerque, NM, USA, 4 August 2009. [Google Scholar]
- Mills, M.G.L. Prey selection and feeding habits of the large carnivores in the Southern Kalahari. Koedoe 1984, 27, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Hayward, M.W. Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). J. Zool. 2006, 270, 606–614. [Google Scholar] [CrossRef]
- Henschel, J.R.; Skinner, J.D. The diet of the spotted hyaenas Crocuta crocuta in Kruger National Park. Afr. J. Ecol. 1990, 28, 69–82. [Google Scholar] [CrossRef]
- Cronje, H.P.; Cronje, I.; Botha, A.J. The distribution and seasonal availability of surface water on the Manyeleti Game Reserve, Limpopo Province, South Africa. Koedoe 2005, 48, 12. [Google Scholar] [CrossRef] [Green Version]
- Winterbach, H.E.K.; Winterbach, C.W.; Boast, L.K.; Klein, R.; Somers, M.J. Relative availability of natural prey versus livestock predicts landscape suitability for cheetahs Acinonyx jubatus in Botswana. PeerJ 2015, 3, e1033. [Google Scholar] [CrossRef] [Green Version]
- Allred, B.W.; Fuhlendorf, S.D.; Engle, D.M.; Elmore, R.D. Ungulate preference for burned patches reveals strength of fire-grazing interaction. Ecol. Evol. 2011, 1, 132–144. [Google Scholar] [CrossRef]
- Retief, F. The Ecology of Spotted Hyena, Crocuta Crocuta, in Majete Wildlife Reserve, Malawi. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Kolowski, J.M.; Katan, D.; Theis, K.R.; Holekamp, K.E. Daily Patterns of Activity in the Spotted Hyena. J. Mammal. 2007, 88, 1017–1028. [Google Scholar] [CrossRef]
- Creel, S. Four Factors Modifying the Effect of Competition on Carnivore Population Dynamics as Illustrated by African Wild Dogs. Conserv. Biol. 2001, 15, 271–274. [Google Scholar] [CrossRef]
- Creel, S.; Creel, N.M. Limitation of African Wild Dogs by Competition with Larger Carnivores. Conserv. Biol. 1996, 10, 526–538. [Google Scholar] [CrossRef]
- Dalerum, F.; Somers, M.; Kunkel, K.E.; Cameron, E. The potential for large carnivores to act as biodiversity surrogates in southern Africa. Biodivers. Conserv. 2008, 17, 2939–2949. [Google Scholar] [CrossRef]
- Regan, S.M.; Vinson, J.E.; Park, A.W. Interspecific Contact and Competition May Affect the Strength and Direction of Disease-Diversity Relationships for Directly Transmitted Microparasites. Am. Nat. 2015, 186, 480–494. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.; Bouattour, A.; Camicas, J.L.; Estrada-Pena, A.; Horak, I.; Latif, A.; Pegram, R.G.; Preston, P.M. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Bioscience: Edinburgh, Scotland, 2003. [Google Scholar]
- Duncan, I.M.; Monks, N. Tick control on eland (Taurotragus oryx) and buffalo (Syncerus caffer) with flumethrin 1% pour-on through a Duncan applicator. J. S. Afr. Vet. Assoc. 1992, 63, 7–10. [Google Scholar]
- Stein, A.B.; Athreya, V.; Gerngross, P.; Balme, G.; Henschel, P.; Karanth, U.; Miquelle, D.; Rostro-Garcia, S.; Kamler, J.F.; Laguardia, A.; et al. Panthera Pardus (Amended Version of 2019 Assessment). Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T15954A163991139.en (accessed on 4 May 2021).
- Sabeta, C.; Ngoepe, E.C. Controlling dog rabies in Africa: Successes, failures and prospects for the future. Rev. Sci. Tech. (Int. Off. Epizoot.) 2018, 37, 439–449. [Google Scholar] [CrossRef]
- Koeppel, K.N.; Kuhn, B.F.; Thompson, P.N. Oral bait preferences for rabies vaccination in free-ranging black-backed jackal (Canis mesomelas) and non-target species in a multi-site field study in a peri-urban protected area in South Africa. Prev. Vet. Med. 2020, 175, 104867. [Google Scholar] [CrossRef]
- Knobel, D.L.; du Toit, J.T.; Bingham, J. Development of a bait and baiting system for delivery of oral rabies vaccine to free-ranging African wild dogs (Lycaon pictus). J. Wildl. Dis. 2002, 38, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Cleaveland, S.; Mlengeya, T.; Kaare, M.; Haydon, D.; Lembo, T.; Laurenson, M.K.; Packer, C. The conservation relevance of epidemiological research into carnivore viral diseases in the serengeti. Conserv. Biol. J. Soc. Conserv. Biol. 2007, 21, 612–622. [Google Scholar] [CrossRef]
- Conan, A.; Geerdes, J.A.C.; Akerele, O.A.; Reininghaus, B.; Simpson, G.J.G.; Knobel, D. Census and vaccination coverage of owned dog populations in four resource-limited rural communities, Mpumalanga province, South Africa. J. S. Afr. Vet. Assoc. 2017, 88, e1–e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelzer, S.; Basso, W.; Benavides Silván, J.; Ortega-Mora, L.M.; Maksimov, P.; Gethmann, J.; Conraths, F.J.; Schares, G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol. 2019, 15, e00037. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.L.; Bengis, R.G. The African buffalo: A villain for inter-species spread of infectious diseases in southern Africa. Onderstepoort J. Vet. Res. 2012, 79, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, T.T.; Martin, L.E.R.; Buss, P.; Loxton, A.G.; Hausler, G.A.; Rossouw, L.; Helden, P.v.; Parsons, S.D.C.; Olea-Popelka, F.; Miller, M.A. Prevalence and Risk Factors for Mycobacterium bovis Infection in African Lions (Panthera leo) in the Kruger National Park. J. Wildl. Dis. 2017, 53, 372–376. [Google Scholar] [CrossRef]
- Sedlak, K.; Bartova, E. Seroprevalences of antibodies to Neospora caninum and Toxoplasma gondii in zoo animals. Vet. Parasitol. 2006, 136, 223–231. [Google Scholar] [CrossRef]
- Seltmann, A.; Schares, G.; Aschenborn, O.H.K.; Heinrich, S.K.; Thalwitzer, S.; Wachter, B.; Czirják, G.Á. Species-specific differences in Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti seroprevalence in Namibian wildlife. Parasit Vectors 2020, 13, 7. [Google Scholar] [CrossRef]
- Riemann, H.P.; Burridge, M.J.; Behmyer, M.E.; Franti, C.E. Toxoplasma gondii in free living african mammals. J. Wildl. Dis. 1975, 11, 529–533. [Google Scholar] [CrossRef]
- Ferreira, S.C.M.; Torelli, F.; Klein, S.; Fyumagwa, R.; Karesh, W.B.; Hofer, H.; Seeber, F.; East, M.L. Evidence of high exposure to Toxoplasma gondii in free-ranging and captive African carnivores. Int. J. Parasitol. Parasites Wildl. 2019, 8, 111–117. [Google Scholar]
- Ferreira, S.C.M.; Hofer, H.; Madeira de Carvalho, L.; East, M.L. Parasite infections in a social carnivore: Evidence of their fitness consequences and factors modulating infection load. Ecol. Evol. 2019, 9, 8783–8799. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.S.; Farnsworth, M.L.; Malmberg, J.L. Diseases at the livestock–wildlife interface: Status, challenges, and opportunities in the United States. Prev. Vet. Med. 2013, 110, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.S.; Bailey, L.L.; VandeWoude, S.; Crooks, K.R. Interspecific interactions between wild felids vary across scales and levels of urbanization. Ecol. Evol. 2015, 5, 5946–5961. [Google Scholar] [CrossRef] [PubMed]
- Penzhorn, B.L.; Stylianides, E.; Van Vuuren, M.; Alexander, K.; Meltzer, D.G.A.; Mukarati, N. Seroprevalence of Toxoplasma gondii in free-ranging lion and leopard populations in southern Africa. S. Afr. J. Wildl. Res. 2002, 32, 163–165. [Google Scholar]
- du Toit, J.T.; Cross, P.C.; Valeix, M. Managing the Livestock–Wildlife Interface on Rangelands. In Rangeland Systems: Processes, Management and Challenges; Briske, D.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 395–425. [Google Scholar]
- Craft, M.E.; Vial, F.; Miguel, E.; Cleaveland, S.; Ferdinands, A.; Packer, C. Interactions between domestic and wild carnivores around the greater Serengeti ecosystem. Anim. Conserv. 2017, 20, 193–204. [Google Scholar] [CrossRef]
- Hayward, M.; Kerley, I. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 2008, 38, 93–108, 116. [Google Scholar] [CrossRef]
- Clements, H.S.; Tambling, C.J.; Hayward, M.W.; Kerley, G.I.H. An Objective Approach to Determining the Weight Ranges of Prey Preferred by and Accessible to the Five Large African Carnivores. PLoS ONE 2014, 9, e101054. [Google Scholar] [CrossRef] [Green Version]
Carnivore Group | Variable | Baseline (Comparison) | Coefficient | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Any | Andover | Manyeleti | −0.62 | 0.54 (0.27–1.07) | 0.077 |
Spring | Other season | 0.45 | 1.57 (1.14–2.16) | 0.005 | |
Vehicles detected | No vehicles | 0.08 | 1.08 (1.04–1.12) | <0.001 | |
Buffalo detected | No buffalo | 0.74 | 2.10 (1.40–3.16) | <0.001 | |
Impala detected | No impala | 0.76 | 2.13 (1.47–3.08) | <0.001 | |
Warthog detected | No warthog | 0.62 | 1.86 (1.01–3.43) | 0.046 | |
Feline | Andover | Manyeleti | −0.06 | 0.94 (0.71–1.25) | 0.679 |
Hippo detected | No hippo | 1.18 | 3.27 (1.34–7.98) | 0.009 | |
Hare detected | No hare | 1.60 | 4.96 (2.51–3.78) | <0.001 | |
Canine | None significant | ||||
Other | Andover | Manyeleti | 0.29 | 1.34 (0.51–3.51) | 0.555 |
Altitude (meters) | N/A | −0.01 | 0.99 (0.98–1.0) | 0.008 | |
Ant eater detected | No anteater | 2.55 | 12.76 (1.02–159.15) | 0.048 | |
Buffalo detected | No buffalo | 0.83 | 2.30 (1.43- 3.71) | 0.001 | |
Impala detected | No impala | 0.77 | 2.17 (1.40–3.35) | 0.001 | |
Warthog detected | No warthog | 0.78 | 2.17 (1.08–4.38) | 0.030 | |
Hare detected | No hare | 1.60 | 4.93 (2.33–10.42) | <0.001 |
Lion | Leopard | Hyena | Jackal | Serval | Cheetah | Wild Dog | Civet | Waterbuck | Buffalo | Bosbok | Wildebeest | Impala | Warthog | Hare | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lion | 1.000 | ||||||||||||||
Leopard | 0.063 | 1.000 | |||||||||||||
Hyena | 0.497 ** | 0.248 * | 1.000 | ||||||||||||
Jackal | 0.114 | 0.206 * | 0.218 * | 1.000 | |||||||||||
Serval | 0.034 | 0.294 ** | −0.010 | 0.180 | 1.000 | ||||||||||
Cheetah | 0.241 * | 0.112 | 0.074 | −0.049 | −0.061 | 1.000 | |||||||||
Wild dog | 0.114 | 0.151 | 0.065 | 0.316 ** | 0.061 | 0.214 * | 1.000 | ||||||||
Civet | 0.184 | 0.196 | 0.024 | 0.140 | 0.450 ** | −0.040 | 0.166 | 1.000 | |||||||
Waterbuck | 0.097 | 0.294 ** | 0.145 | 0.102 | 0.136 | 0.102 | 0.014 | 0.183 | 1.000 | ||||||
Buffalo | 0.311 ** | 0.143 | 0.315 ** | 0.037 | −0.019 | 0.165 | 0.093 | 0.081 | 0.314 ** | 1.000 | |||||
Bosbok | −0.078 | 0.406 ** | 0.101 | −0.026 | 0.303 ** | 0.095 | −0.005 | 0.284 ** | 0.352 ** | 0.025 | 1.000 | ||||
Wildebeest | 0.385 ** | 0.089 | 0.253 ** | 0.202 ** | 0.052 | 0.043 | −0.092 | 0.033 | 0.359 ** | 0.450 ** | −0.034 | 1.000 | |||
Impala | 0.317 ** | 0.164 | 0.430 ** | 0.088 | −0.123 | 0.271 ** | −0.063 | −0.016 | 0.374 ** | 0.439 ** | 0.042 | 0.473 ** | 1.000 | ||
Warthog | 0.282 ** | 0.220 * | 0.293 ** | 0.017 | 0.097 | 0.279 ** | 0.014 | 0.211 * | 0.245 * | 0.404 ** | 0.222 * | 0.372 ** | 0.442 ** | 1.000 | |
Hare | 0.401 ** | 0.076 | 0.131 | 0.322 ** | 0.106 | −0.065 | 0.051 | 0.263 * | 0.298 ** | 0.284 ** | −0.003 | 0.222 * | 0.268 * | 0.171 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wentzel, J.; Gall, C.; Bourn, M.; De Beer, J.; du Plessis, F.; Fosgate, G.T. Carnivore Detection at the Domestic/Wildlife Interface within Mpumalanga Province, South Africa. Animals 2021, 11, 2535. https://doi.org/10.3390/ani11092535
Wentzel J, Gall C, Bourn M, De Beer J, du Plessis F, Fosgate GT. Carnivore Detection at the Domestic/Wildlife Interface within Mpumalanga Province, South Africa. Animals. 2021; 11(9):2535. https://doi.org/10.3390/ani11092535
Chicago/Turabian StyleWentzel, Jeanette, Cory Gall, Mark Bourn, Juan De Beer, Ferreira du Plessis, and Geoffrey T. Fosgate. 2021. "Carnivore Detection at the Domestic/Wildlife Interface within Mpumalanga Province, South Africa" Animals 11, no. 9: 2535. https://doi.org/10.3390/ani11092535
APA StyleWentzel, J., Gall, C., Bourn, M., De Beer, J., du Plessis, F., & Fosgate, G. T. (2021). Carnivore Detection at the Domestic/Wildlife Interface within Mpumalanga Province, South Africa. Animals, 11(9), 2535. https://doi.org/10.3390/ani11092535