Initial Liver Copper Status in Finishing Beef Steers Fed Three Dietary Concentrations of Copper Affects Beta Agonist Performance, Carcass Characteristics, Lipolysis Response, and Muscle Inflammation Markers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Care and Use of Animals
2.2. Experimental Design
2.3. Sample Collection and Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suttle, N.F. The Mineral Nutrition of Livestock, 4th ed.; CABI Publishing: Wallingford, UK, 2010. [Google Scholar]
- Suttle, N.F. The interactions between copper, molybdenum, and sulphur in ruminant nutrition. Annu. Rev. Nutr. 1991, 11, 121–140. [Google Scholar] [CrossRef]
- Arthington, J. Copper antagonists in cattle nutrition. In Proceedings of the 14th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 11–12 January 2002; University of Florida: Gainesville, FL, USA, 2003; pp. 1–9. [Google Scholar]
- Bidewell, C.A.; Drew, J.R.; Payne, J.H.; Sayers, A.R.; Higgins, R.J.; Livesey, C.T. Case study of copper poisoning in a British dairy herd. Vet. Rec. 2012, 1, e100267. [Google Scholar] [CrossRef] [Green Version]
- NASEM. Nutrient Requirements of Beef Cattle, 8th ed.; National Academy Press: Washington, DC, USA, 2016. [Google Scholar]
- Samuelson, K.L.; Hubbert, M.E.; Galyean, M.L.; Löest, C.A. Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. J. Anim. Sci. 2016, 94, 2648–2663. [Google Scholar] [CrossRef] [PubMed]
- Kincaid, R.L. Assessment of trace mineral status of ruminants: A review. J. Anim. Sci. 2000, 77, 1–10. [Google Scholar] [CrossRef]
- Rucker, R.B.; Kosonen, T.; Clegg, M.S.; Mitchell, A.E.; Rucker, B.R.; Uriu-Hare, J.Y.; Keen, C.L. Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am. J. Clin. Nutr. 1998, 67, 996S–1002S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, G.A.; Warner, T.G.; Steimert, K.S.; Hallewell, R.A. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc. Natl. Acad. Sci. USA 1991, 88, 7381–7385. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.J.; Smith, S.B.; Chung, K.Y. Historical overview of the effect of β-adrenergic agonists on beef cattle production. Asian-Australas. J. Anim. Sci. 2014, 27, 757–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamoorthy, L.; Cotruvo, J.A.; Chan, J.; Kaluarachchi, H.; Muchenditsi, A.; Pendyala, V.S.; Jia, S.; Aron, A.T.; Ackerman, C.M.; Vander Wal, M.N.; et al. Copper regulates cyclic-AMP-dependent lipolysis. Nat. Chem. Biol. 2016, 12, 586–592. [Google Scholar] [CrossRef] [Green Version]
- VanValin, K.R.; Genther-Schroeder, O.N.; Laudert, S.B.; Hansen, S.L. Relative bioavailability of organic and hydroxy copper sources in growing steers fed a high antagonist diet. J. Anim. Sci. 2019, 97, 1375–1383. [Google Scholar] [CrossRef]
- Engle, T.E.; Spears, J.W. Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers. J. Anim. Sci. 2000, 78, 2446–2451. [Google Scholar] [CrossRef] [Green Version]
- Koltes, D.A.; Spurlock, D.M. Coordination of lipid droplet-associated proteins during the transition period of Holstein dairy cows. J. Dairy Sci. 2011, 94, 1839–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pampusch, M.S.; Johnson, B.J.; White, M.E.; Hathaway, M.R.; Dunn, J.D.; Waylan, A.T.; Dayton, W.R. Time course of changes in growth factor mRNA levels in muscle of steroid-implanted and nonimplanted steers. J. Anim. Sci. 2003, 81, 2733–2740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pothoven, M.A.; Beitz, D.C.; Thornton, J.H. Lipogenesis and lipolysis in adipose tissue of ad libitum and restricted-fed beef cattle during growth. J. Anim. Sci. 1975, 40, 957–962. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Standards and Technology (NIST). NIST/EPA/NIH Mass Spectral Library (NIST 14) and NIST Mass Spectral Search Program (Version 2.2); U.S. Department of Commerce: Gaithersburg, MD, USA, 2014.
- McGill, J.L.; Rusk, R.A.; Guerra-Maupome, M.; Briggs, R.E.; Sacco, R.E. Bovine gamma delta T cells contribute to exacerbated IL-17 production in response to co-infection with bovine RSV and Mannheimia haemolytica. PLoS ONE 2016, 11, e0151083. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Richter, E.L.; Drewnoski, M.E.; Hansen, S.L. Effects of increased dietary sulfur on beef steer mineral status, performance, and meat fatty acid composition. J. Anim. Sci. 2012, 90, 3945–3953. [Google Scholar] [CrossRef] [Green Version]
- Pogge, D.J.; Hansen, S.L. Supplemental vitamin C improves marbling in feedlot cattle consuming high sulfur diets. J. Anim. Sci. 2013, 91, 4303–4314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genther-Schroeder, O.N.; Branine, M.E.; Hansen, S.L. The effects of increasing supplementation of zinc-amino acid complex on growth performance, carcass characteristics, and inflammatory response of beef cattle fed ractopamine hydrochloride. J. Anim. Sci. 2016, 94, 3389–3398. [Google Scholar] [CrossRef] [Green Version]
- Genther-Schroeder, O.N.; Branine, M.E.; Hansen, S.L. The influence of supplemental Zn-amino acid complex and ractopamine hydrochloride feeding duration on growth performance and carcass characteristics of finishing beef cattle. J. Anim. Sci. 2016, 94, 4338–4345. [Google Scholar] [CrossRef] [Green Version]
- Feldpausch, J.A.; Amachawadi, R.G.; Scott, H.M.; Tokach, M.D.; Dritz, S.S.; Woodworth, J.C.; Nagaraja, T.G.; Goodband, R.D.; DeRouchey, J.M. Effects of added copper and zinc on growth performance and carcass characteristics of finishing pigs fed diets with or without ractopamine HCl. Kans. Agric. Exp. Stn. Res. Rep. 2015, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.D.; Spears, J.W.; Kegley, E.B. Effect of copper level and source (copper lysine vs copper sulfate) on copper status, performance, and immune response in growing steers fed diets with or without supplemental molybdenum and sulfur. J. Anim. Sci. 1993, 71, 2748–2755. [Google Scholar] [CrossRef] [PubMed]
- Engle, T.E.; Spears, J.W.; Xi, L.; Edens, F.W. Dietary copper effects on lipid metabolism and circulating catecholamine concentrations in finishing steers. J. Anim. Sci. 2000, 78, 2737–2744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engle, T.E.; Spears, J.W. Performance, carcass characteristics, and lipid metabolism in growing and finishing Simmental steers fed varying concentrations of copper. J. Anim. Sci. 2001, 79, 2920–2925. [Google Scholar] [CrossRef] [PubMed]
- Gooneratne, S.R.; Buckley, W.T.; Christensen, D.A. Review of copper deficiency and metabolism in ruminants. Can. J. Anim. Sci. 1989, 69, 819–845. [Google Scholar] [CrossRef]
- Zinn, R.A.; Alvarez, E.; Mendez, M.; Montañ, M.; Ramirez, E.; Shen, Y. Influence of dietary sulfur level on growth performance and digestive function in feedlot cattle. J. Anim. Sci. 1997, 75, 1723–1728. [Google Scholar] [CrossRef] [Green Version]
- Engle, T.E.; Spears, J.W. Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. J. Anim. Sci. 2000, 78, 2452–2458. [Google Scholar] [CrossRef]
- Odiet, J.A.; Boerrigter, M.E.; Wei, J.Y. Carnitine palmitoyl transferase-I activity in the aging mouse heart. Mech. Ageing Dev. 1995, 79, 127–136. [Google Scholar] [CrossRef]
- Song, M.; Schuschke, D.A.; Zhou, Z.; Chen, T.; Pierce, W.M.; Wang, R.; Johnson, W.T.; McClain, C.J. High fructose feeding induces copper deficiency in Sprague–Dawley rats: A novel mechanism for obesity related fatty liver. J. Hepatol. 2012, 56, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Xiaoyi, S.; Fuchang, L. Effect of dietary copper addition on lipid metabolism in rabbits. Food Nutr. Res. 2017, 61, 1348866. [Google Scholar] [CrossRef] [Green Version]
- Engle, T.E.; Spears, J.W.; Armstrong, T.A.; Wright, C.L.; Odle, J. Effects of dietary copper source and concentration on carcass characteristics and lipid and cholesterol metabolism in growing and finishing steers. J. Anim. Sci. 2000, 78, 1053–1059. [Google Scholar] [CrossRef]
- Johnson, L.R.; Engle, T.E. The effects of copper source and concentration on lipid metabolism in growing and finishing Angus steers. Asian-Australas. J. Anim. Sci. 2003, 16, 1131–1136. [Google Scholar] [CrossRef]
- Balkin, M.S.; Sonenberg, M. Hormone-induced homologous and heterologous desensitization in the rat adipocyte. Endocrinology 1981, 109, 1176–1183. [Google Scholar] [CrossRef]
- Beavo, J.A.; Bechtel, P.J.; Krebs, E.G. Activation of protein kinase by physiological concentrations of cyclic AMP. Proc. Natl. Acad. Sci. USA 1974, 71, 3580–3583. [Google Scholar] [CrossRef] [Green Version]
- Mersmann, H.J. Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J. Anim. Sci. 1998, 76, 160–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeaman, S.J. Hormone-sensitive lipase-a multipurpose enzyme in lipid metabolism. Biochim. Biophys. Acta (C) Mol. Cell Res. 1990, 1052, 128–132. [Google Scholar] [CrossRef]
- Carmichael, R.N. The Influence of Dietary Zinc Concentration during Periods of Rapid Growth Induced by Ractopamine Hydrochloride or Dietary Energy Content on Trace Mineral Metabolism and Performance of Beef Steers. Master’s Thesis, Iowa State University, Ames, IA, USA, 2019. [Google Scholar]
- Klopfenstein, T.J.; Erickson, G.E.; Bremer, V.R. Board-invited review: Use of distillers by-products in the beef cattle feeding industry. J. Anim. Sci. 2008, 86, 1223–1231. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Åkerström, T.C.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuschil, A.; Lam, C.; Haslberger, A.; Lindley, I. Interleukin-8 stimulates calcium transients and promotes epidermal cell proliferation. J. Investig. Dermatol. 1992, 99, 294–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rennekampff, H.O.; Hansbrough, J.F.; Kiessig, V.; Doré, C.; Sticherling, M.; Schröder, J.M. Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J. Surg. Res. 2000, 93, 41–54. [Google Scholar] [CrossRef]
- Luppi, F.; Longo, A.M.; de Boer, W.I.; Rabe, K.F.; Hiemstra, P.S. Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation. Lung Cancer 2007, 56, 25–33. [Google Scholar] [CrossRef]
- Murphy, C.; McGurk, M.; Pettigrew, J.; Santinelli, A.; Mazzucchelli, R.; Johnston, P.G.; Montironi, R.; Waugh, D.J. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin. Cancer Res. 2005, 11, 4117–4127. [Google Scholar] [CrossRef] [Green Version]
- Sharma, I.; Singh, A.; Siraj, F.; Saxena, S. IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma. J. Biomed. Sci. 2018, 25, 62. [Google Scholar] [CrossRef]
- Lorenzen, I.; Dingley, A.J.; Jacques, Y.; Grötzinger, J. The structure of the interleukin-15α receptor and its implications for ligand binding. J. Biol. Chem. 2006, 281, 6642–6647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duitman, E.H.; Orinska, Z.; Bulanova, E.; Paus, R.; Bulfone-Paus, S. How a cytokine is chaperoned through the secretory pathway by complexing with its own receptor: Lessons from interleukin-15 (IL-15)/IL-15 receptor α. Mol. Cell. Biol. 2008, 28, 4851–4861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, L.S.; Anderson, B.G.; Drivdahl, R.H.; Alvarez, B.; Argilés, J.M. Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: Implications for treatment of muscle wasting disorders. Exp. Cell Res. 2002, 280, 55–63. [Google Scholar] [CrossRef]
- Carbó, N.; López-Soriano, J.; Costelli, P.; Busquets, S.; Alvarez, B.; Baccino, F.M.; Quinn, L.S.; López-Soriano, F.J.; Argilés, J.M. IL 15 antagonizes muscle protein waste in tumour-bearing rats. Br. J. Cancer 2000, 83, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredient | Pre-BA Period 1 | BA Period 2 |
---|---|---|
% of Diet DM | % of Diet DM | |
Dry rolled corn | 68.9 | 62.0 |
MDGS 3 | 16.7 | 25.0 |
Bromegrass hay | 8.9 | 8.0 |
DDGS 4 | 3.33 | 3.05 |
Limestone | 1.7 | 1.5 |
Salt | 0.31 | 0.31 |
Vitamin and mineral premix 5 | 0.13 | 0.13 |
Rumensin | 0.0135 | 0.0135 |
Analyzed composition, % | ||
Crude protein 6 | 12.62 | 15.31 |
Neutral detergent fiber 6 | 20.14 | 19.35 |
Ether extract 6 | 4.03 | 4.69 |
Cu, mg/kg DM 7 | 6.1 | 6.0 |
Zn, mg/kg DM 8 | 64.4 | 72.0 |
Calculated composition 9 | ||
Sulfur, % | 0.22 | 0.27 |
NEm, Mcal/kg | 2.04 | 2.07 |
NEg, Mcal/kg | 1.38 | 1.40 |
ME, Mcal/kg | 3.01 | 3.04 |
Gene | Accession Number | Strand | Sequence (5′–3′) |
---|---|---|---|
CAT-1 1 | NM_001034349 | Forward | GGTCAACAGCAACTACTACG |
Reverse | TGAACATCCTCTCCATCT | ||
IL-8 2 | EU276073.1 | Forward | CGCTGGACAGCAGAGCTCACAAG |
Reverse | GCCAAGAGAGCAACAGCCAGCT | ||
CXCR1 3 | EF597244.2 | Forward | GTCCCCGTGAGATAAGCAC |
Reverse | CAGGTTCAGCAGGTAGACA | ||
CXCR2 4 | DQ328664.1 | Forward | CAACACTGACCTGCCCTCTA |
Reverse | CAGGTTCAGCAGGTAGACA | ||
IL-15 5 | U42433.1 | Forward | TTTGAGAAGTACTTCCATCCAG |
Reverse | GAAGTGTTGATGAACATTTGCAC | ||
IL-15α 6 | XM_005214144.4 | Forward | CAGGTCAAGAGTTACAGCATCA |
Reverse | ACTTTCGCGGTCTCGTTAAA | ||
CD11B 7 | NM_175781.1 | Forward | AAACTGGCAGAAAGCAACA |
Reverse | CCAGGAAGACTCTGGAGGA | ||
CD68 8 | NM_001045902.1 | Forward | CAGCCACAGAACTACCAAGAG |
Reverse | TGGTGGTAGCAGGACTATGA | ||
RPS9 9 | NM_001101152.1 | Forward | CGCCTCGACCAAGAGCTGAAG |
Reverse | CCTCCAGACCTCACGTTTGTTCC |
Item 3,4,5 | Copper 1 | SEM 6 | Contrast p-Values 2 | |||
---|---|---|---|---|---|---|
LO | MED | HI | L | Q | ||
steers (n) | 24 | 33 | 34 | |||
Dietary Cu 7, mg/day | 75 | 199 | 315 | 4.4 | <0.01 | 0.33 |
Plasma Cu, mg/L | ||||||
Day 0 | 0.43 | 0.92 | 0.98 | 0.024 | 0.01 | 0.01 |
Day 60 | 0.90 | 0.96 | 0.95 | 0.032 | 0.26 | 0.36 |
Liver Cu 8, mg/kg DM | ||||||
Day −23 | 6 | 14 | 53 | 2.0 | 0.01 | 0.06 |
Day 53 | 14 | 166 | 266 | 8.7 | 0.01 | 0.01 |
Performance | ||||||
Day 0 BW, kg | 466 | 470 | 473 | 5.1 | 0.33 | 0.91 |
Day 61 BW, kg | 579 | 586 | 588 | 6.9 | 0.32 | 0.79 |
DMI, kg/day | 12.1 | 12.3 | 12.6 | 0.23 | 0.15 | 0.78 |
ADG, kg | 1.8 | 1.9 | 1.9 | 0.05 | 0.57 | 0.72 |
G:F | 0.151 | 0.152 | 0.148 | 0.0034 | 0.61 | 0.51 |
Beta Agonist 1 | NoRAC | RAC | SEM 4 | Contrast p-Values 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Copper 3 | LO | MED | HI | LO | MED | HI | L | Q | L-R | Q-R | |
Item 5 | |||||||||||
steers (n) | 12 | 17 | 16 | 12 | 16 | 18 | |||||
BA period 6 | |||||||||||
Day 61 BW, kg | 576 | 584 | 580 | 583 | 587 | 595 | |||||
Day 88 BW, kg | 640 | 645 | 642 | 645 | 661 | 662 | 10.2 | 0.34 | 0.62 | 0.28 | 0.80 |
DMI, kg/day | 11.7 | 12.1 | 12.5 | 11.8 | 12.7 | 12.2 | 0.38 | 0.12 | 0.97 | 0.45 | 0.10 |
ADG, kg | 2.39 | 2.24 | 2.28 | 2.33 | 2.75 | 2.47 | 0.100 | 0.43 | 0.39 | 0.27 | 0.01 |
G:F | 0.206 | 0.186 | 0.183 | 0.198 | 0.216 | 0.205 | 0.0079 | 0.04 | 0.34 | 0.51 | 0.08 |
Carcass adjusted 7,8 | |||||||||||
Day 89 BW, kg | 643 | 643 | 641 | 647 | 661 | 661 | 10.7 | 0.92 | 0.92 | 0.31 | 0.58 |
Overall DMI, kg/day | 11.9 | 12.1 | 12.4 | 12.0 | 12.5 | 12.4 | 0.33 | 0.19 | 0.96 | 0.32 | 0.38 |
Overall ADG, kg | 2.01 | 2.04 | 2.02 | 2.10 | 2.14 | 2.08 | 0.072 | 0.87 | 0.78 | 0.89 | 0.56 |
Overall G:F | 0.164 | 0.164 | 0.159 | 0.171 | 0.168 | 0.164 | 0.0005 | 0.46 | 0.65 | 0.28 | 0.90 |
Beta Agonist 1 | NoRAC | RAC | SEM 4 | Contrast p-Values 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Copper 3 | LO | MED | HI | LO | MED | HI | L | Q | L-R | Q-R | |
Item | |||||||||||
steers (n) | 12 | 17 | 16 | 12 | 16 | 18 | |||||
Dietary Cu, mg/day | 71 | 194 | 305 | 72 | 201 | 300 | 6.8 | <0.01 | 0.39 | <0.01 | 0.03 |
Plasma Cu, mg/L | |||||||||||
Day 66 or 67 | 0.94 | 0.93 | 0.92 | 0.90 | 0.99 | 0.96 | 0.042 | 0.70 | 0.91 | 0.31 | 0.17 |
Day 87 | 0.94 | 1.02 | 1.06 | 0.99 | 1.08 | 1.08 | 0.041 | 0.04 | 0.66 | 0.08 | 0.32 |
Liver Cu 5, mg/kg DM | |||||||||||
Day 89 | 18 | 232 | 289 | 33 | 227 | 324 | 18.6 | 0.01 | 0.01 | 0.01 | 0.01 |
Carcass characteristics 6 | |||||||||||
Hot carcass weight, kg | 404 | 404 | 403 | 406 | 415 | 415 | 6.7 | 0.92 | 0.91 | 0.31 | 0.58 |
Dressing percent, % | 63.1 | 62.7 | 62.8 | 63.0 | 62.8 | 62.7 | 0.34 | 0.53 | 0.51 | 0.59 | 0.79 |
Ribeye area, cm2 | 93.4 | 91.1 | 90.9 | 92.6 | 98.1 | 95.5 | 2.13 | 0.38 | 0.65 | 0.29 | 0.08 |
Marbling 7 | 427 | 463 | 472 | 422 | 458 | 461 | 23.4 | 0.16 | 0.59 | 0.21 | 0.52 |
Rib fat, cm | 1.46 | 1.46 | 1.37 | 1.52 | 1.45 | 1.41 | 0.136 | 0.61 | 0.71 | 0.53 | 0.87 |
KPH, % | 2.3 | 2.6 | 2.5 | 2.4 | 2.4 | 2.5 | 0.16 | 0.48 | 0.23 | 0.64 | 0.87 |
Yield grade | 3.15 | 3.33 | 3.21 | 3.30 | 3.02 | 3.14 | 0.194 | 0.82 | 0.46 | 0.52 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messersmith, E.; Branine, M.; Genther-Schroeder, O.; McGill, J.; Hansen, S. Initial Liver Copper Status in Finishing Beef Steers Fed Three Dietary Concentrations of Copper Affects Beta Agonist Performance, Carcass Characteristics, Lipolysis Response, and Muscle Inflammation Markers. Animals 2021, 11, 2753. https://doi.org/10.3390/ani11092753
Messersmith E, Branine M, Genther-Schroeder O, McGill J, Hansen S. Initial Liver Copper Status in Finishing Beef Steers Fed Three Dietary Concentrations of Copper Affects Beta Agonist Performance, Carcass Characteristics, Lipolysis Response, and Muscle Inflammation Markers. Animals. 2021; 11(9):2753. https://doi.org/10.3390/ani11092753
Chicago/Turabian StyleMessersmith, Elizabeth, Mark Branine, Olivia Genther-Schroeder, Jodi McGill, and Stephanie Hansen. 2021. "Initial Liver Copper Status in Finishing Beef Steers Fed Three Dietary Concentrations of Copper Affects Beta Agonist Performance, Carcass Characteristics, Lipolysis Response, and Muscle Inflammation Markers" Animals 11, no. 9: 2753. https://doi.org/10.3390/ani11092753
APA StyleMessersmith, E., Branine, M., Genther-Schroeder, O., McGill, J., & Hansen, S. (2021). Initial Liver Copper Status in Finishing Beef Steers Fed Three Dietary Concentrations of Copper Affects Beta Agonist Performance, Carcass Characteristics, Lipolysis Response, and Muscle Inflammation Markers. Animals, 11(9), 2753. https://doi.org/10.3390/ani11092753