Effect of Vacuum Level and Pulsation Parameters on Milking Efficiency and Animal Welfare of Murciano-Granadina Goats Milked in Mid-Line and Low-Line Milking Machines
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Facilities and Animal Handling
2.2. Experimental Design
- 36 kPa—90 cycles/min—50%;
- 36 kPa—120 cycles/min—50%;
- 36 kPa—90 cycles/min—60%;
- 36 kPa—120 cycles/min—60%;
- 40 kPa—90 cycles/min—50%;
- 40 kPa—120 cycles/min—50%;
- 40 kPa—90 cycles/min—60%
- and 40 kPa—120 cycles/min—60%.
2.3. Variables Analyzed
2.3.1. Milking Efficiency
2.3.2. Mammary Gland Health Status
2.3.3. Milk Cortisol and Free Fatty Acids
2.3.4. Teat End Status
2.3.5. Vacuum Level Variables
2.3.6. Statistical Analysis
3. Results
3.1. Experiments in Mid-Level Milkline
3.2. Experiments in Low-Level Milkline
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinapis, E.; Hatziminaoglou, I.; Marnet, P.G.; Abas, Z.; Bolou, A. Influence of vacuum level, pulsation rate and pulsator ratio on machine milking efficiency in local Greek goats. Livest. Sci. 2000, 64, 175–181. [Google Scholar] [CrossRef]
- Romero, G.; Bueso-Ródenas, J.; Gascó, P.; Díaz, J.R. Effect of the automatic cluster removers (ACRs) in the milking of Murciano–Granadina goats during lactation. Small Rumin. Res. 2015, 128, 54–58. [Google Scholar] [CrossRef]
- Zucali, M.; Tamburini, A.; Sandrucci, A.; Gislon, G.; Bava, L. Effect of vacuum level on milk flow and vacuum stability in Alpine goat milking. Small Rumin. Res. 2019, 171, 1–7. [Google Scholar] [CrossRef]
- Mein, G.A. The role of the milking machine in mastitis control. Vet. Clin. North Am. Food Anim. Pract. 2012, 28, 307–320. [Google Scholar] [CrossRef]
- Romero, G.; Peris, C.; Fthenakis, G.C.; Diaz, J.R. Effects of machine milking on udder health in dairy ewes. Small Rumin. Res. 2020, 188, 106096. [Google Scholar] [CrossRef]
- Sevi, A.; Casamassima, D.; Pulina, G.; Pazzona, A. Factors of welfare reduction in dairy sheep and goats. Ital. J. Anim. Sci. 2009, 8, 81–101. [Google Scholar] [CrossRef]
- Caria, M.; Boselli, C.; Murgia, L.; Rosati, R.; Pazzona, A. Influence of low vacuum levels on milking characteristics of sheep, goat and buffalo. J. Agric. Eng. 2013, 44, 217–220. [Google Scholar] [CrossRef]
- Langlois, B.E.; Cox, J.C.J.; Hemken, R.W.; Nicolai, J.J. Effect of milking vacuum on some indicators of bovine mastitis. J. Dairy Sci. 1980, 63, 116–117. [Google Scholar]
- Bruckmaier, R.M.; Wellnitz, O. Induction of milk ejection and milk removal in different production systems. J. Anim. Sci. 2007, 86, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Bruckmaier, R.M.; Ritter, C.; Schams, D.; Blum, J.W. Machine milking of dairy goats during lactation: Udder anatomy, milking characteristics, and blood concentrations of oxytocin and prolactin. J. Dairy Res. 1994, 61, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Fernández, N.; Martí, J.V.; Rodríguez, M.; Peris, C.; Balasch, S. Machine milking parameters for Murciano-Granadina breed goats. J. Dairy Sci. 2020, 103, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasco, E.; Gómez, E.A.; Vicente, C.; Vidal, G.; Peris, C. Factors affecting milking speed in Murciano-Granadina breed goats. J. Dairy Sci. 2016, 99, 10102–10108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, N.; Martínez, A.; Martí, J.V.; Rodríguez, M.; Peris, C. Milkability and milking efficiency improvement in Murciano-Granadina breed goats. Small Rumin. Res. 2015, 126, 68–72. [Google Scholar] [CrossRef]
- Manzur, A.; Díaz, J.; Mehdid, A.; Fernández, N.; Peris, C. Effect of mid-line or low-line milking systems on milking characteristics in goats. J. Dairy Res. 2012, 79, 375–382. [Google Scholar] [CrossRef]
- Hagen, K.; Lexer, D.; Palme, R.; Troxler, J.; Waiblinger, S. Milking of Brown Swiss and Austrian Simmental cows in a herringbone parlour or an automatic milking unit. Appl. Anim. Behav. Sci. 2004, 88, 209–225. [Google Scholar] [CrossRef]
- Chacón, G.; García-Belenguer, S.; Illera, J.C.; Palacio, J. Validation of an EIA technique for the determination of salivary cortisol in cattle. Span. J. Agric. Res. 2004, 2, 45–51. [Google Scholar]
- Munro, C.J.; Lasley, B.L. Non-radiometric methods for immunoassay of steroid hormones. Prog. Clin. Biol. Res. 1988, 285, 289–329. [Google Scholar]
- Jellema, A. Determination of free fatty acids in milk and milk products. Bull. Int. Dairy Fed. 1991, 265, 1–52. [Google Scholar]
- Díaz, J.R.; Alejandro, M.; Peris, C. Use of ultrasound scanning to estimate teat wall thickness in Murciano-Granadina goats. Livest. Sci. 2013, 155, 114–122. [Google Scholar] [CrossRef]
- Rasmussen, M.D.; Reinemann, D.J.; Mein, G.A. Measuring vacuum in milking machines. IDF Bull. 2003, 381, 19–32. [Google Scholar]
- Ali, A.K.; Shook, G.E. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Romero, G.; Bueso-Ródenas, J.; Moya, F.; Alejandro, M.; Díaz, J.R. Short communication: Effects of pulsation type (alternate and simultaneous) on mechanical milking of dairy goats (II)- Effect of milk pipeline height on the milking efficiency and status of teat-end in Murciano-Granadina goats. Small Rumin. Res. 2017, 146, 53–57. [Google Scholar] [CrossRef]
- Romero, G.; Restrepo, I.; Muelas, R.; Bueso-Ródenas, J.; Roca, A.; Díaz, J.R. Within-day variation and effect of acute stress on plasma and milk cortisol in lactating goats. J. Dairy Sci. 2015, 98, 832–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ströbel, U.; Rose-Meierhöfer, S.; Oz, H.; Brunsch, R. Development of a control system for the teat end vacuum in individual quarter milking systems. Sensors 2013, 13, 7633–7651. [Google Scholar] [CrossRef]
- Alejandro, M.; Roca, A.; Romero, G.; Díaz, J.R. Short communication: Effects of milk removal on teat tissue and recovery in Murciano-Granadina goats. J. Dairy Sci. 2014, 97, 5012–5016. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.R.; Alejandro, M.; Romero, G.; Moya, F.; Peris, C. Variation in milk cortisol during lactation in Murciano-Granadina goats. J Dairy Sci. 2013, 96, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Peris, C.; Díaz, J.R.; Balasch, S.; Beltrán, M.C.; Molina, M.P.; Fernández, N. Influence of vacuum level and overmilking on udder health and teat thickness changes in dairy ewes. J. Dairy Sci. 2003, 86, 3891–3898. [Google Scholar] [CrossRef] [Green Version]
- Alejandro, M.; Roca, A.; Romero, G.; Díaz, J.R. Effects of overmilking and liner type and characteristics on teat tissue in small ruminants. J. Dairy Res. 2014, 81, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Marnet, P.G.; McKusick, B.C. Regulation of milk ejection and milkability in small ruminants. Livest. Sci. 2001, 7, 125–133. [Google Scholar] [CrossRef]
- Bueso-Ródenas, J.; Alejandro, M.; Romero, G.; Díaz, J.R. Automatic Prestimulation on Dairy Goats: Milking Efficiency and Teat-End Status. Animals 2021, 11, 121. [Google Scholar] [CrossRef]
- Ambord, S.; Bruckmaier, R.M. Milk flow-dependent vacuum loss in high-line milking systems: Effects on milking characteristics and teat tissue condition. J Dairy Sci. 2010, 93, 3588–3594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | 36 kPa 120 p/m 50% | 36 kPa 120 p/m 60% | 36 kPa 90 p/m 50% | 36 kPa 90 p/m 60% | 40 kPa 120 p/m 50% | 40 kPa 120 p/m 60% | 40 kPa 90 p/m 50% | 40 kPa 90 p/m 60% | SEM | SL |
---|---|---|---|---|---|---|---|---|---|---|
MM (kg) | 1.33 bc | 1.37 abc | 1.34 abc | 1.25 c | 1.50 a | 1.44 ab | 1.44 ab | 1.48 a | 0.09 | <0.05 |
HSM (g) | 230 a | 223 a | 253 a | 256 a | 159 b | 175 b | 168 b | 164 b | 23 | <0.05 |
RM (g) | 85 ab | 80 abc | 97 a | 94 a | 74 bc | 64 c | 72 bc | 72 bc | 9 | <0.05 |
MD (g) | 3.13 ab | 2.78 bc | 3.39 a | 2.97 abc | 3.08 ab | 2.59 bc | 3.01 abc | 2.52 c | 0.25 | <0.05 |
MaxFlow (kg/min) | 0.96 cd | 1.17 ab | 0.90 d | 1.09 bc | 1.11 b | 1.28 a | 1.11 b | 1.30 a | 0.07 | <0.05 |
AvgFlow (kg/min) | 0.58 e | 0.66 cd | 0.58 e | 0.63 de | 0.71 bc | 0.78 ab | 0.69 cd | 0.80 a | 0.04 | <0.05 |
ITWT (%) | 34.6 d | 31.2 d | 44.0 c | 44.9 c | 43.0 c | 53.7 b | 46.5 c | 66.4 a | 4.0 | <0.05 |
ITWA (%) | 57.3 bcd | 45.4 d | 40.5 d | 51.2 cd | 68.3 abc | 85.9 a | 69.4 abc | 71.2 ab | 9.5 | <0.05 |
ITEWA (%) | 21.6 b | 13.1 c | 16.2 bc | 15.4 c | 20.7 b | 31.2 a | 21.2 b | 33.4 a | 2.6 | <0.05 |
Log10SCC | 2.57 | 2.55 | 2.51 | 2.57 | 2.47 | 2.54 | 2.50 | 2.54 | 0.09 | ns |
Cortisol (ng/mL) | 0.83 d | 0.89 cd | 0.81 d | 0.78 d | 0.97 bc | 1.21 a | 1.28 a | 0.97 bc | 0.11 | <0.05 |
FFA (meq/mL) | 0.61 | 0.58 | 0.54 | 0.57 | 0.55 | 0.53 | 0.61 | 0.62 | 0.04 | ns |
MaxVacLevel (kPa) | 33.9 a | 34.0 a | 34.6 a | 34.6 a | 37.7 b | 38.2 b | 38.2 b | 38.5 b | 0.5 | <0.05 |
AvgVacLevel (kPa) | 31.0 a | 30.9 a | 31.5 a | 31.5 a | 34.7 b | 34.4 b | 34.8 b | 35.1 b | 0.5 | <0.05 |
Vacuum Drop (kPa) | 6.7 b | 7.8 ab | 7.6 b | 7.8 ab | 6.4 b | 9.0 a | 7.3 b | 8.8 ab | 1.1 | ns |
Variable | 36 kPa 120 p/m 50% | 36 kPa 120 p/m 60% | 36 kPa 90 p/m 50% | 36 kPa 90 p/m 60% | 40 kPa 120 p/m 50% | 40 kPa 120 p/m 60% | 40 kPa 90 p/m 50% | 40 kPa 90 p/m 60% | SEM | SL |
---|---|---|---|---|---|---|---|---|---|---|
MM (kg) | 1.57 | 1.57 | 1.49 | 1.49 | 1.62 | 1.59 | 1.61 | 1.55 | 0.11 | ns |
HSM (g) | 191 | 184 | 197 | 223 | 205 | 206 | 184 | 207 | 22 | ns |
RM (g) | 94 ab | 95 ab | 108 a | 100 ab | 86 ab | 79 b | 83 ab | 82 ab | 14 | <0.05 |
MD (g) | 3.01 ab | 2.92 ab | 3.02 a | 2.91 ab | 2.81 abc | 2.57 bc | 2.81 abc | 2.43 c | 0.21 | <0.05 |
MaxFlow (kg/min) | 0.98 cd | 1.04 bc | 0.87 d | 1.03 bc | 1.07 abc | 1.20 a | 1.00 cd | 1.17 ab | 0.08 | <0.05 |
AvgFlow (kg/min) | 0.61 bc | 0.69 b | 0.57 c | 0.67 bc | 0.71 ab | 0.8 a | 0.69 b | 0.76 ab | 0.05 | <0.05 |
ITWT (%) | 40.7 b | 31.1 c | 43.4 ab | 43.3 b | 52.0 a | 48.9 a | 40.4 b | 43.1 b | 4.3 | <0.05 |
ITWA (%) | 53.6 | 50.2 | 49.6 | 53.1 | 49.8 | 60.7 | 60.5 | 57.2 | 9.5 | ns |
ITEWA (%) | 20.2 | 21.9 | 19.4 | 21.5 | 20.9 | 21.3 | 20.3 | 18.3 | 2.5 | ns |
Log10SCC | 2.52 | 2.46 | 2.50 | 2.49 | 2.33 | 2.34 | 2.37 | 2.38 | 0.11 | ns |
Cortisol (ng/mL) | 0.50 b | 0.39 b | 0.51 b | 0.51 b | 0.82 a | 0.81 a | 0.80 a | 0.72 a | 0.08 | <0.05 |
FFA (meq/mL) | 0.37 | 0.44 | 0.39 | 0.53 | 0.49 | 0.46 | 0.51 | 0.42 | 0.08 | ns |
MaxVacLevel (kPa) | 36.1 a | 35.9 a | 35.9 a | 36.0 a | 39.6 b | 39.6 b | 39.5 b | 39.6 b | 0.2 | <0.05 |
AvgVacLevel (kPa) | 35.3 a | 35.3 a | 35.2 a | 35.3 a | 38.9 b | 38.8 b | 38.8 b | 38.8 b | 0.2 | <0.05 |
Vacuum Drop (kPa) | 2.2 | 1.9 | 2.3 | 2.0 | 1.8 | 2.4 | 2.4 | 2.4 | 0.2 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, G.; Bueso-Ródenas, J.; Alejandro, M.; Moya, F.; Díaz, J.R. Effect of Vacuum Level and Pulsation Parameters on Milking Efficiency and Animal Welfare of Murciano-Granadina Goats Milked in Mid-Line and Low-Line Milking Machines. Animals 2022, 12, 40. https://doi.org/10.3390/ani12010040
Romero G, Bueso-Ródenas J, Alejandro M, Moya F, Díaz JR. Effect of Vacuum Level and Pulsation Parameters on Milking Efficiency and Animal Welfare of Murciano-Granadina Goats Milked in Mid-Line and Low-Line Milking Machines. Animals. 2022; 12(1):40. https://doi.org/10.3390/ani12010040
Chicago/Turabian StyleRomero, Gema, Joel Bueso-Ródenas, Manuel Alejandro, Francisco Moya, and José Ramón Díaz. 2022. "Effect of Vacuum Level and Pulsation Parameters on Milking Efficiency and Animal Welfare of Murciano-Granadina Goats Milked in Mid-Line and Low-Line Milking Machines" Animals 12, no. 1: 40. https://doi.org/10.3390/ani12010040
APA StyleRomero, G., Bueso-Ródenas, J., Alejandro, M., Moya, F., & Díaz, J. R. (2022). Effect of Vacuum Level and Pulsation Parameters on Milking Efficiency and Animal Welfare of Murciano-Granadina Goats Milked in Mid-Line and Low-Line Milking Machines. Animals, 12(1), 40. https://doi.org/10.3390/ani12010040