The Effect of Rumination Time on Milk Performance and Methane Emission of Dairy Cows Fed Partial Mixed Ration Based on Maize Silage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management, Experimental Design, and Diet
2.2. Rumination Time, Milk Performance, Body Weight
2.3. Methane Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, M.S. Relationship between Fermentation Acid Production in the Rumen and the Requirement for Physically Effective Fiber. J. Dairy Sci. 1997, 80, 1447–1462. [Google Scholar] [CrossRef]
- Abdela, N. Sub-acute Ruminal Acidosis (SARA) and its Consequence in Dairy Cattle: A Review of Past and Recent Research at Global Prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [Green Version]
- Liboreiro, D.N.; Machado, K.S.; Silva, P.R.B.; Maturana, M.M.; Nishimura, T.K.; Brandão, A.P.; Endres, M.I.; Chebel, R.C. Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J. Dairy Sci. 2015, 98, 6812–6827. [Google Scholar] [CrossRef] [Green Version]
- Schirmann, K.; Weary, D.M.; Heuwieser, W.; Chapinal, N.; Cerri, R.L.A.; von Keyserlingk, M.A.G. Short communication: Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. J. Dairy Sci. 2016, 99, 9917–9924. [Google Scholar] [CrossRef] [PubMed]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part III. Metritis. J. Dairy Sci. 2016, 99, 7422–7433. [Google Scholar] [CrossRef] [Green Version]
- Soriani, N.; Trevisi, E.; Calamari, L.; Parmense, V.E. Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period 1. J. Anim. Sci. 2018, 90, 4544–4554. [Google Scholar] [CrossRef]
- Clément, P.; Guatteo, R.; Delaby, L.; Rouillé, B.; Chanvallon, A.; Philipot, J.M.; Bareille, N. Short communication: Added value of rumination time for the prediction of dry matter intake in lactating dairy cows. J. Dairy Sci. 2014, 97, 6531–6535. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.I.; Asselstine, V.H.; LeBlanc, S.J.; Duffield, T.F.; DeVries, T.J. Association of rumination time and health status with milk yield and composition in early-lactation dairy cows. J. Dairy Sci. 2017, 101, 462–471. [Google Scholar] [CrossRef]
- Watt, L.J.; Clark, C.E.F.; Krebs, G.L.; Petzel, C.E.; Nielsen, S.; Utsumi, S.A. Differential rumination, intake, and enteric methane production of dairy cows in a pasture-based automatic milking system. J. Dairy Sci. 2015, 98, 7248–7263. [Google Scholar] [CrossRef]
- Grešáková, Ľ.; Holodová, M.; Szumacher-Strabel, M.; Huang, H.; Ślósarz, P.; Wojtczak, J.; Sowińska, N.; Cieślak, A. Mineral status and enteric methane production in dairy cows during different stages of lactation. BMC Vet. Res. 2021, 17, 287. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Cieślak, A.; Jóźwik, A.; El-Sherbiny, M.; Gogulski, M.; Lechniak, D.; Gao, M.; Yanza, Y.R.; Vazirigohar, M.; Szumacher-Strabel, M. Effects of partially replacing grass silage by lucerne silage cultivars in a high-forage diet on ruminal fermentation, methane production, and fatty acid composition in the rumen and milk of dairy cows. Anim. Feed Sci. Technol. 2021, 277, 114959. [Google Scholar] [CrossRef]
- Huang, H.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Lechniak, D.; Vazirigohar, M.; Varadyova, Z.; Kozłowska, M.; Cieślak, A. Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Anim. Feed Sci. Technol. 2021, 279, 115038. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Paredes, J.; Goiri, I.; Atxaerandio, R.; García-Rodríguez, A.; Ugarte, E.; Jiménez-Montero, J.A.; Alenda, R.; González-Recio, O. Mitigation of greenhouse gases in dairy cattle via genetic selection: 1. Genetic parameters of direct methane using noninvasive methods and proxies of methane. J. Dairy Sci. 2020, 103, 7199–7209. [Google Scholar] [CrossRef] [PubMed]
- Zetouni, L.; Difford, G.F.; Lassen, J.; Byskov, M.V.; Norberg, E.; Løvendahl, P. Is rumination time an indicator of methane production in dairy cows? J. Dairy Sci. 2018, 101, 11074–11085. [Google Scholar] [CrossRef] [Green Version]
- Denninger, T.M.; Dohme-Meier, F.; Eggerschwiler, L.; Vanlierde, A.; Grandl, F.; Gredler, B.; Kreuzer, M.; Schwarm, A.; Münger, A. Persistence of differences between dairy cows categorized as low or high methane emitters, as estimated from milk mid-infrared spectra and measured by GreenFeed. J. Dairy Sci. 2019, 102, 11751–11765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kononoff, P.J.; Heinrichs, A.J.; Buckmaster, D.R. Modification of the Penn State Forage and Total Mixed Ration Particle Separator and the Effects of Moisture Content on its Measurements. J. Dairy Sci. 2003, 86, 1858–1863. [Google Scholar] [CrossRef]
- Reist, M.; Erdin, D.K.; Von Euw, D.; Tschümperlin, K.M.; Leuenberger, H.; Hammon, H.M.; Morel, C.; Philipona, C.; Zbinden, Y.; Künzi, N.; et al. Postpartum reproductive function: Association with energy, metabolic and endocrine status in high yielding dairy cows. Theriogenology 2003, 59, 1707–1723. [Google Scholar] [CrossRef]
- Centraal Veevoederbureau (CVB). Tabellenboek Veevoeding: Voedernormen Landbouwhuisdieren en Voederwaarde Veevoeders; Productschap Diervoeder: Den Haag, The Netherlands, 2012. [Google Scholar]
- Pszczola, M.; Rzewuska, K.; Mucha, S.; Strabel, T. Heritability of methane emissions from dairy cows over a lactation measured on commercial farms. J. Anim. Sci. 2017, 95, 4813–4819. [Google Scholar] [CrossRef] [Green Version]
- Madsen, J.; Bjerg, B.S.; Hvelplund, T.; Weisbjerg, M.R.; Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 2010, 129, 223–227. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 June 2021).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; R package version 1.7.0. Available online: https://cran.r-project.org/package=emmeans (accessed on 1 June 2021).
- Fai, A.H.T.; Cornelius, P.L. Approximate f-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments. J. Stat. Comput. Simul. 1996, 54, 363–378. [Google Scholar] [CrossRef]
- White, R.R.; Hall, M.B.; Firkins, J.L.; Kononoff, P.J. Physically adjusted neutral detergent fiber system for lactating dairy cow rations. II: Development of feeding recommendations. J. Dairy Sci. 2017, 100, 9569–9584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. J. Dairy Sci. 2013, 96, 5082–5094. [Google Scholar] [CrossRef] [Green Version]
- Stone, A.E.; Jones, B.W.; Becker, C.A.; Bewley, J.M. Influence of breed, milk yield, and temperature-humidity index on dairy cow lying time, neck activity, reticulorumen temperature, and rumination behavior. J. Dairy Sci. 2017, 100, 2395–2403. [Google Scholar] [CrossRef] [Green Version]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Heuwieser, W.; von Keyserlingk, M.A.G. Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J. Dairy Sci. 2012, 95, 3212–3217. [Google Scholar] [CrossRef] [Green Version]
- Zebeli, Q.; Aschenbach, J.R.; Tafaj, M.; Boguhn, J.; Ametaj, B.N.; Drochner, W. Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. J. Dairy Sci. 2012, 95, 1041–1056. [Google Scholar] [CrossRef] [Green Version]
- Byskov, M.V.; Nadeau, E.; Johansson, B.E.O.; Nørgaard, P. Variations in automatically recorded rumination time as explained by variations in intake of dietary fractions and milk production, and between-cow variation Variations in automatically recorded rumination time as explained by variations in intake of die. J. Dairy Sci. 2015, 98, 3926–3937. [Google Scholar] [CrossRef] [Green Version]
- Aguerre, M.J.; Wattiaux, M.A.; Powell, J.M.; Broderick, G.A.; Arndt, C. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 2011, 94, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
Items | |
---|---|
PMR | |
Ingredients, g/kg DM | |
maize silage | 337 |
alfalfa silage | 149 |
wheat straw | 91 |
wheat grain | 81 |
sugar beet pulp silage | 81 |
brewer’s grain silage | 76 |
maize grain silage | 69 |
rapeseed meal | 61 |
ProStim Soy balance | 18 |
minerals, vitamins, and feed additives | 37 |
Nutritional value, in kg DM | |
NEL3x | 1.49 Mcal/kg |
CP | 150 g/kg |
RUP | 35% |
NDF | 356 g/kg |
ADF | 223 g/kg |
NFC | 370 g/kg |
C standard | |
Nutritional value, in kg DM | |
NEL3x | 1.73 Mcal/kg |
CP | 220 g/kg |
C extra | |
Nutritional value, in kg DM | |
NEL3x | 1.99 Mcal/kg |
CP | 267 g/kg |
Variable | Rumination Group | SD | ||
---|---|---|---|---|
L | M | H | ||
No. observations | 3650 | 7029 | 3595 | N.A. |
Rumination time (min/day) | 356.39 a | 467.30 b | 551.06 c | 94.81 |
BW (kg) | 551.46 a | 545.80 b | 543.44 c | 85.87 |
BW0.75 (kg) | 113.21 a | 112.35 b | 112.01 b | 13.39 |
Concentrate intake (g/day) | 4360 a | 4264 b | 4239 b | 1368 |
Concentrate intake/milk yield (g/kg) | 123.73 | 121.65 | 120.97 | 53.12 |
Concentrate intake BW0.75 (g/kg) | 40.32 a | 40.34 a | 39.58 b | 11.99 |
Phenotypes | Rumination Groups | SD | ||
---|---|---|---|---|
L | M | H | ||
Milk production, composition and AMS use | ||||
Milk (kg/day) | 35.46 | 35.28 | 35.26 | 7.84 |
ECM (kg/day) | 34.42 | 34.31 | 34.17 | 6.88 |
FPCM (kg/day) | 33.95 | 33.83 | 33.70 | 6.81 |
Fat (%) | 3.80 a | 3.94 a | 3.75 b | 0.55 |
Protein (%) | 3.29 | 3.30 | 3.29 | 0.18 |
Lactose (%) | 4.97 | 4.97 | 4.97 | 0.11 |
Fat: protein | 1.15 a | 1.15 a | 1.14 b | 0.17 |
Milkings/day | 2.84 | 2.84 | 2.86 | 0.81 |
Daily methane production | ||||
CH4 (L) | 412.47 a | 404.99 b | 395.80 c | 87.16 |
CH4/BW0.75 (L/kg) | 3.68 a | 3.67 a | 3.59 b | 0.78 |
CH4/milk (L/kg) | 12.07 a | 11.86 b | 11.52 c | 3.49 |
CH4/ECM (L/kg) | 12.26 a | 12.07 b | 11.79 c | 3.29 |
CH4/concentrate intake (L/g) | 0.10 a | 0.12 b | 0.11 ab | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikuła, R.; Pszczola, M.; Rzewuska, K.; Mucha, S.; Nowak, W.; Strabel, T. The Effect of Rumination Time on Milk Performance and Methane Emission of Dairy Cows Fed Partial Mixed Ration Based on Maize Silage. Animals 2022, 12, 50. https://doi.org/10.3390/ani12010050
Mikuła R, Pszczola M, Rzewuska K, Mucha S, Nowak W, Strabel T. The Effect of Rumination Time on Milk Performance and Methane Emission of Dairy Cows Fed Partial Mixed Ration Based on Maize Silage. Animals. 2022; 12(1):50. https://doi.org/10.3390/ani12010050
Chicago/Turabian StyleMikuła, Robert, Marcin Pszczola, Katarzyna Rzewuska, Sebastian Mucha, Włodzimierz Nowak, and Tomasz Strabel. 2022. "The Effect of Rumination Time on Milk Performance and Methane Emission of Dairy Cows Fed Partial Mixed Ration Based on Maize Silage" Animals 12, no. 1: 50. https://doi.org/10.3390/ani12010050
APA StyleMikuła, R., Pszczola, M., Rzewuska, K., Mucha, S., Nowak, W., & Strabel, T. (2022). The Effect of Rumination Time on Milk Performance and Methane Emission of Dairy Cows Fed Partial Mixed Ration Based on Maize Silage. Animals, 12(1), 50. https://doi.org/10.3390/ani12010050