Expression of Renal Vitamin D and Phosphatonin-Related Genes in a Sheep Model of Osteoporosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Ovariectomy, Time since Ovariectomy and Glucocorticoid Treatment on Serum Calcium, Phosphorus and 25-Hydroxyvitamin D Concentrations
3.2. Effect of Ovariectomy and Time since Ovariectomy on Vitamin D and Phosphatonin-Related Gene Expression in the Kidney
3.3. Effect of Ovariectomy and Glucocorticoid Treatment on Vitamin D and Phosphatonin-Related Gene Expression in the KIDNEY 5 Months Post-Operatively
3.4. PCA of Overall Gene Expression between Groups
3.5. Pairwise Correlation between all Analytes and Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Michael Lewiecki, E.; et al. American association of clinical endocrinologists/American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocr. Pract. 2020, 26, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.Y.; Yang, Y.; Jung, H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int. J. Mol. Sci. 2020, 21, 7623. [Google Scholar] [CrossRef] [PubMed]
- Dias, I.R.; Camassa, J.A.; Bordelo, J.A.; Babo, P.S.; Viegas, C.A.; Dourado, N.; Reis, R.L.; Gomes, M.E. Preclinical and translational studies in small ruminants (Sheep and Goat) as models for osteoporosis research. Curr. Osteoporos. Rep. 2018, 16, 182–197. [Google Scholar] [CrossRef]
- Turner, A.S. The sheep as a model for osteoporosis in humans. Vet. J. 2002, 163, 232–239. [Google Scholar] [CrossRef]
- Cabrera, D.; Wolber, F.M.; Dittmer, K.; Rogers, C.; Ridler, A.; Aberdein, D.; Parkinson, T.; Chambers, P.; Fraser, K.; Roy, N.C.; et al. Glucocorticoids affect bone mineral density and bone remodelling in OVX sheep: A pilot study. Bone Rep. 2018, 9, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, D.; Kruger, M.; Wolber, F.M.; Roy, N.C.; Fraser, K. Effects of short- and long-term glucocorticoid-induced osteoporosis on plasma metabolome and lipidome of ovariectomized sheep. BMC Musculoskelet. Disord. 2020, 21, 349. [Google Scholar]
- Coelho, C.A.; Bordelo, J.P.; Camassa, J.A.; Barros, V.A.; Babo, P.S.; Gomes, M.E.; Reis, R.L.; DE AZEVEDO, J.T.; Requicha, J.F.; Faísca, P.; et al. Evaluation of hematology, general serum biochemistry, bone turnover markers and bone marrow cytology in a glucocorticoid treated ovariectomized sheep model for osteoporosis research. An. Acad. Bras. Cienc. 2020, 92, 1–16. [Google Scholar] [CrossRef]
- Dittmer, K.E.; Thompson, K.G. Vitamin D metabolism and rickets in domestic animals: A review. Vet. Pathol. 2011, 48, 389–407. [Google Scholar] [CrossRef]
- Hardcastle, M.R.R.; Dittmer, K.E.E. Fibroblast growth factor 23: A new dimension to diseases of calcium-phosphorus metabolism. Vet. Pathol. 2015, 52, 770–784. [Google Scholar] [CrossRef]
- Wagner, C.; Hernando, N.; Forster, I.; Biber, J. The SLC34 family of sodium-dependent phosphate transporters. Pflügers Arch.-Eur. J. Physiol. 2014, 466, 139–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khuituan, P.; Wongdee, K.; Jantarajit, W.; Suntornsaratoon, P.; Krishnamra, N.; Charoenphandhu, N. Fibroblast growth factor-23 negates 1,25(OH)2D3-induced intestinal calcium transport by reducing the transcellular and paracellular calcium fluxes. Arch. Biochem. Biophys. 2013, 536, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yang, J.; Li, L.; Huang, J.; King, G.; Quarles, L.D. Conditional deletion of fgfr1 in the proximal and distal tubule identifies distinct roles in phosphate and calcium transport. PLoS ONE 2016, 11, e0147845. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Ichikawa, Y.; Saito, E.; Homma, M. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 1983, 32, 151–156. [Google Scholar] [CrossRef]
- Cosman, F.; Nieves, J.; Herbert, J.; Shen, V.; Lindsay, R. High-dose glucocorticoids in multiple sclerosis patients exert direct effects on the kidney and skeleton. J. Bone Miner. Res. 1994, 9, 1097–1105. [Google Scholar] [CrossRef]
- Freiberg, J.M.; Kinsella, J.; Sacktor, B. Glucocorticoids increase the Na+-H+ exchange and decrease the Na+ gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles. Proc. Natl. Acad. Sci. USA 1982, 79, 4932–4936. [Google Scholar] [CrossRef] [Green Version]
- Öz, O.K.; Hajibeigi, A.; Howard, K.; Cummins, C.L.; Van Abel, M.; Bindels, R.J.M.; Word, R.A.; Kuro-o, M.; Pak, C.Y.C.; Zerwekh, J.E. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice. J. Bone Miner. Res. 2007, 22, 1893–1902. [Google Scholar] [CrossRef] [Green Version]
- Webster, R.; Sheriff, S.; Faroqui, R.; Siddiqui, F.; Hawse, J.R.; Amlal, H. Klotho/fibroblast growth factor 23- and PTH-independent estrogen receptor-α-mediated direct downregulation of NaPi-IIa by estrogen in the mouse kidney. Am. J. Physiol.-Ren. Physiol. 2016, 311, F249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sykes, A.R. Calcium. In Managing Mineral Deficiencies in Grazing Livestock; Grace, N., Knowles, S., Sykes, A., Eds.; New Zealand Society of Animal Production: Palmerston North, New Zealand, 2010; pp. 151–160. [Google Scholar]
- Azarpeykan, S.; Dittmer, K.E.K.E.; Marshall, J.C.J.C.; Perera, K.C.K.C.; Gee, E.K.E.K.; Acke, E.; Thompson, K.G.K.G. Evaluation and comparison of vitamin d responsive gene expression in ovine, canine and equine kidney. PLoS ONE 2016, 11, e0162598. [Google Scholar] [CrossRef]
- Dittmer, K.E.; Heathcott, R.W.; Marshall, J.C.; Azarpeykan, S. Expression of phosphatonin-related genes in sheep, dog and horse kidneys using quantitative reverse transcriptase pcr. Animals 2020, 10, 1806. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, E45. [Google Scholar] [CrossRef]
- R Studio Team. RStudio: Integrated Development for R RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 29 October 2021).
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Adami, G.; Saag, K.G. Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos. Int. 2019, 30, 1145–1156. [Google Scholar] [CrossRef]
- Peng, C.-H.; Lin, W.-Y.; Yeh, K.-T.; Chen, I.-H.; Wu, W.-T.; Lin, M.-D. The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu-Chi Med. J. 2021, 33, 212. [Google Scholar] [PubMed]
- Kuro-o, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.U.; Prié, D.; Molina-Blétry, V.; Beck, L.; Silve, C.; Friedlander, G. Klotho: An antiaging protein involved in mineral and vitamin D metabolism. Kidney Int. 2007, 71, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Zarrabeitia, M.T.; Hernández, J.L.; Valero, C.; Zarrabeitia, A.L.; Ortiz, F.; Gonzalez-Macias, J.; Riancho, J.A. Klotho gene polymorphism and male bone mass. Calcif. Tissue Int. 2007, 80, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Ando, F.; Niino, N.; Shimokata, H. Association of polymorphisms of the androgen receptor and klotho genes with bone mineral density in Japanese women. J. Mol. Med. 2005, 83, 50–57. [Google Scholar] [CrossRef]
- Toan, N.K.; Tai, N.C.; Kim, S.A.; Ahn, S.G. Soluble Klotho regulates bone differentiation by upregulating expression of the transcription factor EGR-1. FEBS Lett. 2020, 594, 290–300. [Google Scholar] [CrossRef]
- Feger, M.; Ewendt, F.; Strotmann, J.; Schäffler, H.; Kempe-Teufel, D.; Glosse, P.; Stangl, G.I.; Föller, M. Glucocorticoids dexamethasone and prednisolone suppress fibroblast growth factor 23 (FGF23). J. Mol. Med. 2021, 99, 699–711. [Google Scholar] [CrossRef]
- Boros, S.; Bindels, R.; Hoenderop, J. Active Ca2+ reabsorption in the connecting tubule. Pflugers Arch. Eur. J. Physiol. 2009, 458, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, S.; van Goor, M.K.; Asarnow, D.; Wang, Y.; Julius, D.; Cheng, Y.; van der Wijst, J. Structural insight into TRPV5 channel function and modulation. Proc. Natl. Acad. Sci. USA 2019, 116, 8869–8878. [Google Scholar] [CrossRef] [Green Version]
- van Goor, M.K.C.; Hoenderop, J.G.J.; van der Wijst, J. TRP channels in calcium homeostasis: From hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim. Biophys. Acta-Mol. Cell Res. 2017, 1864, 883–893. [Google Scholar] [CrossRef]
- Hahn, T.J.; Halstead, L.R.; Baran, D.T. Effects of short term glucocorticoid administration on intestinal calcium absorption and circulating vitamin d metabolite concentrations in man. J. Clin. Endocrinol. Metab. 1981, 52, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Huybers, S.; Naber, T.H.J.; Bindels, R.J.M.; Hoenderop, J.G.J. Prednisolone-induced Ca2+ malabsorption is caused by diminished expression of the epithelial Ca2+ channel TRPV6. Am. J. Physiol.-Gastrointest. Liver Physiol. 2007, 292, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Rubin, M.R.; Bilezikian, J.P. The role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: A re-examination of the evidence. J. Clin. Endocrinol. Metab. 2002, 87, 4033–4041. [Google Scholar] [CrossRef] [Green Version]
- Fucik, R.F.; Kukreja, S.C.; Hargis, G.K.; Bowser, E.N.; Henderson, W.J.; Williams, G.A. Effect of glucocorticoids on function of the parathyroid glands in man. J. Clin. Endocrinol. Metab. 1975, 40, 152–155. [Google Scholar] [CrossRef]
- Slovik, D.M.; Neer, R.M.; Ohman, J.L.; Lowell, F.C.; Clark, M.B.; Segre, G.V.; Potts, J.T., Jr. Parathyroid hormone and 25-hydroxyvitamin D levels in glucocorticoid-treated patients. Clin. Endocrinol. 1980, 12, 243–248. [Google Scholar] [CrossRef]
- Paz-Pacheco, E.; El-Hajj Fuleihan, G.; Leboff, M.S. Intact parathyroid hormone levels are not elevated in glucocorticoid-treated subjects. J. Bone Miner. Res. 1995, 10, 1713–1718. [Google Scholar] [CrossRef]
- Bonadonna, S.; Burattin, A.; Nuzzo, M.; Bugari, G.; Rosei, E.A.; Valle, D.; Iori, N.; Bilezikian, J.P.; Veldhuis, J.D.; Giustina, A. Chronic glucocorticoid treatment alters spontaneous pulsatile parathyroid hormone secretory dynamics in human subjects. Eur. J. Endocrinol. 2005, 152, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Ahlström, M.; Pekkinen, M.; Lamberg-Allardt, C. Dexamethasone downregulates the expression of parathyroid hormone-related protein (PTHrP) in mesenchymal stem cells. Steroids 2009, 74, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, N.; Kawane, T.; Horiuchi, N. Upregulation of PTH receptor mRNA expression by dexamethasone in UMR-106 osteoblast-like cells. Oral Dis. 2007, 13, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lai, W.P.; Wu, C.F.; Favus, M.J.; Leung, P.C.; Wong, M.S. Ovariectomy worsens secondary hyperparathyroidism in mature rats during low-Ca diet. Am. J. Physiol.-Endocrinol. Metab. 2007, 292, E723–E731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrukhova, O.; Smorodchenko, A.; Egerbacher, M.; Streicher, C.; Zeitz, U.; Goetz, R.; Shalhoub, V.; Mohammadi, M.; Pohl, E.E.; Lanske, B.; et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014, 33, 229–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.T.F.; An, S.W.; Nie, M.; Bal, M.S.; Huang, C.L. Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular n-glycosylation-dependent mechanisms. J. Biol. Chem. 2014, 289, 35849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dittmer, K.E.; Chernyavtseva, A.; Marshall, J.C.; Cabrera, D.; Wolber, F.M.; Kruger, M. Expression of Renal Vitamin D and Phosphatonin-Related Genes in a Sheep Model of Osteoporosis. Animals 2022, 12, 67. https://doi.org/10.3390/ani12010067
Dittmer KE, Chernyavtseva A, Marshall JC, Cabrera D, Wolber FM, Kruger M. Expression of Renal Vitamin D and Phosphatonin-Related Genes in a Sheep Model of Osteoporosis. Animals. 2022; 12(1):67. https://doi.org/10.3390/ani12010067
Chicago/Turabian StyleDittmer, Keren E., Anastasia Chernyavtseva, Jonathan C. Marshall, Diana Cabrera, Frances M. Wolber, and Marlena Kruger. 2022. "Expression of Renal Vitamin D and Phosphatonin-Related Genes in a Sheep Model of Osteoporosis" Animals 12, no. 1: 67. https://doi.org/10.3390/ani12010067
APA StyleDittmer, K. E., Chernyavtseva, A., Marshall, J. C., Cabrera, D., Wolber, F. M., & Kruger, M. (2022). Expression of Renal Vitamin D and Phosphatonin-Related Genes in a Sheep Model of Osteoporosis. Animals, 12(1), 67. https://doi.org/10.3390/ani12010067