The Mineral Composition of Bone Marrow, Plasma, Bones and the First Antlers of Farmed Fallow Deer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling
2.3. Mineral Content Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Soft Tissues (BM and P)
4.2. Hard Tissues (B and A)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landete-Castillejos, T.; Currey, J.D.; Estévez, J.A.; Fierro, Y.; Calatayud, A.; Ceacero, F.; García, A.J.; Gallego, L. Do drastic weather effect on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 2010, 47, 815–825. [Google Scholar] [CrossRef]
- Zannèse, A.; Morellet, N.; Targhetta, C.; Coulon, A.; Fuser, S.; Hewison, A.J.M.; Ramanzin, M. Spatial structure of roe deer populations: Towards defining management units at a landscape scale. J. Appl. Ecol. 2006, 43, 1087–1097. [Google Scholar] [CrossRef]
- Gómez, J.A.; Landete-Castillejos, T.; García, A.J.; Gaspar-López, E.; Estévez, J.A.; Gallego, L. Lactation growth influences mineral composition of first antler in Iberian red deer (Cervus elaphus hispanicus). Wildl. Biol. 2008, 14, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.A.; Ceacero, F.; Landete-Castillejos, T.; Gaspar-López, E.; García, A.J.; Gallego, L. Factors affecting antler investment in Iberian red deer. Anim. Prod. Sci. 2012, 52, 867–873. [Google Scholar] [CrossRef]
- Weiss, D.J.; Wardrop, K.J. Schalm’s Veterinary Hematology, 6th ed.; Blackwell Publishing: Ames, IA, USA, 2010. [Google Scholar]
- Tajchman, K.; Steiner-Bogdaszewska, Ż.; Kowalczuk-Vasilev, E.; Dąbrowski, R. Effect of Ca and P supplementation on the haematological parameters and content of selected minerals in the blood of young farmed fallow deer males (Dama dama). Biologia 2020, 75, 401–411. [Google Scholar] [CrossRef]
- Tajchman, K.; Bogdaszewski, M.; Kowalczuk-Vasilev, E.; Dąbrowski, R. Impact of day length and total protein content in the diet of farmed fallow deer (Dama dama) on their plasma mineral level and haematological indices. Appl. Ecol. Environ. Res. 2019, 17, 14729–14750. [Google Scholar] [CrossRef]
- Tajchman, K.; Ukalska-Jaruga, A.; Bogdaszewski, M.; Pecio, M.; Dziki-Michalska, K. Accumulation of toxic elements in bone and bone marrow of deer living in various ecosystems. A case study of farmed and wild-living deer. Animals 2020, 10, 2151. [Google Scholar] [CrossRef]
- Oliveira, D.C.; Nogueira-Pedro, A.; Santos, E.W.; Hastreiter, A.; Silva, B.G.; Borelli, P.; Fock, R.A. A review of select minerals influencing the haematopoietic process. Nutr. Res. Rev. 2018, 31, 267–280. [Google Scholar] [CrossRef]
- Silberstein, L.; Anastasi, J. Hematology: Basic Principles and Practice, 7th ed.; Hoffman, R., Benz, E., Heslop, H., Weitz, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Cygan-Szczegielniak, D. The levels of mineral elemnts and toxic metals in the longissimus lumborum muscle, hair and selected organs of red deer (Cervus elaphus L.) in Poland. Animals 2021, 11, 1231. [Google Scholar] [CrossRef] [PubMed]
- García, A.J.; Landete-Castillejos, T.; Molina, A.; Albinana, B.; Fernandez, C.; Garde, J.; Gallego, L. Lactation curves in captive Iberian red deer (Cervus elaphus hispanicus). J. Anim. Sci. 1999, 77, 3150–3155. [Google Scholar] [CrossRef]
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Bąkowska, M.; Pilarczyk, B.; Tomza-Marciniak, A.; Udała, J.; Pilarczyk, R. The bioaccumulation of lead in the organs of roe deer (Capreolus capreolus L.), red deer (Cervus elaphus L.), and wild boar (Sus scrofa L.) from Poland. Environ. Sci. Pollut. Res. 2016, 348, 14373–14382. [Google Scholar] [CrossRef]
- Tajchman, K.; Ukalska-Jaruga, A.; Bogdaszewski, M.; Pecio, M.; Janiszewski, P. Comparison of the accumulation of macro- and microelements in bone marrow and bone of wild and farmed red deer (Cervus elaphus). BMC Vet. Res. 2021, 17, 324. [Google Scholar] [CrossRef]
- Hassan, A.A.; Rylander, C.; Sandanger, T.M.; Brustad, M. Copper, cobalt and chromium in meat, liver, tallow and bone marrow from semi-domesti-cated reindeer (Rangifer tarandus tarandus L.) in Northen Norway. Food Public Health 2013, 3, 154–160. [Google Scholar] [CrossRef]
- DEFRA Code of Recommendations for the Welfare of Farmed Deer. 2022. Available online: http://www.defra.gov.uk/animalh/welfare/farmed/othersps/deer/pb0055/deercode.htm (accessed on 20 February 2022).
- FEDFA Federation of European Deer Farmers Associations. 2022. Available online: https://www.fedfa.com/ (accessed on 20 February 2022).
- Mattiello, S. Welfare issues of modern deer farming. Ital. J. Anim. Sci. 2009, 8, 205–217. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Kroucamp, M.; Manley, M. Meat quality characteristics of springbok (Antidorcas marsupialis). Chemical composition of springbok meat as influenced by age, gender and production region. Meat Sci. 2007, 76, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Tajchman, K.; Bogdaszewski, M.; Kowalczuk-Vasilev, E. Effects of supplementation with different levels of calcium and phosphorus on mineral content of first antler, bone, muscle, and liver of farmed fallow deer (Dama dama). Can. J. Anim. Sci. 2020, 100, 17–26. [Google Scholar] [CrossRef]
- Kučer, N.; Kuleš, J.; Barić-Rafaj, R.; Tončic, J.; Vicković, I.; Štoković, I.; Potočnjak, D.; Šoštarić, B. Mineral concentration in plasma of young and adult red deer. Vet. Arch. 2013, 83, 425–434. Available online: https://hrcak.srce.hr/105559 (accessed on 1 September 2022).
- Padilla, S.; Bouda, J.; Quiroz-Rocha, G.F.; Dávalos, J.L.; Sánchez, A. Biochemical and haematological values in venous blood of captive red deer (Cervus elaphus) at high altitude. Acta Vet. Brno 2000, 69, 327–331. [Google Scholar] [CrossRef]
- Kuba, J. Analysis of changes in the concentration of Ca, P and Mg in blood serum of red deer (Cervus elaphus) immature males in farm breeding. Acta Sci. Pol. Zootech. 2014, 13, 31–40. Available online: https://asp.zut.edu.pl/2014/13_2/asp-2014-13-2-234.pdf (accessed on 1 September 2022).
- Grace, N.D.; Castillo-Alcala, F.; Wilson, P.R. Amounts and distribution of mineral elements associated with live weight gains of grazing red deer (Cervus elaphus). N. Z. J. Agric. Res. 2008, 51, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Landete-Castillejos, T.; García, A.; Gallego, L. Body weight, early growth and antler size influence antler bone mineral composition of Iberian Red Deer (Cervus elaphus hispanicus). Bone 2007, 40, 230–235. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; Estévez, J.A.; Martínez, A.; Ceacero, F.; García, A.J.; Gallego, L. Does chemical composition of antler bone reflect the physiological effort made to grow it? Bone 2007, 40, 1095–1102. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; Currey, J.D.; Estévez, J.A.; Gaspar-López, E.; García, A.; Gallego, L. Influence of physiological efort of growth and chemical composition on antler bone mechanical properties. Bone 2007, 41, 794–803. [Google Scholar] [CrossRef]
- Kreulen, D. Wildebeest habitat selection in the Serengeti plains, Tanzania, in relation to calcium and lactation: A preliminary report. Afr. J. Ecol. 1975, 13, 297–304. [Google Scholar] [CrossRef]
- McNaughton, S.J. Mineral nutrition and spatial concentrations of African ungulates. Nature 1988, 334, 343–345. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, S.J. Mineral nutrition and seasonal movements of African migratory ungulates. Nature 1990, 345, 613–615. [Google Scholar] [CrossRef]
- Alldredge, M.W.; Peek, J.M.; Wall, W.A. Nutritional quality of forages used by elk in northern Idaho. J. Range Manag. 2002, 55, 253–259. [Google Scholar] [CrossRef]
- Rautiainen, H.; Bergvall, U.A.; Felton, A.M.; Tigabu, M.; Kjellander, P. Nutritional niche separation between native roe deer and the nonnative fallow deer—A test of interspecific competition. Mammal Res. 2021, 66, 443–455. [Google Scholar] [CrossRef]
- Raferty, K.; Davies, K.M.; Heaney, R.P. Potassium intake and the calcium economy. J. Am. Coll. Nutr. 2005, 24, 99–106. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; Molina-Quilez, I.; Estevez, J.A.; Ceacero, F.; Garcia, A.J.; Gallego, L. Alternative hypothesis for the origin of osteoporosis: The role of Mn. Front. Biosci. 2012, E4, 1385–1390. [Google Scholar] [CrossRef]
- Olguin, C.A.; Landete-Castillejos, T.; Ceacero, F.; García, A.J.; Gallego, L. Effects of Feed Supplementation on Mineral Composition, Mechanical Properties and Structure in Femurs of Iberian Red Deer Hinds (Cervus elaphus hispanicus). PLoS ONE 2013, 8, e65461. [Google Scholar] [CrossRef]
- McDowell, L.R. Minerals in Animal and Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Kierdorf, U.; Stoffels, D.; Kierdorf, H. Element concentrations and element ratios in antler and pedicle bone of yearling red deer (Cervus elaphus) stags–a quantitative X-ray fluorescence study. Biol. Trace Elem. Res. 2014, 162, 124–133. [Google Scholar] [CrossRef]
- Nowicka, W.; Machoy, Z.; Gutowska, I.; Noceń, I.; Piotrowska, S.; Chlubek, D. Contents of calcium, magnesium, and phosphorus in antlers and cranial bones of the European Red Deer (Cervus elaphus) from different region in western Poland. Pol. J. Environ. Stud. 2006, 15, 297–301. [Google Scholar]
- Azorit, C.; Oya, A. Modeling the age-related shift in the mineral content of hard tissues in two Mediterranean deer species. Arch. Oral Biol. 2021, 122, 104999. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; García, A.; Ceacero, F.; Gallego, L. The composition and mechanical properties of deer antlers and bones as an information source to manage ecosystems. Ecosistemas 2013, 22, 68–75. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; Currey, J.D.; Ceacero, F.; García, A.J.; Gallego, L.; Gomez, S. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition. Bone 2012, 50, 245–254. [Google Scholar] [CrossRef]
- Cappelli, J.; Atzori, A.S.; Ceacero, F.; Landete-Castillejos, T.; Cannas, A.; Gallego, L.; Garcia-Diaz, A.J. Morphology, chemical composition mechanical properties and structure in antler of Sardinian red deer (Cervus elaphus corsicanus). Hystrix Ital. J. Mammal. 2017, 28, 110–112. [Google Scholar] [CrossRef]
- Pathak, N.N.; Pattanaik, A.K.; Patra, R.C.; Arora, B.M. Mineral composition of antlers of three deer species reared in captivity. Small Rumin. Res. 2001, 42, 61–65. [Google Scholar] [CrossRef]
- Hellgren, E.C.; Pitts, W.J. Sodium economy in white-tailed deer (Odoicoleus virginianus). Physiol. Zool. 1997, 70, 547–555. [Google Scholar] [CrossRef]
- Beede, D.K.; Collier, R.J. Potential nutritional strategies for intensively managed cattle during thermal stress. J. Anim. Sci. 1986, 62, 543–554. [Google Scholar] [CrossRef]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Ram, L.; Schonewille, J.T.; Martens, H.; van’t Klooster, A.T.; Beynen, A.C. Magnesium absorption by withers fed potassium bicarbonate in combination with different dietary magnesium concentrations. J. Dairy Sci. 1998, 81, 2485–2492. [Google Scholar] [CrossRef]
- Berger, L.L. Salt and Trace Minerals for Livestock, Poultry and Other Animals; Salt Institute: Alexandria, VA, USA, 1987. [Google Scholar]
- Anke, M.; Arnhold, W.; Schafer, U.; Miiller, R. Recent progress in exploring the essentiality of the ultratrace element lithium to the nutrition of animals and man. Biomed. Res. Trace Elem. 2005, 16, 169–176. [Google Scholar] [CrossRef]
- O’Dell, B.L.; Sunde, R.A. Handbook of Nutritional Essential Mineral Elements; CRC Press: New York, NY, USA, 2019. [Google Scholar]
- Roy, D.; Keshri, A. Wpływ Suplementacji Chromem na Zwierzęta Gospodarskie i Ptaki Drobiowe: Suplementacja Chromem w Paszy Dla Zwierząt; Polish Edition; Wydawnictwo Nasza Wiedza: Warszawa, Poland, 2020. [Google Scholar]
- Chang, T.T. A selective medium for Phellinus noxins. Eur. J. For. Pathol. 1995, 25, 185–190. [Google Scholar] [CrossRef]
- Moosie-Shageer, S.; Mowat, D.N. Effects of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves. J. Anim. Sci. 1993, 71, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Cappelli, J.; Garcia, A.; Ceacero, F.; Gomez, S.; Luna, S.; Gallego, L.; Gambin, P.; Landete-Castillejos, T. Manganese supplementation in deer under balanced diet increases impact energy and contents in minerals of antler bone tissue. PLoS ONE 2015, 10, e0132738. [Google Scholar] [CrossRef] [Green Version]
- Grace, N.D.; Wilson, P.R. Trace element metabolism, dietary requirements, diagnosis and prevention of deficiencies in deer. N. Z. Vet. J. 2002, 50, 252–259. [Google Scholar] [CrossRef]
- Xubin, W. Report on ‘Huangyao Disease’ (Loin Wobble disease) in Sika deer. In Proceedings of the 1996 International Symposium on Deer Science and Deer Products, Changchun, China, 23–26 July 1996; pp. 192–194. [Google Scholar]
- Mackintosh, C.G.; Orr, M.B.; Turner, K. Enzootic ataxia in wapiti. In Proceedings of a Deer Course for Veterinarians, No. 3; Deer Branch of the New Zealand Veterinary Association: Wellington, New Zealand, 1986; pp. 165–169. [Google Scholar]
- Thompson, K.G.; Audigé, L.; Arthur, D.G.; Julian, A.F.; Orr, M.B.; McSporran, K.D.; Wilson, P.R. Osteochondrosis associated with copper deficiency in young farmed red deer and wapiti X red hybrids. N. Z. Vet. J. 1994, 42, 137–143. [Google Scholar] [CrossRef]
- Audigé, L.; Wilson, P.R.; Morris, R.S.; Davidson, G.W. Osteochondrosis, skeletal abnormalities and enzootic ataxia associated with copper deficiency in a farmed red deer (Cervus elaphus) herd. N. Z. Vet. J. 1995, 43, 70–76. [Google Scholar] [CrossRef]
- Ellison, R.S. Trace elements in deer. In Proceedings of a Deer Course for Veterinarians, No. 12; Deer Branch of the New Zealand Veterinary Association: Wellington, New Zealand, 1995; pp. 57–68. [Google Scholar]
- Wilson, P.R. Body weight and serum copper concentrations of farmed red deer stags following oral copper oxide wire administration. N. Z. Vet. J. 1989, 37, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Walker, I.H.; Wilson, P.R.; Beckett, S. Copper and velvet antler production. A clinical trial. In Proceedings of a Deer Course for Veterinarians, No. 14; Deer Branch of the New Zealand Veterinary Association: Wellington, New Zealand, 1997; pp. 219–227. [Google Scholar]
- Serrano, M.P.; Maggiolino, A.; Lorenzo, J.M.; De Palo, P.; García, A.; Landete-Castillejos, T.; Gambín, P.; Cappelli, J.; Domínguez, R.; Pérez-Barbería, F.J.; et al. Meat quality of farmed red deer fed a balanced diet: Effects of supplementation with copper bolus on different muscles. Animal 2019, 13, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Bartoskewitz, M.L.; Hewitt, D.G.; Laurenz, J.C.; Pitts, J.S.; Bryant, F.C. Effect of dietary copper and zinc concentrations on white-tailed deer antler growth, body size, and immune system function. Small Rumin. Res. 2007, 73, 87–94. [Google Scholar] [CrossRef]
- Handeland, K.; Bernhoft, A.; Aartun, M.S. Copper deficiency and effects of copper supplementation in a herd of red deer (Cervus elaphus). Acta Vet. Scand. 2008, 50, 8. [Google Scholar] [CrossRef] [Green Version]
- McDowell, L.R.; Forrester, D.J.; Linda, S.B.; Wright, S.D.; Wilkinson, N.S. Selenium status of white-tailed deer in Southern Florida. J. Wildl. Dis. 1995, 31, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.R.; Grace, N.D. A review of tissue reference values used to assess the trace element status of farmed red deer (Cervus elaphus). N. Z. Vet. J. 2001, 49, 126–132. [Google Scholar] [CrossRef]
- Łabądź, D.; Skolarczyk, J.; Pekar, J.; Nieradko-Iwanicka, B. Analysis of the infu- ence of selected elements on the functioning of the bone tissue. J. Educ. Health Sport 2017, 7, 202–209. [Google Scholar] [CrossRef]
- Vukšić, N.; Šperanda, M.; Lončarić, Z.; Đidara, M.; Ludek, E.; Budor, I. The effect of dietary selenium addition on the concentrations of heavy metals in the tissues of fallow deer (Dama dama L.) in Croatia. Environ. Sci. Pollut. Res. 2018, 25, 11023–11033. [Google Scholar] [CrossRef] [PubMed]
- Snarska, A.; Wysocka, D.; Rytel, L.; Żarczyńska, K.; Sobiech, P.; Gonkowski, S. The influence of selenium and vitamin E supplementation on cytological assessment of red blood cell line of bone marrow in fallow deer kept in captivity. Pol. J. Vet. Sci. 2018, 21, 431–436. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Q.; Huang, K. Selenium suppressed hydrogen peroxideinduced vascular smooth muscle cells calcifcation through inhibiting oxidative stress and ERK activation. J. Cell. Biochem. 2010, 111, 155664. [Google Scholar] [CrossRef]
- Liu, H.; Bian, W.; Liu, S.; Huang, K. Selenium protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation by suppressing oxidative stress and ERK signaling pathway. Biol. Trace Elem. Res. 2012, 150, 441–450. [Google Scholar] [CrossRef]
- Mason, J.; Wiiiams, S.; Harrlngton, R.; Sheahan, B. Some preliminary studies on the metabolism of Mo-labelled compounds in deer. Ir. Vet. J. 1984, 38, 171–175. [Google Scholar]
- Mathieu, S.F. Toxic Effects of Molybdenum on Forest Small Mammals at the Endako Mine in North-Central British Columbia. Master’s Thesis, College of Graduate Studies and Research, Department of Biology, University of Saskatchewan Saskatoon, Saskatoon, SK, Canada, 1996. Available online: http://hdl.handle.net/10388/etd-11142008-151209 (accessed on 1 September 2022).
- Mason, J.; Kelleher, C.A.; Letters, J. The demonstration of protein-bound 99Mo-di- and trithiomolybdate in sheep plasma after the infusion of ggMo-labelled molybdate into the rumen. Br. J. Nut. 1982, 48, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Freudenberger, D.O.; Familton, A.S.; Sykes, A.R. Comparative aspects of copper metabolism in silage-fed sheep and deer (Cervus elaphus). J. Agric. Sci. 1987, 108, 1–7. [Google Scholar] [CrossRef]
- Cappelli, J.; Frasca, I.; Garcia, A.; Landete-Castillejos, T.; Luccarini, S.; Gallego, L.; Morimando, F.; Varuzza, P.; Zaccaroni, M. Roe deer as a bioindicator: Preliminary data on the impact of the geothermal power plants on the mineral profile internal and bone tissues in Tuscany (Italy). Environ. Sci. Pollut. Res. 2020, 27, 36121–36131. [Google Scholar] [CrossRef]
- Glimcher, M.J. Bone: Nature of the calcium phosphate crystals and cellular, structural and physical chemica; mechanisms in their formation. Rev. Miner. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Zaichick, S.; Zaichick, V.; Karandashev, V.K.; Moskvina, I.R. The efect of age and gender on 59 trace-element contents in human rib bone investigated by inductively coupled plasma mass spectrometry. Biol. Trace Elem. Res. 2011, 143, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Srebočan, E.; Janicki, Z.; Crnić, A.P.; Tomljanović, K.; Šebečić, M.; Konjević, D. Cadmium, lead and mercury concentrations in selected red deer (Cervus elaphus L.) tissues from north-eastern Croatia. J. Environ. Sci. Health A 2012, 47, 2101–2108. [Google Scholar] [CrossRef]
- Gizejewska, A.; Szkoda, J.; Nawrocka, A.; Zmudzki, J.; Gizejewski, Z. Can red deer antlers be used as an indicator of environmental and edible tissues’ trace element contamination? Environ. Sci. Pollut. Res. Int. 2017, 23, 11630–11638. [Google Scholar] [CrossRef] [Green Version]
- Dryden, G.M. Nutrition of antler growth in deer. Anim. Prod. Sci. 2016, 56, 962–970. [Google Scholar] [CrossRef]
- Odstrcil, A.D.C.A.; Carino, S.N.; Ricci, J.C.D.; Mandalunis, P.M. Effect of arsenic in endochondral ossification of experimental animals. Exp. Toxicol. Pathol. 2010, 62, 243–249. [Google Scholar] [CrossRef]
- Hu, Y.C.; Cheng, H.L.; Hsieh, B.S.; Huang, L.W.; Huang, T.C.; Chang, K.L. Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone 2012, 50, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Priest, N.D. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium as a tracer: Review and study update. J. Environ. Monit. 2004, 6, 375–403. [Google Scholar] [CrossRef] [PubMed]
- Borsy, A.; Podani, J.; Stéger, V.; Balla, B.; Horváth, A.; Kósa, J.P.; Gyurjan, I.; Molnár, A.; Szabolcsi, Z.; Szabó, L.; et al. Identifying novel genes involved in both deer physiological and human pathological osteoporosis. Mol. Genet. Genom. 2009, 281, 301–313. [Google Scholar] [CrossRef]
- Stéger, V.; Molnár, A.; Borsy, A.; Gyurján, I.; Szabolcsi, Z.; Dancs, G.; Molnár, J.; Papp, P.; Nagy, J.; Puskás, L.; et al. Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: Expression dynamics for regulatory and effector genes. Mol. Genet. Genom. 2010, 284, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Ceacero, F. Lon or heavy? Physiological constraints in the evolution of antlers. J. Mammal. Evol. 2015, 23, 2209–2216. [Google Scholar] [CrossRef]
- Ceacero, F.; Pluháček, J.; Landete-Castillejos, T.; García, A.J.; Gallego, L. Inter-specific differences in the structure and mechanics but not the chemical composition of antlers in three deer species. In Annales Zoologici Fennici; Finnish Zoological and Botanical Publishing Board: Helsinki, Finland, 2015; Volume 52, pp. 368–376. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hu, C.; Zhu, Y.; Sun, H.; Li, Y.; Zhang, Z. Effects of aluminum exposure on bone mineral density, mineral, and trace elements in rats. Biol. Trace Elem. Res. 2011, 143, 378–385. [Google Scholar] [CrossRef]
Elements | Bone Marrow (BM) | Plasma (P) | Bone (B) | Antler (A) | Kruskal–Wallis H Test (3, N = 24) | Spearman Rank Correlation Coefficient (rS) between Tissues | ||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | |||
Bulk elements | ||||||||||
Ca | 951.4 ab | 970.4 | 82.5 a | 11.2 | 285,421.8 c | 35,052.9 | 242,959.3 c | 13,771.3 | H = 21.600 | - |
P | 691.0 ab | 416.3 | 60.0 a | 9.9 | 109,262.9 c | 5943.5 | 87,852.1 bc | 5194.4 | H = 21.600 | B − A = 0.83 * |
Mg | 28.4 ab | 14.8 | 16.9 a | 2.0 | 4530.2 bc | 610.2 | 5818.6 c | 732.8 | H = 20.293 | - |
K | 96.6 a | 23.4 | 773.3 b | 94.8 | 378.7 ab | 38.1 | 832.4 b | 123.1 | H = 19.867 | - |
Na | 445.0 a | 80.5 | 3072.9 ab | 180.4 | 7539.4 bc | 877.8 | 9204.3 c | 992.1 | H = 21.117 | - |
Ca:P | 1.1 a | 0.6 | 1.4 ab | 0.4 | 2.6 bc | 0.3 | 2.8 c | 0.3 | H = 17.760 | - |
Trace elements | ||||||||||
Li | <LOD | - | 0.01 a | 0.00 | 0.42 ab | 0.04 | 2.26 b | 1.03 | H = 20.236 | - |
Cr | 0.09 a | 0.16 | <LOD | - | 0.15 ab | 0.16 | 3.07 b | 2.72 | H = 16.120 | - |
Mn | 0.03 a | 0.03 | 0.04 ab | 0.50 | 1.72 ab | 0.76 | 15.30 b | 8.96 | H = 19.547 | - |
Co | <LOD | - | <LOD | - | 0.06 | 0.01 | 0.17 | 0.13 | H = 21.026 | - |
Cu | 0.13 a | 0.02 | 0.61 ab | 0.34 | 2.42 b | 1.19 | 59.05 bc | 40.54 | H = 20.900 | P − A = −0.89 * |
Zn | 1.23 ab | 0.27 | 0.36 a | 0.00 | 69.79 b | 9.98 | 78.60 b | 30.31 | H = 19.455 | - |
Se | 0.03 ab | 0.00 | 0.01 a | 0.00 | 0.01 a | 0.00 | 0.06 b | 0.02 | H = 19.689 | BM − B = −0.89 * P − A = −0.93 * |
Mo | <LOD | - | 0.01 | 0.04 | 0.08 | 0.02 | 0.38 | 0.52 | H = 18.169 | - |
Toxic elements | ||||||||||
Be | <LOD | - | <LOD | - | <LOD | - | 0.012 | 0.004 | H = 22.395 | - |
Al | 3.700 ab | 2.285 | 0.038 a | 0.060 | 13.550 bc | 10.124 | 89.031 c | 48.346 | H = 21.239 | BM − A = −0.89 * |
As | <LOD | - | 0.001 a | 0.001 | 0.050 b | 0.013 | 0.183 b | 0.027 | H = 21.675 | - |
Cd | <LOD | - | <LOD | - | 0.008 | 0.017 | 0.026 | 0.012 | H = 20.934 | - |
Sb | <LOD | - | 0.004 | 0.001 | <LOD | - | 0.108 | 0.065 | H = 22.256 | - |
Ba | 0.380 ab | 0.337 | 0.039 a | 0.035 | 99.470 c | 15.939 | 85.950 bc | 6.182 | H = 20.333 | BM − P = −0.94 * |
Pb | <LOD | - | <LOD | - | 0.180 | 0.116 | 2.716 | 1.955 | H = 21.934 | - |
Ni | 0.020 a | 0.012 | <LOD | - | 0.260 a | 0.061 | 3.037 b | 2.251 | H = 21.367 | - |
Analyzed Variable | Bulk Elements | Trace Elements | Toxic Elements | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | Mg | K | Na | Li | Cr | Mn | Co | Cu | Zn | Se | Mo | Al | As | Cd | Sb | Ba | Pb | Ni | |
Ca | 0.95 * | 0.79 * | −0.08 | 0.60 * | −0.30 | 0.03 | 0.18 | −0.74 * | 0.56 * | 0.86 * | 0.19 | −0.03 | 0.58 * | 0.64 * | −0.70 * | 0.74 * | 0.96 * | −0.80 * | −0.01 |
P | 1.00 | 0.76 * | −0.12 | 0.8 * | −0.69 * | 0.05 | 0.19 | −0.77 * | 0.57 * | 0.88 * | 0.20 | −0.13 | 0.62 * | 0.66 * | −0.49 | 0.79 * | 0.93 * | −0.66 * | 0.02 |
Mg | 1.00 | 0.28 | 0.77 * | 0.84 * | 0.74 * | 0.55 * | 0.71 * | 0.75 * | 0.84 * | 0.54 * | 0.66 * | 0.89 * | 0.88 * | 0.41 | 0.74 * | 0.83 * | 0.52 | 0.39 | |
K | 1.00 | 0.69 * | 0.75 * | 0.78 * | 0.81 * | 0.87 * | 0.63 * | 0.07 | 0.09 | 0.53 * | 0.61 * | 0.51 * | 0.58 * | 0.19 | −0.02 | 0.65 * | 0.88 * | ||
Na | 1.00 | 0.71 * | 0.72 * | 0.80 * | 0.72 * | 0.92 * | 0.67 * | 0.31 | 0.63 * | 0.83 * | 0.83 * | 0.47 | 0.84 * | 0.63 * | 0.73 * | 0.73 * | |||
Li | 1.00 | 0.70 * | 0.72 * | 0.88 * | 0.84 * | 0.73 * | 0.39 | 0.69 * | 0.52 | 0.45 | 0.47 | −0.60 | −0.30 | 0.48 | 0.43 | ||||
Cr | 1.00 | 0.65 * | 0.76 * | 0.64 * | 0.67 * | 0.70 * | 0.68 * | 0.77 * | 0.81 * | 0.62 * | −0.03 | 0.20 | 0.75 * | 0.85 * | |||||
Mn | 1.00 | 0.82 * | 0.82 * | 0.41 * | 0.33 | 0.84 * | 0.74 * | 0.73 * | 0.63 * | 0.68 * | 0.28 | 0.76 * | 0.87 * | ||||||
Co | 1.00 | 0.87 * | 0.72 * | 0.33 | 0.89 * | 0.64 * | 0.80 * | 0.65 * | −0.03 | −0.39 | 0.66 * | 0.85 * | |||||||
Cu | 1.00 | 0.72 * | 0.37 | 0.80 * | 0.84 * | 0.83 * | 0.35 | 0.65 * | 0.59 * | 0.69 * | 0.76 * | ||||||||
Zn | 1.00 | 0.46 * | 0.45 * | 0.77 * | 0.81 * | −0.30 | 0.67 * | 0.90 * | −0.05 | 0.24 | |||||||||
Se | 1.00 | 0.23 | 0.61 * | 0.58 * | 0.44 | 0.73 * | 0.27 | 0.78 * | 0.25 | ||||||||||
Mo | 1.00 | 0.58 * | 0.81 * | 0.53 | 0.76 * | 0.13 | 0.71 * | 0.74 * | |||||||||||
Al | 1.00 | 0.94 * | 0.65 * | 0.64 | 0.61 * | 0.83 * | 0.65 * | ||||||||||||
As | 1.00 | 0.66 * | 0.80 * | 0.67 * | 0.81 * | 0.57* | |||||||||||||
Cd | 1.00 | 0.54 | −0.49 | 0.51 | 0.50 | ||||||||||||||
Sb | 1.00 | 0.70 * | 0.54 | 0.75 * | |||||||||||||||
Ba | 1.00 | −0.50 | 0.06 | ||||||||||||||||
Pb | 1.00 | 0.71 * |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Na | −0.94 | 0.24 | 0.23 |
Mg | −0.95 | 0.27 | −0.00 |
K | −0.54 | −0.41 | 0.66 |
Ca | −0.85 | 0.52 | −0.02 |
P | −0.83 | 0.55 | −0.05 |
Mn | −0.75 | −0.47 | −0.17 |
Ni | −0.72 | −0.51 | −0.16 |
Cu | −0.77 | −0.45 | −0.24 |
Zn | −0.91 | 0.27 | −0.22 |
Se | −0.56 | −0.56 | −0.44 |
Al | −0.67 | −0.30 | 0.42 |
As | −0.88 | −0.29 | 0.15 |
Ba | −0.85 | 0.51 | −0.06 |
Eigenvalue | 8.24 | 2.37 | 1.05 |
% of variance | 63.36 | 18.24 | 8.09 |
Cumulative % | 63.36 | 81.60 | 89.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner-Bogdaszewska, Ż.; Tajchman, K.; Ukalska-Jaruga, A.; Florek, M.; Pecio, M. The Mineral Composition of Bone Marrow, Plasma, Bones and the First Antlers of Farmed Fallow Deer. Animals 2022, 12, 2764. https://doi.org/10.3390/ani12202764
Steiner-Bogdaszewska Ż, Tajchman K, Ukalska-Jaruga A, Florek M, Pecio M. The Mineral Composition of Bone Marrow, Plasma, Bones and the First Antlers of Farmed Fallow Deer. Animals. 2022; 12(20):2764. https://doi.org/10.3390/ani12202764
Chicago/Turabian StyleSteiner-Bogdaszewska, Żaneta, Katarzyna Tajchman, Aleksandra Ukalska-Jaruga, Mariusz Florek, and Monika Pecio. 2022. "The Mineral Composition of Bone Marrow, Plasma, Bones and the First Antlers of Farmed Fallow Deer" Animals 12, no. 20: 2764. https://doi.org/10.3390/ani12202764
APA StyleSteiner-Bogdaszewska, Ż., Tajchman, K., Ukalska-Jaruga, A., Florek, M., & Pecio, M. (2022). The Mineral Composition of Bone Marrow, Plasma, Bones and the First Antlers of Farmed Fallow Deer. Animals, 12(20), 2764. https://doi.org/10.3390/ani12202764