Seasonal Changes in Trace-Element Content in the Coat of Hucul Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Fodder and Coat Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, W.; Schnapper, A.; Hülmann, G. The hair cuticle of mammals and its relationship to functions of the hair coat. J. Zool. 2002, 256, 489–494. [Google Scholar] [CrossRef]
- Dunnett, M. The diagnostic potential of equine hair: A comparative review of hair analysis for assessing nutritional status, environmental poisoning, and drug use and abuse. Advances in equine nutrition-III. In Kentucky Equine Research; Pagan, J., Geor, R.J., Eds.; Nottingham University Press: Nottingham, UK, 2005; pp. 85–106. [Google Scholar]
- O’Connor, K.; Goldberg, L.J. Nutrition and hair. Clin. Dermatol. 2021, 39, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E.; Zorn, N. Bioavailability of minerals in the horse. In Proceedings of the 3rd European Equine Nutrition & Health Congress, Ghent, Belgium, 17–18 March 2006. [Google Scholar]
- Almohanna, H.M.; Ahmed, A.A.; Tsatalis, J.P.; Tosti, A. The role of vitamins and minerals in hair loss: A review. Dermatol. Ther. 2019, 9, 51–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jutha, N.; Jardine, C.; Schwantje, H.; Mosbacher, J.; Kinniburgh, D.; Kutz, S. Evaluating the use of hair as a non-invasive indicator of trace mineral status in woodland caribou (Rangifer tarandus caribou). PLoS ONE 2022, 17, e0269441. [Google Scholar] [CrossRef]
- Siwińska, N.; Żak, A.; Słowikowska, M.; Kubiak, K.; Jaworski, Z.; Niedzwiedź, A. Morphology and elemental analysis of free range and stabled Polish Konik horses hair using Energy-dispersive X-ray spectroscopy (EDS). Polish J. Vet. Sci. 2018, 21, 65–72. [Google Scholar]
- Stanek, M.; Jaworski, Z.; Sobotka, W.; Lipiński, K.; Olenkowicz, R. Influence of an organic supplement of copper, zinc and manganese in feed rations on concentrations of these elements in the coat of Polish Konik horses. J. Elem. 2016, 21, 549–558. [Google Scholar]
- Piccione, G.; Assenza, A.; Fazio, F.; Bergero, D.; Caola, G. Daily rhythms of serum vitamin D-metabolites, calcium and phosphorus in horses. Acta Vet. Brno 2008, 77, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Pourmohammad, R.; Mohri, M.; Seifi, H.; Sardari, K. Effect of exercise on some minerals, metabolites and enzyme activities in the serum of trained Arabian horses. Turk. J. Vet. Anim. Sci. 2019, 43, 791–799. [Google Scholar] [CrossRef]
- Cygan-Szczegielniak, D.; Stanek, M.; Stasiak, K.; Roślewska, A.; Janicki, B. The Content of Mineral Elements and Heavy Metals in the Hair of Red Deer (Cervus elaphus L.) from Selected Regions of Poland. Folia Biol.-Krakow 2018, 66, 133–142. [Google Scholar] [CrossRef]
- Khudzari, M.D.; Wagiran, H.; Hossain, I.; Ibrahim, N. Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis. J. Environ. Radioact. 2013, 115, 1–5. [Google Scholar] [CrossRef]
- Jaworski, Z.; Stanek, M.; Sobotka, W. Mineral composition of the hair coat of Polish Konik horses raised in nature reserves and barns. J. Elem. 2017, 22, 857–867. [Google Scholar]
- Cygan-Szczegielniak, D. The Levels of Mineral Elements and Toxic Metals in the Longissimus lumborum Muscle, Hair and Selected Organs of Red Deer (Cervus elaphus L.) in Poland. Animals 2021, 11, 1231. [Google Scholar] [CrossRef] [PubMed]
- Fazio, F.; Gugliandolo, E.; Nava, V.; Piccione, G.; Giannetto, C.; Licata, P. Bioaccumulation of Mineral Elements in Different Biological Substrates of Athletic Horse from Messina, Italy. Animals 2020, 10, 1877. [Google Scholar] [CrossRef] [PubMed]
- Montillo, M.; Caslini, C.; Peric, T.; Prandi, A.; Netto, P.; Tubaro, F.; Pedrotti, L.; Bianchi, A.; Mattiello, S. Analysis of 19 minerals and cortisol in red deer hair in two different areas of the stelvio national park: A preliminary study. Animals 2019, 9, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Jiménez, E.; Mateo, R.; de Lucas, M.; Ferrer, M. Feathers and hair as tools for non-destructive pollution exposure assessment in a mining site of the Iberian Pyrite Belt. Environ. Pollut. 2020, 263, 114523. [Google Scholar] [CrossRef] [PubMed]
- Carrol, C.; Huntington, P. Body condition scoring and weight estimation of horses. Equine Vet. J. 1988, 20, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Dalla Costa, E.; Murray, L.; Dai, F.; Canali, E.; Minero, M. Equine on-farm welfare assessment: A review of animal-based indicators. Anim. Welf. 2014, 23, 323–341. [Google Scholar] [CrossRef] [Green Version]
- Rowland, M.; Coombs, T.; Connor, M. A study of traveller horse owners’ attitudes to horse care and welfare using an equine Body Condition Scoring system. Animals 2019, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Návesník, J.; Krejčová, A.; Černohorský, T.; Pátková, A.; Petrovická, I. High throughput method for multielemental analysis of horse hair by oaTOF-ICP-MS. Chem. Pap. 2017, 71, 991–998. [Google Scholar] [CrossRef]
- Hoskin, S.O.; Gee, E.K. Feeding value of pastures for horses. N. Z. Vet. J. 2004, 52, 332–341. [Google Scholar]
- Saastamoinen, M.T.; Hellämäki, M. Forage analyses as a base of feeding of horses. In Forages and Grazing in Horse Nutrition; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 305–314. [Google Scholar]
- Harris, P.A.; Ellis, A.D.; Fradinho, M.J.; Jansson, A.; Julliand, V.; Luthersson, N.; Vervuert, I. Feeding conserved forage to horses: Recent advances and recommendations. Animal 2017, 11, 958–967. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.E. Silage and haylage for horses. Grass Forage Sci. 2018, 73, 815–827. [Google Scholar] [CrossRef]
- Smith, A.D.; Panickar, K.S.; Urban, J.F., Jr.; Dawson, H.D. Impact of micronutrients on the immune response of animals. Annu. Rev. Anim. Biosci. 2018, 6, 227–254. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.; Coenen, M. Pferdefütterung; No. 2.; Georg Thieme Verlag: Berlin, Germany, 2002. [Google Scholar]
- Zhao, X.; Müller, C.E. Macro-and micromineral content of wrapped forages for horses. Grass Forage Sci. 2016, 71, 195–207. [Google Scholar] [CrossRef]
- Johanesson, T.; Eriksson, T.; Gudmundsdóttir, K.B.; Sigurdarsson, S.; Kristinsson, J. Overview: Seven trace elements in Icelandic forage. Their value in animal health and with special relation to scrapie. Icel. J. Agric. Sci. 2007, 20, 3–24. [Google Scholar]
- Lindström, B.E.M.; Frankow-Lindberg, B.E.; Dahlin, A.S.; Wivstad, M.; Watson, C.A. Micronutrient concentrations in common and novel forage species and varieties grown on two contrasting soils. Grass Forage Sci. 2013, 68, 427–436. [Google Scholar] [CrossRef]
- Pirhofer-Walzl, K.; Søegaard, K.; Høgh-Jensen, H.; Eriksen, J.; Sanderson, M.A.; Rasmussen, J.; Rasmussen, J. Forage herbs improve mineral composition of grassland herbage. Grass Forage Sci. 2011, 66, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Cygan-Szczegielniak, D.; Stanek, M.; Giernatowska, E.; Janicki, B. Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows. Folia Biol. 2014, 62, 163–169. [Google Scholar] [CrossRef]
- Brummer-Holder, M.; Cassill, B.D.; Hayes, S.H. Interrelationships between age and trace element concentration in horse mane hair and whole blood. J. Equine Vet. Sci. 2020, 87, 102922. [Google Scholar] [CrossRef] [PubMed]
- Nageeb Rashed, M.; Soltan, M.E. Animal hair as biological indicator for heavy metal pollution in urban and rural areas. Environ. Monitor. Assess. 2005, 110, 41–53. [Google Scholar] [CrossRef]
- Souza, M.V.D.; Fontes, M.P.F.; Fernandes, R.B.A. Heavy metals in equine biological components. Rev. Bras. Zootecn. 2014, 43, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Truchliński, J.; Budzyński, M.; Rzucidło, M. Dietary supplementation of minerals for horses based on the analysis of the composition of elements contained in the hair coat. Ann. UMCS Lublin Sect. EE 2004, 22, 263–270. [Google Scholar]
- Topczewska, J. Effects of seasons on the concentration of selected trace elements in horse hair. J. Cent. Eur. Agric. 2012, 13, 671–680. [Google Scholar] [CrossRef]
- Biricik, H.; Ocal, N.; Gucus, A.I.; Ediz, B.; Uzman, M. Seasonal changes of some mineral status in mares. J. Equine Vet. Sci. 2005, 25, 346–348. [Google Scholar] [CrossRef]
- Madejon, P.; Dominguez, M.T.; Murillo, J.M. Evaluation of pastures for horses grazing on soils polluted by trace elements. Ecotoxicology 2009, 18, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Pajarillo, E.A.B.; Lee, E.; Kang, D.K. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. Anim. Nutr. 2021, 7, 750–761. [Google Scholar] [CrossRef]
- Tirpák, F.; Halo, M., Jr.; Tokárová, K.; Binkowski, L.J.; Vašíček, J.; Svoradová, A.; Błaszczyk-Altman, M.; Kováčik, A.; Tvrdá, E.; Chrenek, P.; et al. Composition of stallion seminal plasma and its impact on oxidative stress markers and spermatozoa quality. Life 2021, 11, 1238. [Google Scholar] [CrossRef]
- Hill, G.M.; Shannon, M. Copper and zinc nutritional issues for agricultural animal production. Biol. Trace Elem. Res. 2019, 188, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Hallamaa, R.; Peraniemi, S. Trace Element Analysis in Sera of Horses with Allergic Dermatitis and in Matched Healthy Controls with Special Attention to Zn, Ni and Ti. Open J. Anim. Sci. 2022, 12, 129–144. [Google Scholar] [CrossRef]
- Paßlack, N.; van Bömmel-Wegmann, S.; Vahjen, W.; Zentek, J. Impact of Dietary Zinc Chloride Hydroxide and Zinc Methionine on the Faecal Microbiota of Healthy Adult Horses and Ponies. J. Equine Vet. Sci. 2022, 110, 103804. [Google Scholar] [CrossRef]
- Youssef, M.A.; El-khodery, S.A.; Ibrahim, H.M.M. Antioxidant Trace Elements in Serum of Draft Horses with Acute and Chronic Lower Airway Disease. Biol. Trace Elem. Res. 2012, 150, 123–129. [Google Scholar] [CrossRef]
- Sgorlon, S.; Mattiello, A.; Ronutti, L.; Sandri, M.; Stefanon, B. Concentration of elements in the hair of growing and adult dogs. Ital. J. Anim. Sci. 2019, 18, 1126–1134. [Google Scholar] [CrossRef]
- Kalashnikov, V.; Zajcev, A.; Atroshchenko, M.; Miroshnikov, S.; Frolov, A.; Zav’yalov, O.; Kalinkova, L.; Kalashnikova, T. The content of essential and toxic elements in the hair of the mane of the trotter horses depending on their speed. Environ. Sci. Pollut. Res. 2018, 25, 21961–21967. [Google Scholar] [CrossRef] [PubMed]
- Długaszek, M. Studies on relationships between essential and toxic elements in selected body fluids, cells and tissues. Chem. Biol. Interact. 2019, 297, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef] [Green Version]
- Van Emon, M.; Sanford, C.; McCoski, S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals 2020, 10, 2404. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef]
- Ha, J.H.; Doguer, C.; Collins, J.F. Consumption of a high-iron diet disrupts homeostatic regulation of intestinal copper absorption in adolescent mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G353–G360. [Google Scholar] [CrossRef] [Green Version]
- Asano, R.; Suzuki, K.; Otsuka, T.; Otsuka, M.; Sakurai, H. Concentrations of toxic metals and essential minerals in the mane hair of healthy racing horses and their relation to age. J. Vet. Med. Sci. 2002, 64, 607–610. [Google Scholar] [CrossRef]
Green Fodder | p-Value | Hay | p-Value | Haylage | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | ||||
Fe | 47.3 ± 6.4 | 48.0 ± 2.3 | ns | 93.6 ± 12.1 | 73.4 ± 2.4 | ≤0.05 | 117.2 ± 41.4 | 137.7 ± 1.8 | ns |
Cu | 4.0 ± 1.1 | 7.1 ± 0.8 | ≤0.05 | 3.2 ± 0.2 | 3.1 ± 0.1 | ns | 2.8 ± 1.1 | 2.6 ± 0.5 | ns |
Mn | 98.5 ± 14.1 | 205.1 ± 41.0 | ≤0.05 | 200.5 ± 48.8 | 225.3 ± 31.8 | ≤0.05 | 171.8 ± 25.8 | 171.2 ± 7.9 | ns |
Zn | 11.3 ± 2.6 | 20.3 ± 1.7 | ≤0.05 | 21.5 ± 3.6 | 14.3 ± 4.3 | ≤0.05 | 12.9 ± 2.9 | 11.6 ± 0.9 | ns |
Al | 46.2 ± 4.5 | 39.9 ± 2.5 | ns | 36.4 ± 2.6 | 34.4 ± 1.8 | ns | 78.9 ± 28.2 | 141.6 ± 20.1 | ≤0.05 |
Stud | Fe | Cu | Mn | Zn | Al | |
---|---|---|---|---|---|---|
A | Mean ± SD | 0.41 ± 0.21 | 0.007 ± 0.003 | 0.025 ± 0.02 | 0.11 ± 0.03 | 0.33 ± 0.18 |
Range | 0.06–0.80 | 0.00–0.02 | 0.00–0.083 | 0.07–0.22 | 0.06–0.75 | |
B | Mean ± SD | 0.31 ± 0.23 | 0.008 ± 0.004 | 0.022 ± 0.02 | 0.11 ± 0.03 | 0.30 ± 0.23 |
Range | 0.05–1.06 | 0.00–0.03 | 0.00–0.073 | 0.07–0.18 | 0.06 ± 1.17 | |
p-Value | 0.0000 | 0.9823 | 0.0164 | 0.0639 | 0.0629 | |
Total | Mean ± SD | 0.35 ± 0.23 | 0.01 ± 0.003 | 0.02 ± 0.02 | 0.11 ± 0.03 | 0.31 ± 0.21 |
Stud | Season | Fe | Cu | Mn | Zn | Al |
---|---|---|---|---|---|---|
A | s | 0.29 A ± 0.16 | 0.007 A ± 0.002 | 0.017 A ± 0.01 | 0.14 A ± 0.03 | 0.25 A ± 0.16 |
a | 0.44 B ± 0.24 | 0.006 B ± 0.001 | 0.019 AB ± 0.01 | 0.11 B ± 0.04 | 0.36 B ± 0.21 | |
w | 0.49 B ± 0.16 | 0.008 C ± 0.004 | 0.029 B ± 0.02 | 0.09 B ± 0.01 | 0.38 B ± 0.16 | |
p-Value | 0.0000 | 0.0016 | 0.0014 | 0.0000 | 0.0002 | |
B | s | 0.18 A ± 0.10 | 0.008 A ± 0.002 | 0.014 A ± 0.01 | 0.15 B ± 0.01 | 0.18 A ± 0.12 |
a | 0.48 B ± 0.27 | 0.009 A ± 0.01 | 0.037 B ± 0.02 | 0.09 A ± 0.01 | 0.45 B ± 0.27 | |
w | 0.25 A ± 0.18 | 0.005 B ± 0.002 | 0.022 C ± 0.01 | 0.09 A ± 0.02 | 0.25 A ± 0.17 | |
p-Value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Stable | Trace Element in | Rs | p-Value | |
---|---|---|---|---|
Feed | Coat | |||
A | Fe | Fe | ns | 0.519 |
Cu | Cu | ns | 0.873 | |
Mn | Mn | −0.2693 | 0.003 | |
Zn | Zn | 0.2233 | 0.010 | |
Al | Al | ns | 0.176 | |
B | Fe | Fe | 0.4818 | 0.0000 |
Cu | Cu | −0.3983 | 0.0000 | |
Mn | Mn | −0.5655 | 0.0000 | |
Zn | Zn | −0.2079 | 0.011 | |
Al | Al | 0.4784 | 0.0000 |
Fe | Cu | Mn | Zn | Al | |
---|---|---|---|---|---|
Fe | 0.3578 p = 0.0001 | 0.7037 p = 0.0000 | −0.2351 p = 0.0118 | 0.9278 p = 0.0000 | |
Cu | 0.1667 p = 0.0481 | 0.3986 p = 0.0000 | 0.3382 p = 0.0002 | 0.2769 p = 0.0029 | |
Mn | 0.8062 p = 0.0000 | ns | ns | ns | |
Zn | −0.3054 p = 0.0002 | 0.5711 p = 0.0000 | −0.4686 p = 0.0000 | −0.2538 p = 0.0064 | |
Al | 0.9472 p = 0.0000 | ns | 0.7692 p = 0.0000 | −0.3564 p = 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jachimowicz-Rogowska, K.; Topczewska, J.; Krupa, W.; Bajcar, M.; Kwiecień, M.; Winiarska-Mieczan, A. Seasonal Changes in Trace-Element Content in the Coat of Hucul Horses. Animals 2022, 12, 2770. https://doi.org/10.3390/ani12202770
Jachimowicz-Rogowska K, Topczewska J, Krupa W, Bajcar M, Kwiecień M, Winiarska-Mieczan A. Seasonal Changes in Trace-Element Content in the Coat of Hucul Horses. Animals. 2022; 12(20):2770. https://doi.org/10.3390/ani12202770
Chicago/Turabian StyleJachimowicz-Rogowska, Karolina, Jadwiga Topczewska, Wanda Krupa, Marcin Bajcar, Małgorzata Kwiecień, and Anna Winiarska-Mieczan. 2022. "Seasonal Changes in Trace-Element Content in the Coat of Hucul Horses" Animals 12, no. 20: 2770. https://doi.org/10.3390/ani12202770
APA StyleJachimowicz-Rogowska, K., Topczewska, J., Krupa, W., Bajcar, M., Kwiecień, M., & Winiarska-Mieczan, A. (2022). Seasonal Changes in Trace-Element Content in the Coat of Hucul Horses. Animals, 12(20), 2770. https://doi.org/10.3390/ani12202770