Nutritional Values of Industrial Hemp Byproducts for Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analysis
2.3. Protein and Carbohydrate Fractions
2.4. In Situ Rumen Degradation
2.5. Intestinal Digestion
2.6. Energy Value Estimation
2.7. Statistical Analyses
3. Results
3.1. Chemical Composition
3.2. Protein and Carbohydrate Fractions
3.3. In Situ Ruminal Degradation
3.4. Intestinal Digestion
3.5. Energy Value Estimation
4. Discussion
4.1. Chemical Composition
4.2. Protein and Carbohydrate Fractions
4.3. In Situ Ruminal Degradation
4.4. Intestinal Digestion
4.5. Energy Value Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef] [PubMed]
- Bradford, B.J.; Mullins, C.R. Invited review: Strategies for promoting productivity and health of dairy cattle by feeding nonforage fiber sources. J. Dairy Sci. 2012, 95, 4735–4746. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. History of cannabis and its preparations in saga, science, and sobriquet. Chem. Biodivers. 2007, 4, 1614–1648. [Google Scholar] [CrossRef] [PubMed]
- Semwogerere, F.; Katiyatiya, C.L.F.; Chikwanha, O.C.; Marufu, M.C.; Mapiye, C. Bioavailability and bioefficacy of hemp byproducts in ruminant meat production and preservation: A review. Front. Vet. Sci. 2020, 7, 572906. [Google Scholar] [CrossRef] [PubMed]
- Capanoglu, E.; Tomás-Barberán, F.A. Introduction to Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6785–6786. [Google Scholar] [CrossRef]
- Schluttenhofer, C.; Yuan, L. Challenges towards revitalizing hemp: A multifaceted crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, L.; Finell, M.; Martinsson, K. Effects of increasing amounts of hempseed cake in the diet of dairy cows on the production and composition of milk. Animal 2010, 4, 1854–1860. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, A.F.; McKinnon, J.J.; Christensen, D.A. The nutritive value of hemp meal for ruminants. Can. J. Anim. Sci. 1999, 79, 91–95. [Google Scholar] [CrossRef]
- Mierliță, D. Effects of diets containing hemp seeds or hemp cake on fatty acid composition and oxidative stability of sheep milk. S. Afr. J. Anim. Sci. 2018, 48, 504–515. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; Magnin, G.; Ensley, S.M.; Griffin, J.J.; Goeser, J.; Lynch, E.; Coetzee, J.F. Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Appl. Anim. Sci. 2020, 36, 489–494. [Google Scholar] [CrossRef]
- Parker, N.B.; Bionaz, M.; Ford, H.R.; Irawan, A.; Trevisi, E.; Ates, S. Assessment of spent hemp biomass as a potential ingredient in ruminant diet: Nutritional quality and effect on performance, meat and carcass quality, and hematological parameters in finishing lambs. J. Anim. Sci. 2022, 100, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Altman, A.W.; Vanzant, E.S.; McLeod, K.R.; Harmon, D.L. In Vitro Measurements of True Digestibility and Products of Digestion Using Multiple Cultivars of Non-Extracted and CBD-Extracted Industrial Hemp Biomass (Cannabis sativa). Front. Anim. Sci. 2022, 3, 915916. [Google Scholar] [CrossRef]
- Fox, D.G.; Barry, M.C.; Pitt, R.E.; Roseler, D.K.; Stone, W.C. Application of the Cornell net carbohydrate and protein model for cattle consuming forages. J. Anim. Sci. 1995, 73, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, K.J.; McNeill, D.M. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture 2015, 5, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.D.; Wang, J.D.; Lv, J.Y.; Sun, X.G.; Kong, F.L.; Wang, S.; Wang, Y.J.; Yang, H.J.; Cao, Z.J.; Li, S.L. Comparison of Ruminal Degradability, Indigestible Neutral Detergent Fiber, and Total-Tract Digestibility of Three Main Crop Straws with Alfalfa Hay and Corn Silage. Animals 2021, 11, 3218. [Google Scholar] [CrossRef]
- Tian, Y.J.; Zhang, X.W.; Li, S.L.; Liu, K.; Guo, P. Effect of Harvest Time and Microbial Anaerobic Fermentation at Ruminal Degradability, In Vitro Digestibility to Milk Production and Milk Quality for Whole Plant Zhang Hybrid Millet in Dairy Cows. Animals 2019, 9, 749. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysts, 17th ed.; AOAC International: Arlington, VA, USA, 2000; Volume 1. [Google Scholar]
- Licitra, G.; Hernandez, T.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hädener, M.; König, S.; Weinmann, W. Quantitative determination of CBD and THC and their acid precursors in confiscated cannabis samples by HPLC-DAD. Forensic Sci. Int. 2019, 299, 142–150. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Q.H.; Lv, J.Y.; Jia, X.M.; Gao, J.X.; Zhang, Y.G.; Wang, L. Associations of Protein Molecular Structures with Their Nutrient Supply and Biodegradation Characteristics in Different Byproducts of Seed-Used Pumpkin. Animals 2022, 12, 956. [Google Scholar] [CrossRef] [PubMed]
- Mjoun, K.; Kalscheur, K.F.; Hippen, A.R.; Schingoethe, D.J. Ruminal degradability and intestinal digestibility of protein and amino acids in soybean and corn distillers grains products. J. Dairy Sci. 2010, 93, 4144–4154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ørskov, E.-R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Tamminga, S.; Van Straalen, W.M.; Subnel, A.P.J.; Meijer, R.G.M.; Steg, A.; Wever, C.J.G.; Blok, M.C. The Dutch protein evaluation system: The DVE/OEB-system. Livest. Prod. Sci. 1994, 40, 139–155. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Stern, M.D. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. J. Anim. Sci. 1995, 73, 1459–1465. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Bernstein, N.; Gorelick, J.; Zerahia, R.; Koch, S. Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 2019, 10, 736. [Google Scholar] [CrossRef] [Green Version]
- Bailoni, L.; Bacchin, E.; Trocino, A.; Arango, S. Hemp (Cannabis sativa L.) seed and co-products inclusion in diets for dairy ruminants: A review. Animals 2021, 11, 856. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High fiber cakes from Mediterranean multipurpose oilseeds as protein sources for ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Ni, J.J.; Zhao, J.B.; Zhang, G.; Huang, C.F. Regression equations of energy values of corn, soybean meal, and wheat bran developed by chemical composition for growing pigs. Animals 2020, 10, 1490. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety of hemp (Cannabis genus) for use as animal feed. EFSA J. 2011, 9, 2011. [Google Scholar]
- Fox, D.G.; Tedeschi, L.O.; Tylutki, T.P.; Russell, J.B.; Van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Higgs, R.; Chase, L.E.; Ross, D.A.; Van Amburgh, M.E. Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs. J. Dairy Sci. 2015, 98, 6340–6360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Xue, B.; Zhao, Y.M.; Wu, T.Q.; Liu, H.C.; Yi, X.; Sun, C.C.; Wang, Z.S.; Zou, H.W.; Yan, T.H. In situ degradation kinetics of 6 roughages and the intestinal digestibility of the rumen undegradable protein. J. Anim. Sci. 2018, 96, 4835–4844. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, G.; Carvalho, I.P.C.; Messana, J.D.; Canesin, R.C.; Castagnino, P.S.; Lage, J.F.; Arcuri, P.B. Effect of lipid sources with different fatty acid profiles on intake, nutrient digestion and ruminal fermentation of feedlot Nellore steers. Asian-Australas. J. Anim. Sci. 2015, 28, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; Nuez-Ortín, W.G. Relationship of protein molecular structure to metabolizable proteins in different types of dried distillers grains with solubles: A novel approach. Br. J. Nutr. 2010, 104, 1429–1437. [Google Scholar] [CrossRef] [Green Version]
- Chalupa, W.; Sniffen, C.J. Protein and amino acid nutrition of lactating dairy cattle. The Veterinary Clinics of North America. Food Anim. Pract. 1991, 7, 353–372. [Google Scholar] [CrossRef]
- Paula, E.M.; Broderick, G.A.; Faciola, A.P. Effects of replacing soybean meal with canola meal for lactating dairy cows fed 3 different ratios of alfalfa to corn silage. J. Dairy Sci. 2020, 103, 1463–1471. [Google Scholar] [CrossRef]
Item | ZIHEEB | DIHEEB | IHS | AH | SEM | p | IHSM | IHOFR | SBM | SEM | p |
---|---|---|---|---|---|---|---|---|---|---|---|
DM (g/kg) | 859 d | 875 c | 937 a | 927 b | 0.82 | <0.01 | 917 a | 912 b | 888 c | 0.68 | <0.01 |
Ash (g/kg DM) | 212 a | 189 b | 84.8 d | 89.7 c | 1.09 | <0.01 | 83.3 b | 128 a | 73.1 c | 0.54 | <0.01 |
EE (g/kg DM) | 52.5 a | 15.1 c | 27.3 b | 31.4 b | 1.62 | <0.01 | 79.2 b | 216 a | 22.9 c | 0.95 | <0.01 |
CP (g/kg DM) | 208 a | 172 b | 91.2 d | 162 c | 1.89 | <0.01 | 296 b | 442 a | 445 a | 3.38 | <0.01 |
SCP (g/kg CP) | 132 c | 60.4 d | 265 b | 426 a | 10.2 | <0.01 | 96.0 b | 192 a | 189 a | 7.24 | <0.01 |
NPN (g/kg SCP) | 791 b | 339 c | 945 a | 812 b | 28.0 | <0.01 | 378 a | 405 a | 70.0 b | 54.2 | <0.01 |
NDICP (g/kg CP) | 503 b | 690 a | 413 c | 246 d | 14.4 | <0.01 | 329 a | 263 b | 285 ab | 15.0 | 0.03 |
ADICP (g/kg CP) | 191 b | 376 a | 200 b | 93.0 c | 9.93 | <0.01 | 103 a | 23.0 b | 12.9 c | 1.62 | <0.01 |
NDF (g/kg DM) | 471 c | 460 c | 629 a | 532 b | 8.89 | <0.01 | 536 a | 201 c | 292 b | 7.52 | <0.01 |
ADF (g/kg DM) | 303 c | 310 c | 470 a | 376 b | 6.43 | <0.01 | 356 a | 89.9 b | 89.0 b | 2.53 | <0.01 |
ADL (g/kg DM) | 118 a | 125 a | 116 a | 103 b | 3.65 | <0.01 | 146 a | 29.1 b | 16.5 c | 2.66 | <0.01 |
Starch (g/kg DM) | 3.12 d | 48.1 a | 18.8 b | 16.8 c | 0.46 | <0.01 | 1.34 c | 2.72 b | 22.9 a | 0.19 | <0.01 |
NFC (g/kg DM) | 55.4 b | 163 a | 168 a | 185 a | 8.16 | <0.01 | 5.16 b | 13.2 b | 167 a | 7.38 | <0.01 |
Ca (g/kg DM) | 35.5 b | 44.6 a | 13.3 d | 16.3 c | 0.89 | <0.01 | 3.64 a | 2.65 b | 3.87 a | 0.14 | <0.01 |
P (g/kg DM) | 9.69 a | 7.53 b | 5.32 c | 2.92 d | 0.08 | <0.01 | 11.7 b | 20.8 a | 6.25 c | 0.24 | <0.01 |
THC (g/kg DM) | <LOQ | <LOQ | <LOQ | - | - | - | - |
Item | ZIHEEB | DIHEEB | IHS | AH | SEM | p | IHSM | IHOFR | SBM | SEM | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Protein fractions (g/kg CP) | |||||||||||
PA | 104 c | 19.4 d | 250 b | 346 a | 10.4 | <0.01 | 35.7 b | 76.3 a | 13.2 c | 5.29 | <0.01 |
PB1 | 27.7 bc | 41.0 b | 14.4 c | 80.2 a | 6.01 | <0.01 | 60.4 c | 116 b | 175 a | 9.80 | <0.01 |
PB2 | 365 a | 250 b | 323 a | 328 a | 17.1 | <0.01 | 575 a | 545 ab | 526 b | 14.4 | <0.01 |
PB3 | 312 a | 314 a | 212 b | 153 c | 16.3 | <0.01 | 226 | 240 | 272 | 14.1 | 0.09 |
PC | 191 b | 376 a | 200 b | 92.6 c | 9.93 | <0.01 | 103 a | 23.0 b | 12.9 c | 1.62 | <0.01 |
CHO (g/kg DM) | 527 d | 623 c | 797 a | 717 b | 2.55 | <0.01 | 541 a | 214 c | 459 b | 3.75 | <0.01 |
NSC (g/kg CHO) | 305 b | 452 a | 258 c | 314 b | 12.5 | <0.01 | 189 c | 603 b | 641 a | 9.50 | <0.01 |
Carbohydrate fractions (g/kg CHO) | |||||||||||
CA | 299 b | 375 a | 234 c | 290 b | 12.3 | <0.01 | 187 b | 590 a | 591 a | 9.64 | <0.01 |
CB1 | 5.92 c | 77.1 a | 23.6 b | 23.4 b | 0.64 | <0.01 | 2.46 c | 12.7 b | 50.0 a | 0.34 | <0.01 |
CB2 | 156 b | 66.9 c | 392 a | 343 a | 18.3 | <0.01 | 162 b | 71.0 c | 273 a | 19.1 | <0.01 |
CC | 540 a | 481 b | 350 c | 344 c | 15.9 | <0.01 | 649 a | 326 b | 86.2 c | 12.1 | <0.01 |
Item | ZIHEEB | DIHEEB | IHS | AH | SEM | p | IHSM | IHOFR | SBM | SEM | p |
---|---|---|---|---|---|---|---|---|---|---|---|
In situ dry matter (DM) rumen degradation kinetics | |||||||||||
a (g/kg) | 237 a | 213 b | 163 c | 248 a | 5.16 | <0.01 | 184 c | 559 a | 268 b | 7.45 | <0.01 |
b (g/kg) | 596 c | 746 a | 652 b | 483 d | 10.3 | <0.01 | 643 b | 260 c | 700 a | 11.2 | <0.01 |
a + b (g/kg) | 834 b | 959 a | 815 b | 731 c | 7.20 | <0.01 | 826 b | 820 b | 968 a | 12.2 | <0.01 |
c (g/kg h−1) | 23.9 b | 22.8 b | 15.2 b | 63.9 a | 2.83 | <0.01 | 12.9 c | 43.3 a | 37.0 b | 1.68 | <0.01 |
ED (g/kg) | 444 c | 463 b | 327 d | 530 a | 4.80 | <0.01 | 297 c | 668 a | 534 b | 2.44 | <0.01 |
In situ crude protein (CP) rumen degradation kinetics | |||||||||||
a (g/kg) | 247 b | 77.8 c | 398 a | 227 b | 15.7 | <0.01 | 209 b | 628 a | 230 b | 6.83 | <0.01 |
b (g/kg) | 670 b | 816 a | 511 c | 635 b | 26.8 | <0.01 | 725 a | 295 b | 728 a | 15.9 | <0.01 |
a + b (g/kg) | 917 | 894 | 909 | 862 | 16.6 | 0.18 | 934 | 923 | 958 | 16.2 | 0.36 |
c (g/kg h−1) | 31.1 bc | 35.0 b | 18.4 c | 90.4 a | 4.52 | <0.01 | 35.9 c | 71.1 a | 43.4 b | 2.00 | <0.01 |
ED (g/kg) | 520 c | 435 d | 547 b | 650 a | 6.36 | <0.01 | 480 c | 788 a | 536 b | 4.22 | <0.01 |
RUP (g/kg) | 480 b | 565 a | 453 c | 350 d | 6.36 | <0.01 | 520 a | 212 c | 464 b | 4.22 | <0.01 |
In situ neutral detergent fiber (NDF) rumen degradation kinetics | |||||||||||
a (g/kg) | 124 a | 72.7 b | 13.9 c | 79.7 b | 6.49 | <0.01 | 27.0 c | 171 b | 238 a | 4.85 | <0.01 |
b (g/kg) | 726 ab | 767 a | 578 c | 677 b | 17.1 | <0.01 | 191 c | 460 b | 621 a | 14.3 | <0.01 |
a + b (g/kg) | 850 a | 840 a | 591 c | 757 b | 11.0 | <0.01 | 218 c | 630 b | 859 a | 18.0 | <0.01 |
c (g/kg h−1) | 15.5 c | 32.4 a | 15.9 c | 24.5 b | 0.57 | <0.01 | 21.2 c | 72.6 a | 52.5 b | 3.54 | <0.01 |
ED (g/kg) | 311 b | 394 a | 165 c | 318 b | 4.32 | <0.01 | 73.7 c | 422 b | 527 a | 1.08 | <0.01 |
Item | ZIHEEB | DIHEEB | IHS | AH | SEM | p | IHSM | IHOFR | SBM | SEM | p |
---|---|---|---|---|---|---|---|---|---|---|---|
IDDM (g/kg RUDM) | 196 b | 165 c | 80.9 d | 226 a | 6.30 | <0.01 | 285 b | 310 b | 646 a | 14.8 | <0.01 |
IDRUP (g/kg RUP) | 209 b | 139 c | 177 bc | 599 a | 11.8 | <0.01 | 751 c | 837 b | 878 a | 7.25 | <0.01 |
IDP (g/kg CP) | 100 b | 78.8 b | 80.4 b | 209 a | 6.48 | <0.01 | 391 a | 178 b | 408 a | 5.53 | <0.01 |
TTDP (g/kg CP) | 620 b | 514 c | 628 b | 860 a | 4.19 | <0.01 | 871 c | 965 a | 943 b | 3.63 | <0.01 |
Item | ZIHEEB | DIHEEB | IHS | AH | SEM | p | IHSM | IHOFR | SBM | SEM | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Feed fractions (NASEM, 2021) | |||||||||||
FA (g/kg of DM) | 29.8 a | 8.55 c | 15.5 b | 17.8 b | 0.92 | <0.01 | 69.2 b | 206 a | 12.9 c | 0.95 | <0.01 |
ROM (g/kg of DM) | 90.5 d | 124 c | 176 b | 219 a | 8.38 | <0.01 | 24.6 c | 53.7 b | 158 a | 7.93 | <0.01 |
GE (MJ/kg) | 15.5 b | 15.4 c | 16.6 a | 16.7 a | 0.04 | <0.01 | 19.4 b | 22.4 a | 19.1 c | 0.04 | <0.01 |
GEb (MJ/kg) | 16.6 c | 16.3 d | 17.8 b | 18.4 a | 0.02 | <0.01 | 21.0 b | 23.7 a | 19.5 c | 0.02 | <0.01 |
True digestibility coefficients and digestible energy for dairy cattle (NASEM, 2021) | |||||||||||
dNDF (g/kg of NDF) | 338 b | 318 b | 413 a | 403 a | 8.49 | <0.01 | 316 c | 465 b | 603 a | 7.73 | <0.01 |
dCP (g/kg of CP) | 620 b | 514 c | 628 b | 860 a | 4.19 | <0.01 | 871 c | 965 a | 943 b | 3.63 | <0.01 |
DE (MJ/kg of DM) | 6.46 c | 6.28 c | 7.71 b | 8.91 a | 0.10 | <0.01 | 9.94 c | 16.5 a | 14.9 b | 0.08 | <0.01 |
Predicted energy value for beef cattle (NASEM, 2016) | |||||||||||
TDN (g/kg of DM) | 447 c | 407 d | 478 b | 533 a | 6.86 | <0.01 | 584 c | 979 a | 777 b | 3.53 | <0.01 |
DE (MJ/kg of DM) | 8.25 c | 7.51 d | 8.81 b | 9.83 a | 0.13 | <0.01 | 10.8 c | 18.1 a | 14.3 b | 0.07 | <0.01 |
ME (MJ/kg of DM) | 6.77 c | 6.16 d | 7.23 b | 8.06 a | 0.10 | <0.01 | 8.84 c | 14.8 a | 11.8 b | 0.05 | <0.01 |
NEm (MJ/kg of DM) | 3.26 c | 2.64 d | 3.72 b | 4.53 a | 0.10 | <0.01 | 5.26 c | 10.3 a | 7.84 b | 0.05 | <0.01 |
NEg (MJ/kg of DM) | 1.01 c | 0.43 d | 1.45 b | 2.21 a | 0.10 | <0.01 | 2.88 c | 7.27 a | 5.18 b | 0.04 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, J.; Cheng, C.; Lv, J.; Lambo, M.T.; Zhang, G.; Li, Y.; Zhang, Y. Nutritional Values of Industrial Hemp Byproducts for Dairy Cattle. Animals 2022, 12, 3488. https://doi.org/10.3390/ani12243488
Wang Y, Gao J, Cheng C, Lv J, Lambo MT, Zhang G, Li Y, Zhang Y. Nutritional Values of Industrial Hemp Byproducts for Dairy Cattle. Animals. 2022; 12(24):3488. https://doi.org/10.3390/ani12243488
Chicago/Turabian StyleWang, Yiqiang, Jianxu Gao, Chuanteng Cheng, Jingyi Lv, Modinat Tolani Lambo, Guangning Zhang, Yang Li, and Yonggen Zhang. 2022. "Nutritional Values of Industrial Hemp Byproducts for Dairy Cattle" Animals 12, no. 24: 3488. https://doi.org/10.3390/ani12243488
APA StyleWang, Y., Gao, J., Cheng, C., Lv, J., Lambo, M. T., Zhang, G., Li, Y., & Zhang, Y. (2022). Nutritional Values of Industrial Hemp Byproducts for Dairy Cattle. Animals, 12(24), 3488. https://doi.org/10.3390/ani12243488