Differences of the Plasma Total Lipid Fraction from Pre-Foaling to Post-Foaling Period in Donkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Blood Analysis
2.4. Gas Chromatographic Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, H.Y.; Pang, K.; Zhang, X.Y.; Zhao, L.; Chen, S.W.; Dong, M.L.; Ren, F.Z. Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J. Dairy Sci. 2007, 90, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Caldin, M.; Furlanello, T.; Solano-Gallego, L.; De Lorenzi, D.; Carli, E.; Tasca, S.; Lubas, G. Reference ranges for haematology, biochemical profile and electrophoresis in a single herd of Ragusana donkeys from Sicily (Italy). Comp. Clin. Pathol. 2005, 14, 5–12. [Google Scholar] [CrossRef]
- Mori, E.; Mirandola, R.M.S.; Ferreira, R.R.; Oliveira, J.V.; Gacek, F.; Fernandes, W.R. Reference values on hematologic parameters of the Brazilian donkey (Equus asinus) breed. J. Equine Vet. Sci. 2004, 24, 271–276. [Google Scholar] [CrossRef]
- Burden, F.; Thiemann, A. Donkeys are different. J. Equine Vet. Sci. 2015, 35, 376–382. [Google Scholar] [CrossRef]
- De Lima, B.; Da Silva, G.B.; Da Silva, C.J.F.L.; Ferreira, L.M.C.; Da Costa, C.M.H.E.C.; Filho, H.C.M. Blood, metabolic and endocrine biomarkers in donkeys (Equus africanus asinus) supplemented with different energy sources. Acta Vet. Bras. 2016, 10, 135–143. [Google Scholar] [CrossRef]
- Salari, F.; Licitra, R.; Altomonte, I.; Martini, M. Donkey Feeding During Maintenance, Pregnancy, and Lactation: Effects on Body Weight, Milk Production, and Foal Growth. J. Equine Vet. Sci. 2020, 91, 103131. [Google Scholar] [CrossRef] [PubMed]
- Martin-Rosset, W. Donkey Nutrition and Feeding: Nutrient Requirements and Recommended Allowances—A Review and Prospect. J. Equine Vet. Sci. 2018, 65, 75–85. [Google Scholar] [CrossRef]
- Aoki, T.; Ishii, M. Hematological and Biochemical Profiles in Peripartum Mares and Neonatal Foals (Heavy Draft Horse). J. Equine Vet. Sci. 2012, 32, 170–176. [Google Scholar] [CrossRef]
- Tessari, R.; Mazzotta, E.; Blasi, F.; Morgante, M.; Badon, T.; Bedin, S.; Fabbri, G.; Lisuzzo, A.; Contiero, B.; Fiore, E.; et al. Milk Fatty Acids as Biomarkers of Metabolic Diseases in Dairy Cows identified through Thin Layer Chromatography and Gas Chromatography Techniques (TLC-GC). Large Anim. Rev. 2021, 27, 187–193. [Google Scholar]
- Fiore, E.; Arfuso, F.; Gianesella, M.; Vecchio, D.; Morgante, M.; Mazzotta, E.; Badon, T.; Rossi, P.; Bedin, S.; Piccione, G. Metabolic and hormonal adaptation in Bubalus bubalis around calving and early lactation. PLoS ONE 2018, 13, e0193803. [Google Scholar] [CrossRef]
- Bonelli, F.; Rota, A.; Corazza, M.; Serio, D.; Sgorbini, M. Hematological and biochemical findings in pregnant, postfoaling, and lactating jennies. Theriogenology 2016, 85, 1233–1238. [Google Scholar] [CrossRef]
- Agina, O.A. Haematology and Clinical Biochemistry Findings Associated with Equine Diseases—A Review. Not. Sci. Biol. 2017, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Fiore, E.; Piccione, G.; Gianesella, M.; Praticò, V.; Vazzana, I.; Dara, S.; Morgante, M. Serum thyroid hormone evaluation during transition periods in dairy cows. Arch. Anim. Breed. 2015, 58, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, B.; Süß, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid analysis by thin-layer chromatography-A review of the current state. J. Chromatogr. A 2011, 1218, 2754–2774. [Google Scholar] [CrossRef]
- Chiu, H.H.; Kuo, C.H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. J. Food Drug Anal. 2020, 28, 60–73. [Google Scholar] [CrossRef]
- Fiore, E.; Lisuzzo, A.; Tessari, R.; Spissu, N.; Moscati, L.; Morgante, M.; Gianesella, M.; Badon, T.; Mazzotta, E.; Berlanda, M.; et al. Milk Fatty Acids Composition Changes According to β-Hydroxybutyrate Concentrations in Ewes during Early Lactation. Animals 2021, 11, 1371. [Google Scholar] [CrossRef]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef] [Green Version]
- National Research Council Donkey and Other Equids. Nutrient Requirements of Horses; National Academies Press: Washington, DC, USA, 2007; pp. 268–279. ISBN 9780309102124. [Google Scholar]
- Salari, F.; Ciampolini, R.; Mariti, C.; Millanta, F.; Altomonte, I.; Licitra, R.; Auzino, B.; Ascenzi, C.D.; Bibbiani, C.; Giuliotti, L.; et al. A multi-approach study of the performance of dairy donkey during lactation: Preliminary results. Ital. J. Anim. Sci. 2019, 18, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Barbagianni, M.S.; Spanos, S.A.; Ioannidi, K.S.; Vasileiou, N.G.C.; Katsafadou, A.I.; Valasi, I.; Gouletsou, P.G.; Fthenakis, G.C. Increased incidence of peri-parturient problems in ewes with pregnancy toxaemia. Small Rumin. Res. 2015, 132, 111–114. [Google Scholar] [CrossRef]
- Marutsova, V.; Marutsov, P. Subclinical and Clinical Ketosis in Sheep-Relationships between Body Condition Scores and Blood Β-Hydroxybutyrate and Non-Esterified Fatty Acids Concentrations. Tradit. Mod. Vet. Med. 2018, 3, 30–36. [Google Scholar]
- Mariella, J.; Pirrone, A.; Gentilini, F.; Castagnetti, C. Hematologic and biochemical profiles in Standardbred mares during peripartum. Theriogenology 2014, 81, 526–534. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Hervey, J.W.; Bruss, M.L. Lipids and Ketones. In Clinical Biochemistry of Domestic Animals, 6th ed.; Elsevier Academic Press: Oxford, UK, 2008; pp. 81–115. [Google Scholar]
- Olivieri, O.; Speziali, G.; Castagna, A.; Pattini, P.; Udali, S.; Pizzolo, F.; Liesinger, L.; Gindlhuber, J.; Tomin, T.; Schittmayer, M.; et al. The positive association between plasma myristic acid and apociii concentrations in cardiovascular disease patients is supported by the effects of myristic acid in hepg2 cells. J. Nutr. 2020, 150, 2707–2715. [Google Scholar] [CrossRef]
- Fiore, E.; Perillo, L.; Gianesella, M.; Giannetto, C.; Giudice, E.; Piccione, G.; Morgante, M. Comparison between two preventive treatments for hyperketonaemia carried out pre-partum: Effects on non-esterified fatty acids, β-hydroxybutyrate and some biochemical parameters during peripartum and early lactation. J. Dairy Res. 2021, 88, 38–44. [Google Scholar] [CrossRef]
- Mendoza, F.J.; Toribio, R.E.; Perez-Ecija, A. Donkey Internal Medicine—Part I: Metabolic, Endocrine, and Alimentary Tract Disturbances. J. Equine Vet. Sci. 2018, 65, 66–74. [Google Scholar] [CrossRef]
- Sawh, M.C.; Wallace, M.; Shapiro, E.; Goyal, N.P.; Newton, K.P.; Yu, E.L.; Bross, C.; Durelle, J.; Knott, C.; Gangoiti, J.A.; et al. Dairy Fat Intake, Plasma Pentadecanoic Acid, and Plasma Iso-heptadecanoic Acid Are Inversely Associated with Liver Fat in Children. J. Pediatr. Gastroenterol. Nutr. 2021, 72, e90–e96. [Google Scholar] [CrossRef]
- Rukkwamsuk, T.; Geelen, M.J.H.; Kruip, T.A.M.; Wensing, T. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J. Dairy Sci. 2000, 83, 52–59. [Google Scholar] [CrossRef]
- Horst, E.A.; Kvidera, S.K.; Baumgard, L.H. Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef]
- Contreras, G.A.; Sordillo, L.M. Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 281–289. [Google Scholar] [CrossRef]
- Long, N.M.; Burns, T.A.; Volpi Lagreca, G.; Alende, M.; Duckett, S.K. Palmitoleic Acid Infusion Alters Circulating Glucose and Insulin Levels. J. Metab. Syndr. 2014, 3, 148. [Google Scholar] [CrossRef] [Green Version]
- Brzozowska, A.M.; Oprządek, J. Metabolism of fatty acids in tissues and organs of the ruminants-A review Metabolism of fatty acids in tissues and organs of the ruminants—A review. Anim. Sci. Pap. Rep. 2016, 34, 211–220. [Google Scholar]
- Astudillo, A.M.; Meana, C.; Bermúdez, M.A.; Pérez-Encabo, A.; Balboa, M.A.; Balsinde, J. Release of anti-inflammatory palmitoleic acid and its positional isomers by mouse peritoneal macrophages. Biomedicines 2020, 8, 480. [Google Scholar] [CrossRef]
- Laverroux, S.; Glasser, F.; Gillet, M.; Joly, C.; Doreau, M. Isomerization of vaccenic acid to cis and trans C18:1 isomers during biohydrogenation by rumen microbes. Lipids 2011, 46, 843–850. [Google Scholar] [CrossRef]
- Burns, T.A.; Kadegowda, A.K.G.; Duckett, S.K.; Pratt, S.L.; Jenkins, T.C. Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures. Lipids 2012, 47, 1143–1153. [Google Scholar] [CrossRef]
- Duckett, S.K.; Volpi-Lagreca, G.; Alende, M.; Long, N.M. Palmitoleic acid reduces intramuscular lipid and restores insulin sensitivity in obese sheep. Diabetes, Metab. Syndr. Obes. Targets Ther. 2014, 7, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Real, J.M.; Vendrell, J.; Ricart, W. Circulating adiponectin and plasma fatty acid profile. Clin. Chem. 2005, 51, 603–609. [Google Scholar] [CrossRef]
- Burden, F. Practical feeding and condition scoring for donkeys and mules. Equine Vet. Educ. 2012, 24, 589–596. [Google Scholar] [CrossRef]
- Yang, Z.H.; Miyahara, H.; Iwasaki, Y.; Takeo, J.; Katayama, M. Dietary supplementation with long-chain monounsaturated fatty acids attenuates obesity-related metabolic dysfunction and increases expression of PPAR gamma in adipose tissue in type 2 diabetic KK-Ay mice. Nutr. Metab. 2013, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.J.; Bruckmaier, R.M. Review: Metabolic challenges in lactating dairy cows and their assessment via established and novel indicators in milk. Animal 2019, 13, S75–S81. [Google Scholar] [CrossRef] [Green Version]
- Drews, B.; Milojevic, V.; Giller, K.; Ulbrich, S.E. Fatty acid profile of blood plasma and oviduct and uterine fluid during early and late luteal phase in the horse. Theriogenology 2018, 114, 258–265. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Fu, J.; Astarita, G.; Li, X.; Gaetani, S.; Campolongo, P.; Cuomo, V.; Piomelli, D. The Lipid Messenger OEA Links Dietary Fat Intake to Satiety. Cell Metab. 2008, 8, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Yeom, K.H.; Schonewille, J.T.; Everts, H.; Zoet, J.M.; Beynen, A.C. Impact of dietary soybean oil versus medium-chain triglycerides on plasma fatty acids in goats. Small Rumin. Res. 2003, 48, 201–208. [Google Scholar] [CrossRef]
- Pearson, R. Nutrition and feeding of donkeys. In Veterinary Care of Donkey; International Veterinary Information Service: Ithaca, NY, USA, 2005; p. A2912.0805. [Google Scholar]
- Raphael, W.; Sordillo, L.M. Dietary polyunsaturated fatty acids and inflammation: The role of phospholipid biosynthesis. Int. J. Mol. Sci. 2013, 14, 21167–21188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossi, P.; Bertoni, G.; Cappelli, F.P.; Trevisi, E. Effects of the precalving administration of omega-3 fatty acids alone or in combination with acetylsalicylic acid in periparturient dairy cows. J. Anim. Sci. 2013, 91, 2657–2666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibeagha-Awemu, E.M.; Akwanji, K.A.; Beaudoin, F.; Zhao, X. Associations between variants of FADS genes and omega-3 and omega-6 milk fatty acids of canadian holstein cows. BMC Genet. 2014, 15, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal-Santos, G.; O’Donnell, A.M.; Vicini, J.L.; Hartnell, G.F.; Bauman, D.E. Hot topic: Enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans. J. Dairy Sci. 2010, 93, 32–37. [Google Scholar] [CrossRef]
- Park, W.J.; Kothapalli, K.S.D.; Lawrence, P.; Tyburczy, C.; Brenna, J.T. An alternate pathway to long-chain polyunsaturates: The FADS2 gene product Δ8-desaturates 20:2n-6 and 20:3n-3. J. Lipid Res. 2009, 50, 1195–1202. [Google Scholar] [CrossRef] [Green Version]
- Bazzano, M.; Bonfili, L.; Maria, A.; Evelina, E.; Scollo, C.; Yaosen, Y.; Tesei, B.; Laus, F. Assessment of serum amyloid A concentrations and biochemical profiles in lactating jennies and newborn Ragusano donkey foals around parturition and one month after foaling in Sicily. Reprod. Domest. Anim. 2021, 00, 1–7. [Google Scholar] [CrossRef]
- Sgorbini, M.; Bonelli, F.; Percacini, G.; Pasquini, A.; Rota, A. Maternal and neonatal evaluation of derived reactive oxygen metabolites and biological antioxidant potential in donkey mares and foals. Animals 2021, 11, 2885. [Google Scholar] [CrossRef]
- Horas, H.; Nababan, S.; Nishiumi, S.; Kawano, Y.; Kobayashi, T.; Yoshida, M.; Azuma, T. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch. Biochem. Biophys. 2017, 623–624, 64–75. [Google Scholar] [CrossRef]
- Zhao, J.; Nishiumi, S.; Tagawa, R.; Yano, Y.; Inoue, J.; Hoshi, N.; Yoshida, M.; Kodama, Y. Adrenic acid induces oxidative stress in hepatocytes. Biochem. Biophys. Res. Commun. 2020, 532, 620–625. [Google Scholar] [CrossRef]
- Radin, L.; Šimpraga, M.; Vince, S.; Kostelić, A.; Milinković-Tur, S. Metabolic and oxidative status of Saanen goats of different parity during the peripartum period. J. Dairy Res. 2015, 82, 426–433. [Google Scholar] [CrossRef] [PubMed]
Parameters | T0 | T1 | T2 | T3 | T4 | SEM | p | LOC 22 | OQC 23 |
---|---|---|---|---|---|---|---|---|---|
BCS 1,* | 3.68 a 4.00 (3.50–4.00) | 3.56 a 3.88 (3.19–4.00) | 3.38 ab 3.50 (3.25–3.50) | 3.20 bc 3.50 (2.75–3.50) | 3.00 c 3.00 (2.75–3.25) | 0.14 | <0.0001 | <0.0001 | NS 21 |
Glycemia, mg/dL | 70.50 | 61.70 | 65.10 | 62.50 | 50.40 | 8.13 | NS 21 | NS 21 | NS 21 |
BHB 2, mmol/L | 0.32 | 0.44 | 0.40 | 0.36 | 0.34 | 0.06 | NS 21 | NS 21 | NS 21 |
NEFA 3, mEq/L | 0.72 a | 0.54 ab | 0.45 ab | 0.16 b | 0.14 b | 0.11 | 0.001 | <0.001 | NS 21 |
CHO 4, mg/dL | 109.20 a | 92.30 ab | 73.20 b | 68.70 b | 71.40 b | 9.91 | <0.001 | <0.0001 | 0.005 |
PHO 5, mg/dL | 4.08 a | 3.50 ab | 3.26 b | 3.08 b | 3.38 ab | 0.19 | 0.013 | 0.009 | 0.016 |
TRI 6, mg/dL | 277.70 a | 40.00 b | 19.50 b | 27.00 b | 36.80 b | 31.58 | <0.0001 | <0.0001 | <0.0001 |
TP 7, g/L | 89.40 | 84.90 | 85.30 | 83.20 | 86.60 | 2.48 | 0.076 | NS 21 | 0.051 |
Albumin, g/L | 36.10 a | 36.00 a | 33.00 ab | 31.70 b | 29.90 b | 1.07 | <0.0001 | <0.0001 | NS 21 |
Total Bilirubin, mg/dL | 0.60 a | 0.25 b | 0.21 b | 0.16 b | 0.20 b | 0.06 | <0.0001 | <0.0001 | 0.002 |
AST 8, UI/L | 186.00 | 198.00 | 212.00 | 202.00 | 214.00 | 14.16 | NS 21 | NS 21 | NS 21 |
ALT 9, UI/L | 5.69 | 6.61 | 4.45 | 4.51 | 5.02 | 1.19 | NS 21 | NS 21 | NS 21 |
GGT 10, UI/L | 41.10 | 52.50 | 49.50 | 36.90 | 45.70 | 7.86 | NS 21 | NS 21 | NS 21 |
ALP 11, U/L | 461.00 | 473.00 | 556.00 | 530.00 | 545.00 | 91.40 | NS 21 | NS 21 | NS 21 |
LDH 12, U/L | 297.00 | 348.00 | 319.00 | 359.00 | 414.00 | 38.42 | 0.078 | 0.052 | NS 21 |
CK 13, U/L | 167.00 | 112.00 | 144.00 | 150.00 | 159.00 | 27.98 | NS 21 | NS 21 | NS 21 |
CRE 14, mg/dL | 1.22 | 1.36 | 1.23 | 1.11 | 1.11 | 0.08 | NS 21 | NS 21 | NS 21 |
CRP 15, mg/dL | 0.30 | 0.57 | 0.54 | 0.58 | 0.55 | 0.12 | NS 21 | NS 21 | NS 21 |
Urea, mg/dL | 33.60 ab | 28.90 a | 31.70 ab | 39.60 b | 37.30 ab | 2.49 | 0.019 | 0.029 | NS 21 |
Ca 16, mg/dL | 13.70 | 12.90 | 13.20 | 13.00 | 13.20 | 0.53 | NS 21 | NS 21 | NS 21 |
Cl 17, mmol/L | 115.00 a | 111.00 ab | 109.00 b | 108.00 b | 108.00 b | 2.67 | 0.004 | 0.015 | 0.029 |
Mg 18, mg/dL | 2.35 | 2.43 | 2.49 | 2.39 | 2.46 | 0.13 | NS 21 | NS 21 | NS 21 |
Na 19, mEq/L | 143.00 | 146.00 | 142.00 | 144.00 | 144.00 | 1.94 | NS 21 | NS 21 | NS 21 |
K 20, mEq/L | 7.44 | 7.81 | 4.54 | 8.51 | 6.94 | 2.31 | NS 21 | NS 21 | NS 21 |
Fatty Acids | Nomenclature | T0 | T1 | T2 | T3 | T4 | SEM | p | LOC 3 | OQC 4 |
---|---|---|---|---|---|---|---|---|---|---|
C6:0 | Caproic acid | 4.93 | 17.47 | 16.52 | 17.27 | 18.00 | 2.89 | NS 2 | NS 2 | 0.085 |
C8:0 | Caprylic acid | 1.89 | 2.07 | 1.96 | 2.00 | 1.73 | 0.70 | NS 2 | NS 2 | NS 2 |
C10:0 | Capric acid | 1.03 | 0.66 | 0.91 | 0.58 | 0.66 | 0.16 | NS 2 | NS 2 | NS 2 |
C12:0 | Lauric acid | 0.74 | 0.34 | 0.67 | 0.14 | 0.15 | 0.32 | NS 2 | NS 2 | NS 2 |
C14:0 | Myristic acid | 3.78 a | 0.78 ab | 0.76 b | 0.60 b | 0.77 b | 0.71 | 0.021 | 0.018 | NS 2 |
C14:1 ω 5 | Myristelaidic acid | 0.25 | 0.07 | 0.03 | 0.06 | 0.05 | 0.06 | NS 2 | NS 2 | NS 2 |
C15:0 | Pentadecanoic acid | 0.76 a | 0.23 b | 0.26 b | 0.31 b | 0.40 ab | 0.11 | 0.015 | 0.100 | 0.004 |
C16:0 | Palmitic acid | 98.60 a | 34.30 ab | 26.80 b | 27.00 b | 30.70 b | 15.68 | 0.009 | 0.020 | 0.010 |
C16:1 ω 9 | Hypogeic acid | 3.33 a | 0.65 b | 0.53 b | 0.52 b | 0.70 b | 0.60 | 0.012 | 0.020 | 0.010 |
C16:1 ω 7 | Palmitoleic acid | 16.24 a | 4.29 ab | 2.62 b | 2.02 b | 1.70 b | 3.10 | 0.015 | 0.009 | 0.032 |
C16:3 ω 4 | Hexadecatrienoic acid | 0.50 a | 0.16 b | 0.17 b | 0.21 b | 0.33 ab | 0.05 | 0.003 | 0.094 | 0.0001 |
C17:1 ω 7 | Heptadecenoic acid | 0.08 a | 0.05 a | 0.45 b | 0.08 a | 0.10 a | 0.04 | <0.001 | NS 2 | 0.001 |
C18:0 | Stearic acid | 53.00 | 44.40 | 36.50 | 37.60 | 37.30 | 9.12 | 0.098 | NS 2 | NS 2 |
C18:1 ω 9 | Oleic acid | 74.70 a | 23.10 b | 19.00 b | 20.20 b | 25.20 b | 10.98 | 0.003 | 0.019 | 0.003 |
C18:1 ω 7 | cis-Vaccenic acid | 6.62 a | 2.95 b | 2.17 b | 2.11 b | 2.01 b | 0.90 | 0.001 | 0.006 | 0.012 |
C18:2 ω 6 | Linoleic acid | 106.20 | 100.60 | 84.00 | 86.30 | 91.80 | 20.86 | NS 2 | NS 2 | NS 2 |
C18:3 ω 6 | γ-Linolenic acid (GLA) | 0.84 | 0.72 | 1.20 | 0.93 | 1.26 | 0.18 | NS 2 | NS 2 | NS 2 |
C18:3 ω 3 | α-Linolenic acid (ALA) | 13.11 a | 2.63 b | 1.66 b | 2.16 b | 2.20 b | 1.79 | <0.001 | 0.002 | 0.001 |
C18:4 ω 3 | Stearidonic acid (SDA) | 0.12 | 0.32 | 0.20 | 0.18 | 0.22 | 0.09 | NS 2 | NS 2 | NS 2 |
C20:0 | Arachidic acid | 0.56 | 2.50 | 3.30 | 5.19 | 2.19 | 1.79 | NS 2 | NS 2 | NS 2 |
C20:1 ω 11 | Gadoleic acid | 0.67 a | 2.53 ab | 4.41 b | 2.30 ab | 1.53 ab | 1.23 | 0.014 | NS 2 | 0.005 |
C20:1 ω 9 | Gondoic acid | 0.92 a | 0.43 b | 0.49 b | 0.60 ab | 0.66 ab | 0.15 | 0.017 | NS 2 | 0.004 |
C20:2 ω 6 | Eicosadienoic acid | 0.49 a | 0.24 b | 0.28 b | 0.35 ab | 0.45 ab | 0.08 | 0.011 | NS 2 | 0.001 |
C20:3 ω 6 | Dihomo-γ-linolenic acid | 0.72 a | 0.41 b | 0.29 b | 0.29 b | 0.28 b | 0.08 | <0.001 | 0.001 | 0.001 |
C20:4 ω 6 | Arachidonic acid (AA) | 2.07 a | 1.98 ab | 1.64 ab | 1.57 ab | 1.41 b | 0.32 | 0.027 | 0.057 | NS 2 |
C20:3 ω 3 | Eicosatrienoic acid (ETE) | 0.39 a | 0.11 b | 0.09 b | 0.12 b | 0.10 b | 0.05 | 0.001 | 0.006 | 0.001 |
C20:4 ω 3 | Eicosatetranoic acid | 0.10 | 0.08 | 0.04 | 0.05 | 0.05 | 0.02 | NS 2 | 0.075 | NS 2 |
C20:5 ω 3 | Eicosapentaenoic acid | 0.88 a | 0.66 ab | 0.56 b | 0.54 b | 0.66 ab | 0.12 | 0.042 | NS 2 | 0.025 |
C22:0 | Behenic acid | 0.57 | 0.55 | 0.47 | 0.56 | 0.55 | 0.07 | NS 2 | NS 2 | NS 2 |
C22:1 ω 9 | Erucic acid | 0.06 | 0.04 | 0.05 | 0.04 | 0.05 | 0.01 | NS 2 | NS 2 | NS 2 |
C22:2 ω 6 | Docosadienoic acid | 0.08 | 0.04 | 0.05 | 0.06 | 0.07 | 0.02 | NS 2 | NS 2 | NS 2 |
C22:4 ω 6 | Adrenic acid (ADA) | 0.29 a | 0.21 ab | 0.21 ab | 0.21 ab | 0.19 b | 0.05 | 0.028 | 0.086 | 0.075 |
C22:5 ω 6 | Docopentaenoic acid | 0.03 | 0.24 | 0.23 | 0.26 | 0.26 | 0.04 | NS 2 | NS 2 | NS 2 |
C22:5 ω 3 | Decosapentaenoic acid | 0.49 a | 0.25 ab | 0.18 b | 0.20 b | 0.17 b | 0.06 | 0.002 | 0.006 | 0.016 |
C22:6 ω 3 | Docosahexaenoic acid | 0.44 a | 0.22 ab | 0.18 b | 0.20 b | 0.19 b | 0.06 | 0.020 | 0.015 | 0.034 |
C24:0 | Lignoceric acid | 0.78 | 0.08 | 0.94 | 0.94 | 0.96 | 0.20 | NS 2 | NS 2 | NS 2 |
C24:1 ω 9 | Nervonic acid | 1.89 | 2.53 | 2.61 | 2.44 | 2.16 | 0.52 | 0.072 | NS 2 | 0.009 |
TPFA 1 | 391.00 a | 233.00 ab | 198.00 b | 203.00 b | 212.00 b | 61.06 | 0.024 | 0.072 | 0.022 |
Parameters | T0 | T1 | T2 | T3 | T4 | SEM | p | LOC 9 | OQC 10 |
---|---|---|---|---|---|---|---|---|---|
MCFA 1 | 2.69 | 8.57 | 6.59 | 7.30 | 5.91 | 2.73 | NS 8 | NS 8 | 0.067 |
LCFA 2 | 383.00 a | 220.00 ab | 187.00 b | 191.00 b | 202.00 b | 58.82 | 0.009 | 0.063 | 0.018 |
VLCFA 3 | 4.71 | 4.72 | 4.78 | 4.70 | 4.44 | 0.91 | NS 8 | NS 8 | NS 8 |
SFA 4 | 160.70 a | 90.30 ab | 75.60 b | 79.40 b | 78.80 b | 25.48 | 0.013 | 0.060 | 0.026 |
UFA 5 | 230.00 a | 142.00 ab | 122.00 b | 123.00 b | 133.00 ab | 35.82 | 0.012 | 0.084 | 0.021 |
SFA:UFA | 0.66 | 0.63 | 0.62 | 0.65 | 0.60 | 0.02 | NS 8 | NS 8 | NS 8 |
MUFA 6 | 103.60 a | 35.80 b | 31.60 b | 30.10 b | 33.90 b | 16.16 | 0.002 | 0.023 | 0.007 |
PUFA 7 | 126.50 | 108.00 | 90.70 | 93.10 | 99.30 | 22.44 | NS 8 | NS 8 | NS 8 |
PUFA ω-3 (ω-3) | 15.57 a | 4.13 b | 2.82 b | 3.36 b | 3.50 b | 2.00 | <0.001 | 0.002 | 0.001 |
PUFA ω-6 (ω-6) | 110.90 | 104.20 | 87.80 | 89.70 | 95.60 | 21.40 | NS 8 | NS 8 | NS 8 |
ω-6:ω-3 | 8.98 a | 24.62 b | 30.48 b | 25.52 b | 29.33 b | 3.49 | <0.001 | 0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisuzzo, A.; Bonelli, F.; Sgorbini, M.; Nocera, I.; Cento, G.; Mazzotta, E.; Turini, L.; Martini, M.; Salari, F.; Morgante, M.; et al. Differences of the Plasma Total Lipid Fraction from Pre-Foaling to Post-Foaling Period in Donkeys. Animals 2022, 12, 304. https://doi.org/10.3390/ani12030304
Lisuzzo A, Bonelli F, Sgorbini M, Nocera I, Cento G, Mazzotta E, Turini L, Martini M, Salari F, Morgante M, et al. Differences of the Plasma Total Lipid Fraction from Pre-Foaling to Post-Foaling Period in Donkeys. Animals. 2022; 12(3):304. https://doi.org/10.3390/ani12030304
Chicago/Turabian StyleLisuzzo, Anastasia, Francesca Bonelli, Micaela Sgorbini, Irene Nocera, Giulia Cento, Elisa Mazzotta, Luca Turini, Mina Martini, Federica Salari, Massimo Morgante, and et al. 2022. "Differences of the Plasma Total Lipid Fraction from Pre-Foaling to Post-Foaling Period in Donkeys" Animals 12, no. 3: 304. https://doi.org/10.3390/ani12030304
APA StyleLisuzzo, A., Bonelli, F., Sgorbini, M., Nocera, I., Cento, G., Mazzotta, E., Turini, L., Martini, M., Salari, F., Morgante, M., Badon, T., & Fiore, E. (2022). Differences of the Plasma Total Lipid Fraction from Pre-Foaling to Post-Foaling Period in Donkeys. Animals, 12(3), 304. https://doi.org/10.3390/ani12030304