Microbial Phytase in a Diet with Lupine and Extruded Full-Fat Soya Seeds Affects the Performance, Carcass Characteristics, Meat Quality, and Bone Mineralization of Fatteners
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phytase
2.3. Ethical Statement
2.4. Animals, Diets, and Experimental Design
2.5. Analytical Procedures
2.5.1. Feed Analyses
2.5.2. Carcasses and Meat Analyses
2.5.3. Meat Fatty Acid Profile
2.5.4. Bone Analysis
2.6. Statistical Analysis
3. Results
3.1. Performance Parameters
3.2. Carcass and Meat Quality
3.3. Fatty Acid Profile
3.4. Bone Characteristic
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davison, J. GM plants: Science, politics and EC regulations. Plant Sci. 2010, 178, 94–98. [Google Scholar] [CrossRef]
- Sieradzki, Z.; Mazur, M.; Król, B.; Kwiatek, K. Prevalence of genetically modified soybean in animal feeding stuffs in Poland. J. Vet. Res. 2021, 65, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Florou-Paneri, P.; Christaki, E.; Giannenas, I.; Bonos, E.; Skoufos, I.; Tsinas, A.; Peng, J. Alternative protein sources to soybean meal in pig diets. J. Food Agric. Environ. 2014, 12, 655–660. [Google Scholar]
- Davison, J.; Ammann, K. New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops Food 2018, 7, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Wiśniewska, Z.; Rutkowski, A. A comparison of the composition and contamination of soybean cultivated in Europe and limitation of raw soy seed content in weaned pigs’ diets. Animals 2020, 10, 1972. [Google Scholar] [CrossRef] [PubMed]
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Nowak, P.; Wiśniewska, Z.; Rutkowski, A. The nutritional value of yellow lupine (Lupinus luteus) for growing pigs. J. Agric. Sci. Technol. A 2019, 9, 351–363. [Google Scholar] [CrossRef]
- Brouns, F. Phytic Acid and Whole Grains for Health Controversy. Nutrients 2021, 14, 25. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Wealleans, A.L.; Barnard, L.P.; Lane, S. Effect of increasing Buttiauxella phytase dose on nutrient digestibility and performance in weaned piglets fed corn or wheat based diets. Anim. Feed Sci. Technol. 2017, 234, 101–109. [Google Scholar] [CrossRef]
- Kasprowicz-Potocka, M.; Zaworska-Zakrzewska, A.; Rutkowski, A. Effect of phytase on digestibility and performance of growing and finishing pigs fed diets with lupins and rapeseed meal. J. Agric. Sci. Technol. A 2020, 10, 121–131. [Google Scholar] [CrossRef]
- Wiśniewska, Z.; Nollet, L.; Lanckriet, A.; Vanderbeke, E.; Petkov, S.; Outchkourov, N.; Kasprowicz-Potocka, M.; Za-Worska-Zakrzewska, A.; Kaczmarek, S.A. Effect of phytase derived from the E. coli appa gene on weaned piglet per-formance, apparent total tract digestibility and bone mineralization. Animals 2020, 10, 121. [Google Scholar] [CrossRef]
- Czech, A.; Samolińska, W.; Tomaszewska, E.; Muszyński, S.; Grela, E.R. Effect of Microbial Phytase on Ileal Digestibility of Minerals, Plasma and Urine Metabolites, and Bone Mineral Concentrations in Growing—Finishing Pigs. Animals 2022, 12, 1294. [Google Scholar] [CrossRef] [PubMed]
- Vats, P.; Bhattacharyya, M.S.; Banerjee, U.C. Use of phytases (myo-inositolhexakisphosphate phosphohydrolases) for combatting environmental pollution: A biological approach. Crit. Rev. Environ. Sci. Technol. 2005, 35, 469–486. [Google Scholar] [CrossRef]
- Moran, K.; Boyd, R.D.; Zier-Rush, C.; Wilcock, P.; Bajjalieh, N.; Van Heugten, E. Effects of high inclusion of soybean meal and a phytase superdose on growth performance of weaned pigs housed under the rigors of commercial conditions. J. Anim. Sci. 2017, 95, 5455–5465. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.X.; Kim, I.H. Effects of adding high-dosing Aspergillus oryzae phytase to corn–wheat–soybean meal-based basal diet on growth performance, nutrient digestibility, faecal gas emission, carcass traits and meat quality in grow-ing-finishing pigs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1056–1062. [Google Scholar] [CrossRef]
- Wilcock, P.; Bradley, L.; Chewning, J.J.; Walk, C.L. The effect of superdosing phytase on inositol and phytate concentration in the gastrointestinal tract and its effect on pig performance. J. Anim. Sci. 2014, 92, 383. [Google Scholar]
- Zeng, Z.; Li, Q.; Tian, Q.; Zhao, P.; Xu, X.; Yu, S.; Piao, X. Super high dosing with a novel buttiauxella phytase continuously improves growth performance, nutrient digestibility, and mineral status of weaned pigs. Biol. Elem. Res. 2015, 168, 103–109. [Google Scholar] [CrossRef]
- Holloway, C.L.; Dean Boyd, R.; Koehler, D.; Gould, S.A.; Li, Q.; Patience, J.F. The impact of “super-dosing” phytase in pig diets on growth performance during the nursery and grow-out periods. Transl. Anim. Sci. 2019, 3, 419–428. [Google Scholar] [CrossRef]
- Gebert, S.; Bee, G.; Pfirter, H.P.; Wenk, C. Phytase and vitamin E in the feed of growing pigs: 2. Influence on carcass characteristics, meat and fat quality. J. Anim. Physiol. Anim. Nutr. 1998, 81, 20–30. [Google Scholar] [CrossRef]
- El-Hack, M.E.A.; Alagawany, M.; Arif, M.; Emam, M.; Saeed, M.; Arain, M.A.; Siyal, F.A.; Patra, A.; Elnesr, S.S.; Khan, R.U. The uses of microbial phytase as a feed additive in poultry nutrition—A review. Ann. Anim. Sci. 2018, 18, 639–658. [Google Scholar] [CrossRef]
- Anonymous. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 31–79. [Google Scholar]
- GfE. Gesellschaft für Ernährungsphysiologie. Society of nutrition physiology, recommendations for the supply of energy and nutrients to pigs. In Energy and Nutrients Requirements for Livestock; DLG-Verlags GmbH, Committee for Require-ment Standards of the Society of Nutrition Physiology: Frankfurt am Main, Germany, 2006. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; Association of Official Analysis Chemists International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Lisiak, D.; Janiszewski, P.; Blicharski, T.; Borzuta, K.; Grześkowiak, E.; Lisiak, B.; Powałowski, K.; Samardakiewicz, Ł.; Batorska, M.; Skrzymowska, K.; et al. Effect of selenium supplementation in pig feed on slaughter value and physicochemical and sensory characteristics of meat. Ann. Anin. Sci. 2014, 14, 213–222. [Google Scholar] [CrossRef]
- Kaczmarek, S.A.; Cowieson, A.J.; Hejdysz, M.; Rutkowski, A. Microbial phytase improves performance and bone traits in broilers fed diets based on soybean meal and containing lupin meal. Anim. Prod. Sci. 2016, 56, 1669–1676. [Google Scholar] [CrossRef]
- Guggenbuhl, P.; Calvo, E.P.; Fru, F. Effect of High Dietary Doses of a Bacterial 6-Phytase in Piglets Fed a Corn-Soybean Meal Diet. J. Anim. Sci. 2016, 94, 307–309. [Google Scholar] [CrossRef]
- Kumar, A.; Indra Mani, I.; Pramod, A.; Samuel, D.V.K.; Jha, S.K.; Sahoo, P.K.; Sinha, J.P.; Kar, A. Effect of extrusion technique on antinutritional factors of sorghum-soya blends. Indian J. Agric. Sci. 2018, 88, 420–428. [Google Scholar]
- Zaworska, A.; Kasprowicz-Potocka, M.; Rutkowski, A.; Jamroz, D. The influence of dietary raw and extruded field peas (Pisum sativum L.) on nutrients digestibility and performance of weaned and fattening pigs. J. Anim. Feed Sci. 2018, 27, 123–130. [Google Scholar] [CrossRef]
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Ciołek, K.; Pruszyńska-Oszmałek, E.; Stuper-Szablewska, K.; Rutkowski, A. The Effects of Protease Supplementation and Faba Bean Extrusion on Growth, Gastrointestinal Tract Physiology and Selected Blood Indices of Weaned Pigs. Animals 2022, 12, 563. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, M.; Gómez, R.; Fierro, S.; Barrera, M.A.; Morales, A.; Araiza, B.A.; Zijlstra, R.T.; Sánchez, J.E.; Sauer, W.C. Ileal digestibility of amino acids, phosphorus, phytate and energy in pigs fed sorghum-based diets supplemented with phytase and Pancreatin®. J. Anim. Physiol. Anim. Nutr. 2011, 95, 179–186. [Google Scholar] [CrossRef]
- Wu, X.; Ruan, Z.; Zhang, Y.G.; Hou, Y.Q.; Yin, Y.L.; Li, T.J.; Huang, R.L.; Chu, W.Y.; Kong, X.F.; Gao, B.; et al. True digestibility of phosphorus in different resources of feed ingredients in growing pigs. Asian-Australas. J. Anim. Sci. 2020, 21, 107–119. [Google Scholar]
- Grela, E.R.; Muszynski, S.; Czech, A.; Donaldson, J.; Stanislawski, P.; Kapica, M.; Brezvyn, O.; Musyka, V.; Kotsyumbas, I.; Tomaszewska, E. Influence of phytase supplementation at increasing grower—Finisher pigs fed phosphorus-deficient diets. Animals 2020, 10, 847. [Google Scholar] [CrossRef]
- Tsai, T.C.; Dove, R.; Bedford, M.R.; Michael, J.; Azain, M.J. Effect of phytase on phosphorous balance in 20-kg barrows fed low or adequate phosphorous diets. Anim. Nutr. 2020, 6, 9–15. [Google Scholar] [CrossRef]
- da Silva, C.A.; Callegari, M.A.; Dias, C.P.; Bridi, A.M.; Pierozan, C.R.; Foppa, L.; Martins, C.C.D.S.; Dias, F.T.F.; Passos, A.; Hermes, R. Increasing doses of phytase from Citrobacter braakii in diets with reduced inorganic phosphorus and calcium improve growth performance and lean meat of growing and finishing pigs. PLoS ONE 2019, 14, e0217490. [Google Scholar] [CrossRef] [PubMed]
Components/Group | Period 1 | Period 2 | Period 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Phy0 | Phy100 | Phy400 | Phy0 | Phy100 | Phy400 | Phy0 | Phy100 | Phy400 | |
Wheat | 250.0 | 250.0 | 250.0 | - | - | - | - | - | - |
Maize | 180.6 | 180.5 | 180.2 | 413.3 | 413.2 | 412.9 | 383.3 | 383.2 | 382.9 |
Wheat bran | 150.0 | 150.0 | 150.0 | 180.0 | 180.0 | 180.0 | 200.0 | 200.0 | 200.0 |
ExS | 100.0 | 100.0 | 100.0 | 75.0 | 75.0 | 75.0 | 50.0 | 50.0 | 50.0 |
Rye | 100.0 | 100.0 | 100.0 | 200.0 | 200.0 | 200.0 | 250.0 | 250.0 | 250.0 |
Barley | 100.0 | 100.0 | 100.0 | - | - | - | - | - | - |
YL | 80.0 | 80.0 | 80.0 | 100.0 | 100.0 | 100.0 | 90.0 | 90.0 | 90.0 |
Limestone | 14.5 | 14.5 | 14.5 | 14.0 | 14.0 | 14.0 | 13.0 | 13.0 | 13.0 |
HCL-Lysine 78.5% | 5.6 | 5.6 | 5.6 | 4.4 | 4.4 | 4.4 | 4.2 | 4.2 | 4.2 |
Sodium chloride | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Liquid acidifier ** | 3.5 | 3.5 | 3.5 | - | - | - | - | - | - |
1-calcium phosphate | 3.0 | 3.0 | 3.0 | 2.5 | 2.5 | 2.5 | - | - | - |
DL-methionine 99% | 2.8 | 2.8 | 2.8 | 1.0 | 1.0 | 1.0 | 0.7 | 0.7 | 0.7 |
Premix * | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.5 | 1.5 | 1.5 |
Magnesium oxide | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
L-threonine 98.5% | 1.1 | 1.1 | 1.1 | 1.3 | 1.3 | 1.3 | 0.8 | 0.8 | 0.8 |
L-tryptophan 98% | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Choline chloride | 0.4 | 0.4 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Quantum Blue 5G | - | 0.1 | 0.4 | - | 0.1 | 0.4 | - | 0.1 | 0.4 |
Nutritional value (g/kg) | |||||||||
Crude protein | 170.7 | 171.2 | 168.7 | 158.9 | 157.4 | 158.7 | 150.4 | 149.8 | 150.2 |
Crude fiber | 52.9 | 52.6 | 52.1 | 54.3 | 54 | 53.8 | 54.1 | 53.8 | 53.3 |
Crude fat | 43.7 | 42.9 | 44.1 | 45.1 | 45.9 | 44.8 | 40.3 | 41.2 | 40.9 |
P | 5.60 | 5.70 | 6.70 | 5.70 | 5.60 | 5.60 | 4.90 | 5.00 | 5.00 |
Ca | 7.90 | 7.80 | 7.90 | 7.40 | 7.30 | 7.30 | 6.40 | 6.30 | 6.40 |
Phytase FTU/kg | 0 | 500 | 2000 | 0 | 500 | 2000 | 0 | 500 | 2000 |
Phase/Variable | Phy0 | Phy100 | Phy400 | SD | p-Value |
---|---|---|---|---|---|
Period 1 | |||||
IBW (kg) | 27.66 | 27.72 | 27.55 | 4.21 | 0.992 |
FBW (kg) | 46.67 | 49.81 | 48.92 | 5.91 | 0.227 |
BWG (kg) | 19.01 b | 22.09 a | 21.37 a | 2.90 | 0.001 |
FI (kg) | 48.35 | 48.33 | 47.66 | - | - |
FCR (kg/kg) | 2.58 a | 2.22 b | 2.27 b | 0.09 | 0.004 |
Period 2 | |||||
FBW (kg) | 83.20 | 86.80 | 85.00 | 8.20 | 0.375 |
BWG (kg) | 36.52 | 37.04 | 36.09 | 0.94 | 0.756 |
FI (kg) | 98.50 | 98.65 | 98.84 | - | - |
FCR (kg/kg) | 2.73 | 2.69 | 2.80 | 0.18 | 0.546 |
Period 3 | |||||
FBW (kg) | 119.11 | 123.24 | 120.68 | 8.82 | 0.355 |
BWG (kg) | 35.92 | 36.4 | 35.67 | 3.16 | 0.765 |
FI (kg) | 122.00 | 121.25 | 121.75 | - | - |
FCR (kg/kg) | 3.44 | 3.35 | 3.43 | 0.04 | 0.636 |
Periods 1–3 | |||||
BWG (kg) | 91.46 | 95.52 | 93.13 | 7.26 | 0.208 |
FI (kg) | 268.85 | 268.23 | 269.26 | - | - |
FCR (kg/kg) | 2.96 | 2.82 | 2.93 | 0.19 | 0.145 |
Variable | Phy0 | Phy100 | Phy400 | SD | p-Value |
---|---|---|---|---|---|
Fat (g/kg) | 32.3 a | 25.9 b | 25.8 b | 0.061 | 0.017 |
Protein (g/kg) | 236.7 | 242.8 | 241.2 | 0.072 | 0.097 |
Water (g/kg) | 720.0 | 719.4 | 721.3 | 0.075 | 0.969 |
Phosphorus (g/kg) | 10.7 b | 11.9 a | 11.8 a | 0.080 | <0.001 |
pH 24 min. | 5.48 | 5.50 | 5.54 | 0.087 | 0.197 |
L*—lightness | 49.93 | 50.13 | 49.51 | 1.925 | 0.681 |
a* —redness | 5.81 | 5.58 | 5.29 | 0.813 | 0.341 |
b*—yellowness | 3.20 | 2.88 | 2.66 | 0.774 | 0.334 |
Cooking loss (%) | 28.68 | 28.12 | 28.04 | 4.860 | 0.954 |
Tenderness (%) | 21.72 | 20.88 | 22.78 | 5.560 | 0.637 |
Drip loss (%) | 6.54 | 6.70 | 5.84 | 1.685 | 0.339 |
Water-holding capacity (%) | 32.18 a | 28.50 b | 29.09 b | 3.330 | 0.011 |
Variable | Phy0 | Phy100 | Phy400 | SD | p-Value |
---|---|---|---|---|---|
Carcass weight (kg) | 92.95 | 96.55 | 94.81 | 7.90 | 0.436 |
Meatiness (%) | 56.41 | 55.46 | 56.56 | 3.089 | 0.483 |
Cold dressing yield (%) | 77.95 | 78.38 | 78.68 | 3.46 | 0.316 |
Carcass length (cm) | 86.54 | 86.00 | 86.31 | 1.958 | 0.794 |
Carcass width (cm) | 36.85 | 38.08 | 37.15 | 2.109 | 0.501 |
Back (cm) | 25.77 | 23.92 | 25.15 | 6.197 | 0.804 |
Shoulder (cm) | 44.85 | 41.00 | 40.46 | 6.642 | 0.169 |
Mean loin depth (mm) | 69.14 | 70.35 | 71.86 | 5.592 | 0.112 |
Mean backfat thickness (mm) | 19.14 | 20.86 | 19.40 | 4.636 | 0.328 |
pH | 6.68 | 6.52 | 6.50 | 0.239 | 0.235 |
Backfat thickness K III (mm) | 21.69 | 19.17 | 19.38 | 5.417 | 0.552 |
Backfat thickness K II (mm) | 16.69 | 16.33 | 16.77 | 3.276 | 0.374 |
Backfat thickness K I (mm) | 28.00 | 26.25 | 25.85 | 4.337 | 0.371 |
GMT (mm) | 76.77 a | 72.67 b | 71.77 b | 5.683 | 0.003 |
EC (mS/cm) | 3.73 | 4.24 | 3.88 | 1.904 | 0.688 |
Variable | Phy0 | Phy100 | Phy400 | SD | p-Value |
---|---|---|---|---|---|
Fatty acids | |||||
C14:0 | 1.13 | 1.15 | 1.18 | 0.103 | 0.531 |
C16:0 | 22.53 | 22.12 | 22.89 | 1.384 | 0.429 |
C17:0 | 0.22 | 0.23 | 0.23 | 0.018 | 0.166 |
C18:0 | 13.07 | 13.06 | 13.16 | 0.599 | 0.927 |
C20:0 | 0.21 | 0.21 | 0.21 | 0.008 | 0.499 |
C16:1 | 2.56 | 2.52 | 2.58 | 0.140 | 0.587 |
C17:1 | 0.25 | 0.25 | 0.25 | 0.014 | 0.953 |
C18:1 | 41.88 | 41.14 | 41.43 | 0.893 | 0.129 |
C20:1 | 0.99 | 1.02 | 1.00 | 0.058 | 0.429 |
C18:3 n-3 | 1.48 | 1.51 | 1.39 | 0.337 | 0.712 |
C20:5 n-3 | 0.39 | 0.36 | 0.36 | 0.044 | 0.263 |
C22:5 n-3 | 0.42 | 0.40 | 0.44 | 0.041 | 0.076 |
C22:6 n-3 | 0.43 | 0.43 | 0.40 | 0.043 | 0.196 |
C18:2 n-6 | 12.60 | 13.76 | 12.61 | 1.523 | 0.098 |
C20:2 n-6 | 0.34 | 0.34 | 0.36 | 0.032 | 0.466 |
C20:3 n-6 | 0.26 | 0.26 | 0.26 | 0.029 | 0.953 |
C20:4 n-6 | 1.13 | 1.12 | 1.15 | 0.077 | 0.677 |
C22:4 n-6 | 0.12 | 0.12 | 0.12 | 0.014 | 0.652 |
SFA | 37.16 | 36.78 | 37.66 | 1.477 | 0.372 |
MUFA | 45.68 | 44.93 | 45.25 | 0.911 | 0.132 |
PUFA | 17.16 | 18.30 | 17.08 | 1.592 | 0.112 |
Σ n-3 | 2.71 | 2.70 | 2.59 | 0.327 | 0.651 |
Σ n-6 | 14.45 | 15.60 | 14.49 | 1.534 | 0.114 |
Σ n-6/Σ n-3 | 5.40 | 5.86 | 5.66 | 0.920 | 0.481 |
Variable | Phy0 | Phy100 | Phy400 | SD | p-Value |
---|---|---|---|---|---|
P (g/kg) | 169.6 | 171.4 | 171.4 | 0.022 | 0.093 |
Ca (g/kg) | 333.5 b | 338.9 ab | 345.5 a | 1.004 | 0.025 |
Crude ash (g/kg) | 63.1 | 62.4 | 66.8 | 0.056 | 0.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzek, A.; Zaworska-Zakrzewska, A.; Muzolf-Panek, M.; Kasprowicz-Potocka, M. Microbial Phytase in a Diet with Lupine and Extruded Full-Fat Soya Seeds Affects the Performance, Carcass Characteristics, Meat Quality, and Bone Mineralization of Fatteners. Animals 2023, 13, 1655. https://doi.org/10.3390/ani13101655
Buzek A, Zaworska-Zakrzewska A, Muzolf-Panek M, Kasprowicz-Potocka M. Microbial Phytase in a Diet with Lupine and Extruded Full-Fat Soya Seeds Affects the Performance, Carcass Characteristics, Meat Quality, and Bone Mineralization of Fatteners. Animals. 2023; 13(10):1655. https://doi.org/10.3390/ani13101655
Chicago/Turabian StyleBuzek, Anna, Anita Zaworska-Zakrzewska, Małgorzata Muzolf-Panek, and Małgorzata Kasprowicz-Potocka. 2023. "Microbial Phytase in a Diet with Lupine and Extruded Full-Fat Soya Seeds Affects the Performance, Carcass Characteristics, Meat Quality, and Bone Mineralization of Fatteners" Animals 13, no. 10: 1655. https://doi.org/10.3390/ani13101655
APA StyleBuzek, A., Zaworska-Zakrzewska, A., Muzolf-Panek, M., & Kasprowicz-Potocka, M. (2023). Microbial Phytase in a Diet with Lupine and Extruded Full-Fat Soya Seeds Affects the Performance, Carcass Characteristics, Meat Quality, and Bone Mineralization of Fatteners. Animals, 13(10), 1655. https://doi.org/10.3390/ani13101655