Effects of Different Feeding Durations on Ileum Length and Weight and Basal Endogenous Loss of Phosphorus in Broiler Chickens Fed a Phosphorus-Free Diet
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diet, Animals, and Experimental Design
2.2. Sample Collection and Chemical Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, C.; Adeola, O. Additivity of amino acid digestibility in corn and soybean meal for broiler chickens and White Pekin ducks. Poult. Sci. 2013, 92, 2381–2388. [Google Scholar] [CrossRef] [PubMed]
- Mutucumarana, R.K.; Ravindran, V. Measurement of endogenous phosphorus losses in broiler chickens. J. Poult. Sci. 2021, 58, 58–63. [Google Scholar] [CrossRef]
- Mutucumarana, R.K.; Ravindran, V. Measurement of true ileal phosphorus digestibility in meat and bone meal for broiler chickens using the direct method. Anim. Feed Sci. Technol. 2016, 219, 249–256. [Google Scholar] [CrossRef]
- Mutucumarana, R.K.; Ravindran, V.; Ravindran, G.; Cowieson, A.J. Measurement of true ileal digestibility and total tract retention of phosphorus in corn and canola meal for broiler chickens. Poult. Sci. 2014, 93, 412–419. [Google Scholar] [CrossRef]
- An, S.H.; Sung, J.Y.; Kong, C. Ileal digestibility and total tract retention of phosphorus in inorganic phosphates fed to broiler chickens using the direct method. Animals 2020, 10, 2167. [Google Scholar] [CrossRef] [PubMed]
- Dilelis, F.; Freitas, L.W.; Quaresma, D.V.; Machado, N.J.B.; Reis, T.L.; Souza, C.S.; Lima, C.A.R. Standardized ileal phosphorus digestibility of meat and bone meal and poultry byproduct meal for broilers. Rev. Bras. Zootec. 2021, 50, e202000086. [Google Scholar] [CrossRef]
- Sahasakul, Y.; Takemura, N.; Sonoyama, K. Different impacts of purified and nonpurified diets on microbiota and toll-like receptors in the mouse stomach. Biosci. Biotechnol. Biochem. 2012, 76, 1728–1732. [Google Scholar] [CrossRef]
- Xu, H.; Dai, S.; Zhang, K.; Ding, X.; Bai, S.; Wang, J.; Peng, H.; Zeng, Q. Dietary phosphorus deficiency impaired growth, intestinal digestion and absorption function of meat ducks. Asian Australas. J. Anim. Sci. 2019, 32, 1897–1906. [Google Scholar] [CrossRef]
- Valable, A.S.; Narcy, A.; Duclos, M.J.; Pomar, C.; Page, G.; Nasir, Z.; Magnin, M.; Létourneau-Montminy, M.P. Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal 2018, 12, 1555–1563. [Google Scholar] [CrossRef]
- Pellizzon, M.A.; Ricci, M.R. Effects of rodent diet choice and fiber type on data interpretation of gut microbiome and metabolic disease research. Curr. Protoc. Toxicol. 2018, 77, e55. [Google Scholar] [CrossRef]
- Wu, G. Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. J. Anim. Sci. Biotechnol. 2014, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Adeola, O. Ileal endogenous amino acid flow response to nitrogen-free diets with differing ratios of corn starch to dextrose in broiler chickens. Poult. Sci. 2013, 92, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Ragland, D.; Adeola, O. Ileal endogenous amino acid flow response to nitrogen-free diets with differing ratios of corn starch to dextrose in pigs. Asian-Australas. J. Anim. Sci. 2014, 27, 1124–1130. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, W.; Tahmood, T.; Chen, Y.; Xu, Y.; Wang, Y.; Yuan, J. Comparison of endogenous amino acid losses in broilers when offered nitrogen-free diets with differing ratios of dextrose to corn starch. Sci. Rep. 2022, 12, 5689. [Google Scholar] [CrossRef]
- Anwar, M.N.; Ravindran, V. Influence of methodology on the measurement of ileal endogenous calcium losses in broiler chickens. J. Appl. Anim. Res. 2020, 48, 264–267. [Google Scholar] [CrossRef]
- Dilger, R.N.; Adeola, O. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing pigs fed conventional and low-phytate soybean meals. J. Anim. Sci. 2006, 84, 627–634. [Google Scholar] [CrossRef]
- Baker, S.R.; Kim, B.G.; Stein, H.H. Comparison of values for standardized total tract digestibility and relative bioavailability of phosphorus in dicalcium phosphate and distillers dried grains with solubles fed to growing pigs. J. Anim. Sci. 2013, 91, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Bikker, P.; van der Peet-Schwering, C.M.C.; Gerrits, W.J.J.; Sips, V.; Walvoort, C.; van Laar, H. Endogenous phosphorus losses in growing-finishing pigs and gestating sows. J. Anim. Sci. 2017, 95, 1637–1643. [Google Scholar] [CrossRef]
- Ravindran, V.; Abdollahi, M.R. Nutrition and digestive physiology of the broiler chick: State of the art and outlook. Animals 2021, 11, 2795. [Google Scholar] [CrossRef]
- Zaefarian, F.; Abdollahi, M.R.; Ravindran, V. Particle size and feed form in broiler diets: Impact on gastrointestinal tract development and gut health. Worlds Poult. Sci. J. 2016, 72, 277–290. [Google Scholar] [CrossRef]
- Bryan, D.D.S.L.; Abbott, D.A.; Van Kessel, A.G.; Classen, H.L. In vivo digestion characteristics of protein sources fed to broilers. Poult. Sci. 2019, 98, 3313–3325. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Adeola, O. Evaluation of amino acid and energy utilization in feedstuff for Swine and poultry diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Osho, S.O.; Park, C.S.; Adeola, O. Additivity of apparent and standardized ileal digestibility of phosphorus in mixed diets containing corn and soybean meal fed to broiler chickens. Poult. Sci. 2020, 99, 6907–6913. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Chung, T.K.; Moughan, P.J. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. Br. Poult. Sci. 2002, 44, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Rutherfurd, S.M.; Chung, T.K.; Morel, P.C.; Moughan, P.J. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Sci. 2004, 83, 61–68. [Google Scholar] [CrossRef]
- Liu, S.B.; Li, S.F.; Lu, L.; Xie, J.J.; Zhang, L.Y.; Luo, X.G. Estimation of standardized phosphorus retention for corn, soybean meal, and corn-soybean meal diet in broilers. Poult. Sci. 2012, 91, 1879–1885. [Google Scholar] [CrossRef]
- NRC, National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Agricultural Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- SAS Institute Incorporation. SAS (Statisatical Anlayses System) 2013 SAS User’s Guide: Statistics Release 9.4; SAS Institute Incorporation: Cary, NC, USA, 2013. [Google Scholar]
- Jung, B. Evaluation of Dietary Nucleotides for Broilers. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2011. [Google Scholar]
- Morris, C.D. Phosphorus Digestibility of Corn and Soybean Meal (SBM) in Broilers: In Search of a Consistent and Reliable Model to Quantify Individual Ingredient Contribution. Master’s Thesis, University of Missouri, Columbia, MO, USA, 2017. [Google Scholar]
- Dai, S.J.; Zhang, K.Y.; Ding, X.M.; Bai, S.P.; Luo, Y.H.; Wang, J.P.; Zeng, Q.F. Effect of dietary non-phytate phosphorus levels on the diversity and structure of cecal microbiota in meat duck from 1 to 21 d of age. Poult. Sci. 2018, 97, 2441–2450. [Google Scholar] [CrossRef] [PubMed]
- Aviagen. Ross 308 Broiler Nutrition Specifications. Aviagen Group, Hunstville. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-308-Broiler-Nutrition-Specs-2014r17-EN.pdf (accessed on 12 April 2022).
- Noy, Y.; Geyra, A.; Sklan, D. The effect of early feeding on growth and small intestinal development in the posthatch poult. Poult. Sci. 2001, 80, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Iji, P.A.; Saki, A.; Tivey, D.R. Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci. 2001, 42, 505–513. [Google Scholar] [CrossRef]
- Creamer, B.; Shorter, R.G.; Bamforth, J. The turnover and shedding of epithelial cells: Ⅰ. The turnover in the gastrointestinal tract. Gut 1961, 2, 110–118. [Google Scholar] [CrossRef]
- Celi, P.; Cowieson, A.J.; Fru-Nji, F.; Steinert, R.E.; Kluenter, A.-M.; Verlhac, V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Technol. 2017, 234, 88–100. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Feed particle size: Implications on the digestion and performance of poultry. Worlds Poult. Sci. 2007, 63, 439–455. [Google Scholar] [CrossRef]
- Molenda, M.; Stasiak, M.; Horabik, J.; Blaszczak, W. Microstructure and mechanical parameters of five types of starch. Polish J. Food Nutr. Sci. 2006, 15, 161–168. [Google Scholar]
- Tiefenbacher, K.F. The Technology of Wafers and Waffles II; Academic Press: London, UK, 2019; p. 358. [Google Scholar]
- Tejeda, O.J.; Kim, W.K. Effects of fiber type, particle size, and inclusion level on the growth performance, digestive organ growth, intestinal morphology, intestinal viscosity, and gene expression of broilers. Poult. Sci. 2021, 100, 101397. [Google Scholar] [CrossRef]
- Abd El-Wahab, A.; Kriewitz, J.-P.; Hankel, J.; Chuppava, B.; Ratert, C.; Taube, V.; Visscher, C.; Kamphues, J. The Effects of Feed Particle Size and Floor Type on the Growth Performance, GIT Development, and Pododermatitis in Broiler Chickens. Animals 2020, 10, 1256. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Influence of feed particle size and feed form on the performance, energy utilisation, digestive tract development, and digesta parameters of broiler starters. Poult. Sci. 2007, 86, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.; Koçer, B.; Ege, G.; Tüzün, A.E.; Bıyık, H.H.; Poyrazoğlu, E. Influence of the particle size and form of feed on growth performance, digestive tract traits and nutrient digestibility of white egg-laying pullets from 1 to 112 D of age. Poult. Sci. 2019, 98, 4016–4029. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.H.; Seve, B.; Fuller, M.F.; Moughan, P.J.; de Lange, C.F.M. Amino acid bioavailability and digestibility in pig feed ingredients. J. Anim. Sci. 2007, 85, 172–180. [Google Scholar] [CrossRef]
- Ravindran, V. Progress in ileal endogenous amino acid flow research in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 5. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Ross 308 FF Performance Objectives. Aviagen Group, Hunstville. Available online: http://sorooshe-roshd.com/wp-content/uploads/pdf/Ross308-308FF-BroilerPO2019-EN.pdf (accessed on 12 April 2022).
- Barekatain, R.; Howarth, G.S.; Willson, N.; Cadogan, D.; Wilkinson, S. Excreta biomarkers in response to different gut barrier dysfunction models and probiotic supplementation in broiler chickens. PLoS ONE 2020, 15, e0237505. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Parsons, C.M.; Lilburn, M.S.; Adeola, O.; Applegate, T.J. Endogenous amino acid flow in broiler chicks is affected by the age of birds and method of estimation. Poult. Sci. 2007, 86, 2590–2597. [Google Scholar] [CrossRef] [PubMed]
Item | P-Free Diet (%) |
---|---|
Gelatin | 20.00 |
Cornstarch | 43.60 |
Sucrose | 20.00 |
Soybean oil | 3.00 |
Limestone | 2.58 |
Vitamin premix 1 | 0.20 |
Mineral premix 2 | 0.20 |
Salt | 0.10 |
Chromic oxide | 0.50 |
Cellulose | 5.00 |
Choline chloride | 0.26 |
Magnesium oxide | 0.09 |
Potassium carbonate | 0.30 |
L-Histidine | 0.18 |
L-Isoleucine | 0.53 |
L-Leucine | 0.59 |
L-Lysine | 0.46 |
DL-Methionine | 0.37 |
L-Cysteine | 0.39 |
L-Phenylalanine | 0.38 |
L-Threonine | 0.54 |
L-Tryptophan | 0.18 |
L-Valine | 0.55 |
Total | 100.00 |
Calculated value (%) | |
AME (kcal/kg) | 3461 |
Crude protein | 20.74 |
Calcium | 1.00 |
Non-phytate P | - |
Total amino acids (%) | |
Arginine | 1.94 |
Histidine | 0.35 |
Isoleucine | 0.80 |
Leucine | 1.20 |
Lysine | 1.10 |
Methionine | 0.50 |
Cysteine | 0.40 |
Phenylalanine | 0.72 |
Threonine | 0.80 |
Tryptophan | 0.20 |
Valine | 0.90 |
Analyzed value (%) | |
Calcium | 0.98 |
Phosphorus | 0.01 |
Item | Feeding Durations | SEM | p-Values | |||
---|---|---|---|---|---|---|
2 Days | 3 Days | 4 Days | Linear | Quadratic | ||
Initial BW (at day 15) | 349 | 348 | 349 | 16.9 | 0.944 | 0.856 |
Final BW | 354 | 362 | 371 | 16.5 | <0.01 | 0.967 |
ADG | 1.2 | 3.6 | 4.8 | 0.37 | <0.01 | 0.195 |
ADFI | 8.8 | 14.3 | 16.9 | 0.83 | <0.01 | 0.001 |
G:F (g:g) | 0.14 | 0.25 | 0.28 | 0.039 | 0.016 | 0.312 |
Item | Feeding Periods | SEM | p-Values | |||
---|---|---|---|---|---|---|
2 Days | 3 Days | 4 Days | Linear | Quadratic | ||
Weight | ||||||
Dried ileum weight (g/bird) | 1.19 | 1.16 | 1.13 | 0.063 | <0.01 | 0.717 |
Dried ileum weight (mg/100 g of BW/bird) | 335.7 | 319.0 | 305.2 | 4.73 | <0.01 | 0.769 |
Length | ||||||
Ileum length (cm/bird) | 44.3 | 45.2 | 47.2 | 1.84 | 0.265 | 0.794 |
Ileum length (cm/100 g of BW/bird) | 12.6 | 12.6 | 13.1 | 0.91 | 0.602 | 0.732 |
Item | Feeding Durations | SEM | p-Values | |||
---|---|---|---|---|---|---|
2 Days | 3 Days | 4 Days | Linear | Quadratic | ||
Weight of dried ileal digesta (g/16 birds) | 9.2 | 10.6 | 9.1 | 0.72 | 0.895 | 0.068 |
Weight of dried ileal digesta (g/100 g of BW/bird) | 0.168 | 0.185 | 0.156 | 0.014 | 0.415 | 0.095 |
Basal endogenous loss of P (mg/kg of DMI) | 110 | 128 | 134 | 12.8 | 0.212 | 0.691 |
Ileal dry matter digestibility (%) | 81.3 | 80.2 | 81.2 | 0.85 | 0.959 | 0.374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.H.; Kong, C. Effects of Different Feeding Durations on Ileum Length and Weight and Basal Endogenous Loss of Phosphorus in Broiler Chickens Fed a Phosphorus-Free Diet. Animals 2023, 13, 1787. https://doi.org/10.3390/ani13111787
An SH, Kong C. Effects of Different Feeding Durations on Ileum Length and Weight and Basal Endogenous Loss of Phosphorus in Broiler Chickens Fed a Phosphorus-Free Diet. Animals. 2023; 13(11):1787. https://doi.org/10.3390/ani13111787
Chicago/Turabian StyleAn, Su Hyun, and Changsu Kong. 2023. "Effects of Different Feeding Durations on Ileum Length and Weight and Basal Endogenous Loss of Phosphorus in Broiler Chickens Fed a Phosphorus-Free Diet" Animals 13, no. 11: 1787. https://doi.org/10.3390/ani13111787
APA StyleAn, S. H., & Kong, C. (2023). Effects of Different Feeding Durations on Ileum Length and Weight and Basal Endogenous Loss of Phosphorus in Broiler Chickens Fed a Phosphorus-Free Diet. Animals, 13(11), 1787. https://doi.org/10.3390/ani13111787