Effects of Feeding Low Protein Diets with Different Energy-to-Protein Ratios on Performance, Carcass Characteristics, and Nitrogen Excretion of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Treatments
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Performance Parameters
3.2. Carcass Characteristics and Breast Meat Quality
3.3. Nitrogen Retention and Excreta Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webb, J.; Menzi, H.; Pain, B.F.; Misselbrook, T.H.; Dämmgen, U.; Hendriks, H.; Döhler, H. Managing Ammonia Emissions from Livestock Production in Europe. Environ. Pollut. Barking 2005, 135, 399–406. [Google Scholar] [CrossRef]
- Nahm, K.H. Evaluation of the Nitrogen Content in Poultry Manure. Worlds Poult. Sci. J. 2003, 59, 77–88. [Google Scholar] [CrossRef]
- Santonja, G.S.; Georgitzikis, K.; Scalet, B.M.; Montobbio, P.; Roudier, S.; Delgado, S.L. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); European Comission: Brussels, Belgium, 2017. [Google Scholar]
- Lemme, A.; Hiller, P.; Klahsen, M.; Taube, V.; Stegemann, J.; Simon, I. Reduction of Dietary Protein in Broiler Diets Not Only Reduces N-Emissions but Is Also Accompanied by Several Further Benefits. J. Appl. Poult. Res. 2019, 28, 867–880. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Arczewska-Wlosek, A.; Jozefiak, D. The Nutrition of Poultry as a Factor Affecting Litter Quality and Foot Pad Dermatitis—An Updated Review. J. Anim. Physiol. Anim. Nutr. 2017, 101, e14–e20. [Google Scholar] [CrossRef]
- Wu, S.-B.; Stanley, D.; Rodgers, N.; Swick, R.A.; Moore, R.J. Two Necrotic Enteritis Predisposing Factors, Dietary Fishmeal and Eimeria Infection, Induce Large Changes in the Caecal Microbiota of Broiler Chickens. Vet. Microbiol. 2014, 169, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Kidd, M.T.; Maynard, C.W.; Mullenix, G.J. Progress of Amino Acid Nutrition for Diet Protein Reduction in Poultry. J. Anim. Sci. Biotechnol. 2021, 12, 45. [Google Scholar] [CrossRef]
- Vieira, S.L.; Angel, C.R. Optimizing Broiler Performance Using Different Amino Acid Density Diets: What Are the Limits? J. Appl. Poult. Res. 2012, 21, 149–155. [Google Scholar] [CrossRef]
- Miranda, D.J.A.; Vieira, S.L.; Favero, A.; Angel, C.R.; Stefanello, C.; Nogueira, E.T. Performance and Meat Production of Broiler Chickens Fed Diets Formulated at Different Crude Protein Levels Supplemented or Not with L-Valine and L-Isoleucine. Anim. Feed Sci. Technol. 2015, 206, 39–47. [Google Scholar] [CrossRef]
- Yuan, J.; Karimi, A.; Zornes, S.; Goodgame, S.; Mussini, F.; Lu, C.; Waldroup, P.W. Evaluation of the Role of Glycine in Low-Protein Amino Acid-Supplemented Diets. J. Appl. Poult. Res. 2012, 21, 726–737. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Shafi, M.E.; Abdulsalam, N.M.; Nagadi, S.A.; Wang, J.; Kim, W.K. Amino Acids Supplementation Affects Sustainability of Productive and Meat Quality, Survivability and Nitrogen Pollution of Broiler Chickens during the Early Life. Life 2022, 12, 2100. [Google Scholar] [CrossRef]
- Liu, S.Y.; Macelline, S.P.; Chrystal, P.V.; Selle, P.H. Progress towards Reduced-Crude Protein Diets for Broiler Chickens and Sustainable Chicken-Meat Production. J. Anim. Sci. Biotechnol. 2021, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Rosebrough, R.W.; Steele, N.C. Energy and Protein Relationships in the Broiler: 1. Effect of Protein Levels and Feeding Regimens on Growth, Body Composition, and In Vitro Lipogenesis of Broiler Chicks. Poult. Sci. 1985, 64, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Swennen, Q.; Janssens, G.P.J.; Collin, A.; le Bihan-Duval, E.; Verbeke, K.; Decuypere, E.; Buyse, J. Diet-Induced Thermogenesis and Glucose Oxidation in Broiler Chickens: Influence of Genotype and Diet Composition. Poult. Sci. 2006, 85, 731–742. [Google Scholar] [CrossRef]
- Hidalgo, M.A.; Dozier, W.A.; Davis, A.J.; Gordon, R.W. Live Performance and Meat Yield Responses of Broilers to Progressive Concentrations of Dietary Energy Maintained at a Constant Metabolizable Energy-to-Crude Protein Ratio. J. Appl. Poult. Res. 2004, 13, 319–327. [Google Scholar] [CrossRef]
- Kamran, Z.; Sarwar, M.; Nisa, M.; Nadeem, M.A.; Mahmood, S.; Babar, M.E.; Ahmed, S. Effect of Low-Protein Diets Having Constant Energy-to-Protein Ratio on Performance and Carcass Characteristics of Broiler Chickens from One to Thirty-Five Days of Age. Poult. Sci. 2008, 87, 468–474. [Google Scholar] [CrossRef]
- Ross 308 Broiler: Nutrition Specifications. Available online: https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerNutritionSpecifications2022-EN.pdf (accessed on 22 April 2023).
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods for Manure Analysis. In Proceedings of the ASA-CSSA-SSSA Annual Meeting Abstracts; ASA-CSSASSSA: Madison, WI, USA, 2003; pp. 25–29. [Google Scholar]
- Marquardt, R.R.; Ward, A.T.; Campbell, L.D. A Rapid High-Performance Liquid Chromatographic Method for the Quantitation or Uric Acid in Excreta and Tissue Samples. Poult. Sci. 1983, 62, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
- O’dell, B.L.; Woods, W.D.; Laerdal, O.A.; Jeffay, A.M.; Savage, J.E. Distribution of the Major Nitrogenous Compounds and Amino Acids in Chicken Urine1. Poult. Sci. 1960, 39, 426–432. [Google Scholar] [CrossRef]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of Titanium Dioxide Added as an Inert Marker in Chicken Digestibility Studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Scott, M.L.; Nesheim, M.C.; Young, R.J. Nutrition of the Chicken, 2nd ed.; M.L. Scott & Associates: Ithaca, NY, USA, 1976; p. 511. [Google Scholar]
- Northcutt, J.K.; Foegeding, E.A.; Edens, F.W. Water-Holding Properties of Thermally Preconditioned Chicken Breast and Leg Meat1. Poult. Sci. 1994, 73, 308–316. [Google Scholar] [CrossRef]
- Ferguson, N.S.; Gates, R.S.; Taraba, J.L.; Cantor, A.H.; Pescatore, A.J.; Ford, M.J.; Burnham, D.J. The Effect of Dietary Crude Protein on Growth, Ammonia Concentration, and Litter Composition in Broilers. Poult. Sci. 1998, 77, 1481–1487. [Google Scholar] [CrossRef]
- Bregendahl, K.; Sell, J.L.; Zimmerman, D.R. Effect of Low-Protein Diets on Growth Performance and Body Composition of Broiler Chicks. Poult. Sci. 2002, 81, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Van Harn, J.; Dijkslag, M.A.; van Krimpen, M.M. Effect of Low Protein Diets Supplemented with Free Amino Acids on Growth Performance, Slaughter Yield, Litter Quality, and Footpad Lesions of Male Broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef] [PubMed]
- Khajali, F.; Moghaddan, H.N. Methionine Supplementation of Low-Protein Broiler Diets: Influence upon Growth Performance and Efficiency of Protein Utilization. Int. J. Poult. Sci. 2006, 5, 569–573. [Google Scholar] [CrossRef]
- Leitgeb, R.; Tschischej, M.; Hutterer, F.; Bartelt, J. Impact of Protein Reduction and Arginine and Valine Supplementation in the Diet on Growth and Slaughter Performance of Broilers. Bodenkultur 2004, 54, 187–195. [Google Scholar]
- Belloir, P.; Méda, B.; Lambert, W.; Corrent, E.; Juin, H.; Lessire, M.; Tesseraud, S. Reducing the CP Content in Broiler Feeds: Impact on Animal Performance, Meat Quality and Nitrogen Utilization. Anim. Int. J. Anim. Biosci. 2017, 11, 1881–1889. [Google Scholar] [CrossRef]
- Such, N.; Pál, L.; Strifler, P.; Horváth, B.; Koltay, I.A.; Rawash, M.A.; Farkas, V.; Mezőlaki, Á.; Wágner, L.; Dublecz, K. Effect of Feeding Low Protein Diets on the Production Traits and the Nitrogen Composition of Excreta of Broiler Chickens. Agriculture 2021, 11, 781. [Google Scholar] [CrossRef]
- Guaiume, E.A. Effects of Reduced Protein, Amino Acid Supplemented Diets on Production and Economic Performance of Commercial Broilers Fed from Hatch to Market Age; University of Missouri: Columbia, MO, USA, 2007. [Google Scholar]
- Sizemore, F.G.; Siegel, H.S. Growth, Feed Conversion, and Carcass Composition in Females of Four Broiler Crosses Fed Starter Diets with Different Energy Levels and Energy to Protein Ratios. Poult. Sci. 1993, 72, 2216–2228. [Google Scholar] [CrossRef]
- Chrystal, P.V.; Moss, A.F.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Impacts of Reduced-Crude Protein Diets on Key Parameters in Male Broiler Chickens Offered Maize-Based Diets. Poult. Sci. 2020, 99, 505–516. [Google Scholar] [CrossRef]
- Chrystal, P.V.; Moss, A.F.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Effects of Reduced Crude Protein Levels, Dietary Electrolyte Balance, and Energy Density on the Performance of Broiler Chickens Offered Maize-Based Diets with Evaluations of Starch, Protein, and Amino Acid Metabolism. Poult. Sci. 2020, 99, 1421–1431. [Google Scholar] [CrossRef]
- Van der Meulen, J.; Bakker, J.G.; Smits, B.; de Visser, H. Effects of Source of Starch on Net Portal Flux of Glucose, Lactate, Volatile Fatty Acids and Amino Acids in the Pig. Br. J. Nutr. 1997, 78, 533–544. [Google Scholar] [CrossRef]
- Li, T.-J.; Dai, Q.-Z.; Yin, Y.-L.; Zhang, J.; Huang, R.-L.; Ruan, Z.; Deng, Z.; Xie, M. Dietary Starch Sources Affect Net Portal Appearance of Amino Acids and Glucose in Growing Pigs. Anim. Int. J. Anim. Biosci. 2008, 2, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.A.; Zulkifli, I.; Farjam, A.S.; Chwen, L.T.; Hossain, M.A.; Aljuobori, A. Effect of Low-Protein Diet, Gender and Age on the Apparent Ileal Amino Acid Digestibility in Broiler Chickens Raised under Hot-Humid Tropical Condition. Indian J. Anim. Sci. 2016, 86, 691–701. [Google Scholar]
- Yin, D.; Chrystal, P.V.; Moss, A.F.; Yun Liu, S.; Yuan, J.; Selle, P.H. Effects of Reducing Dietary Crude Protein and Whole Grain Feeding on Performance and Amino Acid Metabolism in Broiler Chickens Offered Wheat-Based Diets. Anim. Feed Sci. Technol. 2020, 260, 114386. [Google Scholar] [CrossRef]
- Greenhalgh, S.; McInerney, B.V.; McQuade, L.R.; Chrystal, P.V.; Khoddami, A.; Zhuang, M.A.M.; Liu, S.Y.; Selle, P.H. Capping Dietary Starch:Protein Ratios in Moderately Reduced Crude Protein, Wheat-Based Diets Showed Promise but Further Reductions Generated Inferior Growth Performance in Broiler Chickens. Anim. Nutr. 2020, 6, 168–178. [Google Scholar] [CrossRef]
- Liu, S.Y.; Naranjo, V.D.; Chrystal, P.V.; Buyse, J.; Selle, P.H. Box-Behnken Optimisation of Growth Performance, Plasma Metabolites and Carcass Traits as Influenced by Dietary Energy, Amino Acid and Starch to Lipid Ratios in Broiler Chickens. PLoS ONE 2019, 14, e0213875. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Selle, P.H.; Raubenheimer, D.; Gous, R.M.; Chrystal, P.V.; Cadogan, D.J.; Simpson, S.J.; Cowieson, A.J. Growth Performance, Nutrient Utilisation and Carcass Composition Respond to Dietary Protein Concentrations in Broiler Chickens but Responses Are Modified by Dietary Lipid Levels. Br. J. Nutr. 2017, 118, 250–262. [Google Scholar] [CrossRef]
- Ospina-Rojas, I.C.; Murakami, A.E.; Duarte, C.R.A.; Eyng, C.; Oliveira, C.A.L.; Janeiro, V. Valine, Isoleucine, Arginine and Glycine Supplementation of Low-Protein Diets for Broiler Chickens during the Starter and Grower Phases. Br. Poult. Sci. 2014, 55, 766–773. [Google Scholar] [CrossRef]
- Leclercq, B. Lysine: Specific Effects of Lysine on Broiler Production: Comparison with Threonine and Valine. Poult. Sci. 1998, 77, 118–123. [Google Scholar] [CrossRef]
- Dublecz, K.; Koltay, I.; Such, N.; Dublecz, F.; Husvéth, F.; Wágner, L.; Péterné, F.E.; Márton, A.; Farkas, V.; Pál, L. Recent developments on feeding low protein diets with monogastric animals. Állatteny. Takarm. 2018, 67, 273–286. [Google Scholar]
- Bowker, B.; Gamble, G.; Zhuang, H. Exudate Protein Composition and Meat Tenderness of Broiler Breast Fillets. Poult. Sci. 2016, 95, 133–137. [Google Scholar] [CrossRef]
- Beauclercq, S.; Hennequet-Antier, C.; Praud, C.; Godet, E.; Collin, A.; Tesseraud, S.; Métayer-Coustard, S.; Bourin, M.; Moroldo, M.; Martins, F.; et al. Muscle Transcriptome Analysis Reveals Molecular Pathways and Biomarkers Involved in Extreme Ultimate PH and Meat Defect Occurrence in Chicken. Sci. Rep. 2017, 7, 6447. [Google Scholar] [CrossRef] [PubMed]
- Bihan-Duval, E.L.; Alnahhas, N.; Pampouille, E.; Berri, C.; Abasht, B. Genetics and Genomics of Meat Quality Traits in Poultry Species. In Advances in Poultry Genetics and Genomics; Burleigh Dodds Science Publishing: London, UK, 2020; ISBN 978-1-00-304773-5. [Google Scholar]
- Przybylski, W.; Sałek, P.; Kozłowska, L.; Jaworska, D.; Stańczuk, J. Metabolomic Analysis Indicates That Higher Drip Loss May Be Related to the Production of Methylglyoxal as a By-Product of Glycolysis. Poult. Sci. 2022, 101, 101608. [Google Scholar] [CrossRef] [PubMed]
- Belloir, P.; Lessire, M.; Lambert, W.; Corrent, E.; Berri, C.; Tesseraud, S. Changes in Body Composition and Meat Quality in Response to Dietary Amino Acid Provision in Finishing Broilers. Animal 2019, 13, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Aletor, V.A.; Hamid, I.I.; Nieß, E.; Pfeffer, E. Low-Protein Amino Acid-Supplemented Diets in Broiler Chickens: Effects on Performance, Carcass Characteristics, Whole-Body Composition and Efficiencies of Nutrient Utilisation. J. Sci. Food Agric. 2000, 80, 547–554. [Google Scholar] [CrossRef]
- Jackson, S.; Summers, J.D.; Leeson, S. Effect of Dietary Protein and Energy on Broiler Carcass Composition and Efficiency of Nutrient Utilization. Poult. Sci. 1982, 61, 2224–2231. [Google Scholar] [CrossRef]
- Santoso, U.; Ohtani, S.; Tanaka, K.; Sakaida, M. Dried Bacillus Subtilis Culture Reduced Ammonia Gas Release in Poultry House. Asian-Australas. J. Anim. Sci. 1999, 12, 806–809. [Google Scholar] [CrossRef]
Starter (Day 0–10) | Grower (Day 11–24) | Finisher (Day 25–41) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ingredients | C | LP1 | LP2 | LP3 | C | LP1 | LP2 | LP3 | C | LP1 | LP2 | LP3 |
Maize | 40.83 | 47.07 | 48.07 | 49.08 | 45.99 | 52.00 | 53.02 | 54.03 | 51.80 | 57.66 | 58.73 | 59.73 |
Wheat | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Soybean meal 1 | 40.70 | 35.20 | 35.10 | 35.00 | 35.90 | 30.70 | 30.50 | 30.40 | 30.70 | 25.60 | 25.90 | 25.80 |
Sunflower oil | 3.60 | 2.20 | 1.30 | 0.40 | 4.10 | 2.70 | 1.80 | 0.90 | 3.90 | 2.60 | 1.30 | 0.40 |
Limestone | 1.65 | 1.68 | 1.68 | 1.68 | 1.39 | 1.42 | 1.42 | 1.42 | 1.35 | 1.38 | 1.38 | 1.38 |
Monocalcium phosphate | 1.32 | 1.33 | 1.33 | 1.33 | 1.07 | 1.08 | 1.08 | 1.08 | 0.93 | 0.94 | 0.93 | 0.93 |
L-Lysine (Biolys) | 0.37 | 0.63 | 0.63 | 0.63 | 0.24 | 0.45 | 0.49 | 0.49 | 0.19 | 0.40 | 0.38 | 0.38 |
DL-Methionine | 0.42 | 0.46 | 0.46 | 0.45 | 0.32 | 0.36 | 0.34 | 0.34 | 0.20 | 0.24 | 0.24 | 0.23 |
L-Valine | 0.05 | 0.14 | 0.14 | 0.14 | 0.00 | 0.06 | 0.07 | 0.07 | 0.00 | 0.05 | 0.04 | 0.04 |
L-Threonine | 0.12 | 0.19 | 0.19 | 0.19 | 0.06 | 0.12 | 0.13 | 0.13 | 0.04 | 0.09 | 0.09 | 0.09 |
L-Arginine | 0.00 | 0.10 | 0.09 | 0.09 | 0.00 | 0.09 | 0.11 | 0.11 | 0.00 | 0.09 | 0.08 | 0.08 |
L-Isoleucine | 0.00 | 0.06 | 0.06 | 0.06 | 0.00 | 0.09 | 0.09 | 0.09 | 0.00 | 0.06 | 0.05 | 0.05 |
Salt | 0.24 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Sodium bicarbonate | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Premix 2 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Phytase 3 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
NSP enzyme 4 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Coccidiostat 5 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 |
Calculated Nutrients | Starter (Day 0–10) | Grower (Day 11–24) | Finisher (Day 25–41) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | LP1 | LP2 | LP3 | C | LP1 | LP2 | LP3 | C | LP1 | LP2 | LP3 | ||
Crude protein | % | 23.00 | 21.50 | 21.50 | 21.50 | 21.00 | 19.50 | 19.50 | 19.50 | 19.00 | 17.50 | 17.50 | 17.50 |
AMEn | MJ/kg | 12.65 | 12.66 | 12.46 | 12.26 | 13.11 | 13.09 | 12.90 | 12.70 | 13.40 | 13.39 | 13.19 | 12.99 |
AMEn | kcal/kg | 3021.4 | 3023.8 | 2976.0 | 2928.3 | 3131.3 | 3126.5 | 3081.1 | 3033.3 | 3200.5 | 3198.1 | 3150.4 | 3102.6 |
Starch | % | 32.07 | 35.08 | 36.42 | 36.94 | 34.82 | 38.43 | 39.05 | 39.67 | 38.25 | 41.78 | 42.44 | 43.05 |
Crude fat | % | 5.74 | 4.48 | 3.63 | 2.78 | 6.33 | 5.08 | 4.22 | 3.37 | 6.25 | 5.09 | 3.85 | 3.00 |
SID Lysine | % | 1.30 | 1.32 | 1.32 | 1.32 | 1.12 | 1.12 | 1.14 | 1.14 | 0.98 | 0.98 | 0.98 | 0.98 |
SID Methionine | % | 0.58 | 0.57 | 0.57 | 0.57 | 0.51 | 0.51 | 0.52 | 0.52 | 0.47 | 0.47 | 0.47 | 0.47 |
SID Met + Cys | % | 0.94 | 0.94 | 0.94 | 0.94 | 0.84 | 0.84 | 0.84 | 0.84 | 0.70 | 0.70 | 0.70 | 0.71 |
SID Arginine | % | 1.39 | 1.34 | 1.34 | 1.34 | 1.26 | 1.18 | 1.20 | 1.20 | 1.13 | 1.08 | 1.08 | 1.08 |
SID Threonine | % | 0.83 | 0.83 | 0.83 | 0.83 | 0.70 | 0.71 | 0.72 | 0.72 | 0.63 | 0.62 | 0.63 | 0.63 |
SID Valine | % | 0.97 | 0.98 | 0.98 | 0.98 | 0.85 | 0.83 | 0.84 | 0.84 | 0.77 | 0.77 | 0.77 | 0.77 |
SID Isoleucine | % | 0.84 | 0.82 | 0.82 | 0.82 | 0.77 | 0.72 | 0.72 | 0.72 | 0.69 | 0.68 | 0.67 | 0.67 |
Ca | % | 1.05 | 1.05 | 1.05 | 1.05 | 0.90 | 0.90 | 0.90 | 0.90 | 0.85 | 0.85 | 0.85 | 0.85 |
Pav 1 | % | 0.50 | 0.50 | 0.50 | 0.50 | 0.45 | 0.45 | 0.45 | 0.45 | 0.42 | 0.42 | 0.42 | 0.42 |
AMEn:CP ratio 2 | 0.55 | 0.59 | 0.58 | 0.57 | 0.62 | 0.67 | 0.66 | 0.65 | 0.71 | 0.77 | 0.75 | 0.74 | |
Starch:CP ratio 3 | 1.39 | 1.63 | 1.69 | 1.72 | 1.66 | 1.97 | 2.00 | 2.03 | 2.01 | 2.39 | 2.43 | 2.46 | |
Measured nutrients | |||||||||||||
Dry matter | % | 90.72 | 90.46 | 90.24 | 90.04 | 89.74 | 89.20 | 90.08 | 90.17 | 89.29 | 89.06 | 88.95 | 88.65 |
Crude protein | % | 22.72 | 21.33 | 21.19 | 21.20 | 20.79 | 19.32 | 19.34 | 19.18 | 18.94 | 17.41 | 17.54 | 17.37 |
Lysine | % | 1.49 | 1.43 | 1.44 | 1.42 | 1.18 | 1.16 | 1.22 | 1.26 | 0.98 | 0.97 | 1.00 | 0.97 |
Methionine | % | 0.62 | 0.61 | 0.59 | 0.60 | 0.55 | 0.54 | 0.57 | 0.59 | 0.51 | 0.50 | 0.52 | 0.51 |
Met + Cys | % | 0.98 | 0.95 | 0.93 | 0.94 | 0.84 | 0.84 | 0.88 | 0.91 | 0.82 | 0.78 | 0.81 | 0.79 |
Arginine | % | 1.55 | 1.45 | 1.39 | 1.42 | 1.27 | 1.27 | 1.45 | 1.36 | 1.29 | 1.12 | 1.19 | 1.13 |
Threonine | % | 0.92 | 0.90 | 0.93 | 0.91 | 0.77 | 0.78 | 0.80 | 0.82 | 0.71 | 0.67 | 0.66 | 0.65 |
Valine | % | 1.06 | 1.10 | 1.05 | 1.05 | 0.90 | 0.88 | 0.94 | 0.95 | 0.85 | 0.78 | 0.80 | 0.78 |
Isoleucine | % | 0.94 | 0.96 | 0.91 | 0.93 | 0.76 | 0.78 | 0.79 | 0.81 | 0.74 | 0.69 | 0.70 | 0.68 |
Ca | % | 1.05 | 1.03 | 1.08 | 1.05 | 0.91 | 0.90 | 0.93 | 0.90 | 0.89 | 0.85 | 0.86 | 0.87 |
P | % | 0.70 | 0.70 | 0.69 | 0.70 | 0.56 | 0.56 | 0.60 | 0.61 | 0.51 | 0.48 | 0.51 | 0.48 |
Treatment | Starter (Day 0–10) | Grower (Day 11–24) | Finisher (Day 25–42) | Overall (Day 0–41) | |
---|---|---|---|---|---|
Body weight 1 (g) | C | 251.6 ± 3.5 a | 1275.5 ± 11.6 | 2928.1 ± 23.5 a | - |
LP1 | 248.9 ± 3.8 a | 1309.4 ± 12.9 | 2855.7 ± 26.2 ab | - | |
LP2 | 238.9 ± 3.9 ab | 1257.3 ± 15.1 | 2770.1 ± 28.8 bc | - | |
LP3 | 233.9 ± 4.1 b | 1272.1 ± 15.3 | 2744.0 ± 28.4 c | - | |
p | 0.003 | NS | <0.001 | - | |
Body weight gain (g) | C | 201.9 ± 6.8 | 1029.6 ± 14.0 | 1643.6 ± 20.8 a | 2875.2 ± 30.8 a |
LP1 | 199.9 ± 2.9 | 1031.5 ± 23.2 | 1576.4 ± 39.0 ab | 2807.8 ± 43.3 ab | |
LP2 | 191.9 ± 3.3 | 1018.4 ± 16.4 | 1494.7 ± 17.6 b | 2705.0 ± 25.6 b | |
LP3 | 186.9 ± 6.3 | 1028.4 ± 14.7 | 1470.6 ± 32.1 b | 2685.9 ± 41.2 b | |
p | NS | NS | 0.001 | 0.004 | |
Feed intake (g) | C | 268.4 ± 3.5 | 1296.6 ± 17.7 | 3109.7 ± 50.1 | 4674.7 ± 57.0 |
LP1 | 276.2 ± 1.6 | 1275.5 ± 11.2 | 3139.4 ± 80.3 | 4691.1 ± 75.0 | |
LP2 | 277.8 ± 3.9 | 1275.0 ± 19.8 | 2943.2 ± 57.7 | 4496.0 ± 60.9 | |
LP3 | 276.6 ± 4.4 | 1267.4 ± 25.6 | 2923.4 ± 39.8 | 4467.4 ± 62,4 | |
p | NS | NS | NS | NS | |
FCR (kg/kg) | C | 1.33 ± 0.03 b | 1.26 ± 0.01 | 1.96 ± 0.04 | 1.66 ± 0.02 |
LP1 | 1.38 ± 0.02 ab | 1.24 ± 0.02 | 2.01 ± 0.03 | 1.70 ± 0.04 | |
LP2 | 1.45 ± 0.02 ab | 1.23 ± 0.01 | 2.02 ± 0.03 | 1.69 ± 0.01 | |
LP3 | 1.49 ± 0.05 a | 1.23 ± 0.02 | 2.05 ± 0.05 | 1.69 ± 0.03 | |
p | 0.014 | NS | NS | NS |
Treatment | Carcass Weight (%) | Breast Meat Yield (%) | Thigh Weight (%) | Abdominal Fat (%) |
---|---|---|---|---|
C | 65.41 ± 0.31 | 21.41 ± 0.31 b | 19.63 ± 0.22 | 0.49 ± 0.08 |
LP1 | 66.85 ± 0.41 | 23.20 ± 0.49 a | 19.41 ± 0.38 | 0.70 ± 0.10 |
LP2 | 66.08 ± 0.26 | 22.65 ± 0.26 ab | 19.22 ± 0.23 | 0.49 ± 0.07 |
LP3 | 65.94 ± 0.46 | 22.78 ± 0.54 ab | 19.27 ± 0.35 | 0.62 ± 0.06 |
Significance (p) | NS | 0.026 | NS | NS |
Treatment | pH0h 1 | pHu 2 | Drip Loss (%) |
---|---|---|---|
C | 6.55 ± 0.03 | 5.73 ± 0.03 | 2.27 ± 0.17 a |
LP1 | 6.61 ± 0.02 | 5.78 ± 0.03 | 1.63 ± 0.07 b |
LP2 | 6.59 ± 0.03 | 5.73 ± 0.04 | 1.84 ± 0.09 b |
LP3 | 6.56 ± 0.03 | 5.76 ± 0.03 | 1.90 ± 0.06 ab |
Significance (p) | NS | NS | 0.002 |
Treatment | Fecal-N | NH4+-N | Uric Acid-N | Urinary-N 1 | Total-N |
---|---|---|---|---|---|
mg/g Dry Matter | |||||
C | 32.75 ± 2.33 a | 4.58 ± 0.26 | 17.65 ± 1.13 a | 22.23 ± 1.34 | 54.98 ± 3.62 a |
LP1 | 21.96 ± 1.26 b | 5.20 ± 0.41 | 13.07 ± 0.76 b | 18.27 ± 1.12 | 40.24 ± 2.32 b |
LP2 | 25.94 ± 1.84 ab | 4.76 ± 0.40 | 15.03 ± 1.09 ab | 19.79 ± 1.44 | 45.73 ± 3.15 ab |
LP3 | 33.42 ± 2.45 a | 4.92 ± 0.55 | 18.25 ± 1.49 a | 23.16 ± 2.01 | 56.58 ± 4.38 a |
Significance (p) | <0.001 | NS | 0.009 | NS | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strifler, P.; Horváth, B.; Such, N.; Farkas, V.; Wágner, L.; Dublecz, K.; Pál, L. Effects of Feeding Low Protein Diets with Different Energy-to-Protein Ratios on Performance, Carcass Characteristics, and Nitrogen Excretion of Broilers. Animals 2023, 13, 1476. https://doi.org/10.3390/ani13091476
Strifler P, Horváth B, Such N, Farkas V, Wágner L, Dublecz K, Pál L. Effects of Feeding Low Protein Diets with Different Energy-to-Protein Ratios on Performance, Carcass Characteristics, and Nitrogen Excretion of Broilers. Animals. 2023; 13(9):1476. https://doi.org/10.3390/ani13091476
Chicago/Turabian StyleStrifler, Patrik, Boglárka Horváth, Nikoletta Such, Valéria Farkas, László Wágner, Károly Dublecz, and László Pál. 2023. "Effects of Feeding Low Protein Diets with Different Energy-to-Protein Ratios on Performance, Carcass Characteristics, and Nitrogen Excretion of Broilers" Animals 13, no. 9: 1476. https://doi.org/10.3390/ani13091476
APA StyleStrifler, P., Horváth, B., Such, N., Farkas, V., Wágner, L., Dublecz, K., & Pál, L. (2023). Effects of Feeding Low Protein Diets with Different Energy-to-Protein Ratios on Performance, Carcass Characteristics, and Nitrogen Excretion of Broilers. Animals, 13(9), 1476. https://doi.org/10.3390/ani13091476