Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Challenging Conditions in Broiler Production Are Associated with Meat Quality
2.1. Fast Growth Rate
2.2. Bacterial Infection
2.3. Coccidiosis
2.4. Heat Stress
2.5. Mycotoxins
2.6. Oxidized Oils and Fat
3. Effects of Nutritional Interventions on the Meat Quality of Broiler Chickens
3.1. Energy and Crude Protein
3.2. Amino Acids (Aas)
3.3. Vitamins
3.4. Omega-3 Fatty Acid Sources
3.5. Probiotics and Prebiotics
3.6. Exogenous Enzymes
3.7. Plant Polyphenolic Compounds (e.g., Plant Extracts and Essential Oils)
3.8. Organic Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daniel, C.R.; Cross, A.J.; Koebnick, C.; Sinha, R. Trends in meat consumption in the USA. Public Health Nutr. 2011, 14, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Betti, M.; Perez, T.; Zuidhof, M.; Renema, R. Omega-3-enriched broiler meat: 3. Fatty acid distribution between triacylglycerol and phospholipid classes. Poult. Sci. 2009, 88, 1740–1754. [Google Scholar] [CrossRef] [PubMed]
- OECD-FAO. Meat Consumption (Indicator); OECD: Paris, France, 2021. [Google Scholar]
- Whitton, C.; Bogueva, D.; Marinova, D.; Phillips, C.J. Are we approaching peak meat consumption? Analysis of meat consumption from 2000 to 2019 in 35 countries and its relationship to gross domestic product. Animals 2021, 11, 3466. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for world population and global food availability for global health. In The Role of Functional Food Security in Global Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–24. [Google Scholar]
- Zuidhof, M.; Schneider, B.; Carney, V.; Korver, D.; Robinson, F. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 2014, 93, 2970–2982. [Google Scholar] [CrossRef]
- Cobb-Vantress. Cobb500 Broiler Performance & Nutrition Supplement; Cobb-Vantress: Siloam Springs, AR, USA, 2022. [Google Scholar]
- Vukasovič, T. European meat market trends and consumer preference for poultry meat in buying decision making process. Worlds Poult. Sci. J. 2014, 70, 289–302. [Google Scholar] [CrossRef]
- Vaarst, M.; Steenfeldt, S.; Horsted, K. Sustainable development perspectives of poultry production. Worlds Poult. Sci. J. 2015, 71, 609–620. [Google Scholar] [CrossRef]
- Petracci, M.; Mudalal, S.; Soglia, F.; Cavani, C. Meat quality in fast-growing broiler chickens. Worlds Poult. Sci. J. 2015, 71, 363–374. [Google Scholar] [CrossRef]
- Choi, J.; Kim, W.K. Dietary application of tannins as a potential mitigation strategy for current challenges in poultry production: A review. Animals 2020, 10, 2389. [Google Scholar] [CrossRef]
- Escobedo del Bosque, C.I.; Grahl, S.; Nolte, T.; Mörlein, D. Meat Quality Parameters, Sensory Properties and Consumer Acceptance of Chicken Meat from Dual-Purpose Crossbreeds Fed with Regional Faba Beans. Foods 2022, 11, 1074. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Tavárez, M.A.; Solis de los Santos, F. Impact of genetics and breeding on broiler production performance: A look into the past, present, and future of the industry. Anim. Front. 2016, 6, 37–41. [Google Scholar] [CrossRef]
- Bordignon, F.; Xiccato, G.; Boskovic Cabrol, M.; Birolo, M.; Trocino, A. Factors Affecting Breast Myopathies in Broiler Chickens and Quality of Defective Meat: A Meta-Analysis. Front. Physiol. 2022, 13, 933235. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zheng, M.; Liu, R.; Zhao, G.; Chen, J.; Wen, J. Liver dominant expression of fatty acid synthase (FAS) gene in two chicken breeds during intramuscular-fat development. Mol. Biol. Rep. 2012, 39, 3479–3484. [Google Scholar] [CrossRef]
- Leeson, S.; Caston, L.; Summers, J. Broiler response to diet energy. Poult. Sci. 1996, 75, 529–535. [Google Scholar] [CrossRef]
- Zhuang, H.; Rothrock, M.J., Jr.; Hiett, K.L.; Lawrence, K.C.; Gamble, G.R.; Bowker, B.C.; Keener, K.M. In-package air cold plasma treatment of chicken breast meat: Treatment time effect. J. Food Qual. 2019, 2019, 1837351. [Google Scholar] [CrossRef]
- Goliomytis, M.; Panopoulou, E.; Rogdakis, E. Growth curves for body weight and major component parts, feed consumption, and mortality of male broiler chickens raised to maturity. Poult. Sci. 2003, 82, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.; El-Senousey, H.; Yang, X.; Yao, J. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal 2013, 7, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Li, W.; Schindell, B.; Ni, L.; Liu, S.; Zhao, X.; Gong, J.; Nyachoti, M.; Yang, C. Molecular cloning, tissue distribution and the expression of cystine/glutamate exchanger (xCT, SLC7A11) in different tissues during development in broiler chickens. Anim. Nutr. 2020, 6, 107–114. [Google Scholar] [CrossRef]
- Decuypere, E.; Buyse, J.; Buys, N. Ascites in broiler chickens: Exogenous and endogenous structural and functional causal factors. Worlds Poult. Sci. J. 2000, 56, 367–377. [Google Scholar] [CrossRef]
- Emami, N.K.; Cauble, R.N.; Dhamad, A.E.; Greene, E.S.; Coy, C.S.; Velleman, S.G.; Orlowski, S.; Anthony, N.; Bedford, M.; Dridi, S. Hypoxia further exacerbates woody breast myopathy in broilers via alteration of satellite cell fate. Poult. Sci. 2021, 100, 101167. [Google Scholar] [CrossRef]
- Panda, A.K.; Cherian, G. Role of vitamin E in counteracting oxidative stress in poultry. J. Poult. Sci. 2014, 51, 109–117. [Google Scholar] [CrossRef]
- Che, S.; Wang, C.; Varga, C.; Barbut, S.; Susta, L. Prevalence of breast muscle myopathies (spaghetti meat, woody breast, white striping) and associated risk factors in broiler chickens from Ontario Canada. PLoS ONE 2022, 17, e0267019. [Google Scholar] [CrossRef] [PubMed]
- Caldas-Cueva, J.P.; Owens, C.M. A review on the woody breast condition, detection methods, and product utilization in the contemporary poultry industry. J. Anim. Sci. 2020, 98, skaa207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhuang, H.; Cao, J.; Geng, A.; Wang, H.; Chu, Q.; Yan, Z.; Zhang, X.; Zhang, Y.; Liu, H. Breast meat fatty acid profiling and proteomic analysis of Beijing-You chicken during the laying period. Front. Vet. Sci. 2022, 9, 908862. [Google Scholar] [CrossRef] [PubMed]
- Popova, T.; Ignatova, M.; Petkov, E.; Stanišić, N. Difference in fatty acid composition and related nutritional indices of meat between two lines of slow-growing chickens slaughtered at different ages. Arch. Anim. Breed. 2016, 59, 319–327. [Google Scholar] [CrossRef]
- Mikulski, D.; Celej, J.; Jankowski, J.; Majewska, T.; Mikulska, M. Growth performance, carcass traits and meat quality of slower-growing and fast-growing chickens raised with and without outdoor access. Asian-Australas J. Anim. Sci. 2011, 24, 1407–1416. [Google Scholar] [CrossRef]
- Cömert, M.; Şayan, Y.; Kırkpınar, F.; Bayraktar, Ö.H.; Mert, S. Comparison of carcass characteristics, meat quality, and blood parameters of slow and fast grown female broiler chickens raised in organic or conventional production system. Asian-Australas J. Anim. Sci. 2016, 29, 987. [Google Scholar] [CrossRef]
- Fanatico, A.; Pillai, P.B.; Emmert, J.; Owens, C. Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poult. Sci. 2007, 86, 2245–2255. [Google Scholar] [CrossRef]
- Weng, K.; Huo, W.; Li, Y.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Fiber characteristics and meat quality of different muscular tissues from slow-and fast-growing broilers. Poult. Sci. 2022, 101, 101537. [Google Scholar] [CrossRef]
- Swelum, A.A.; Elbestawy, A.R.; El-Saadony, M.T.; Hussein, E.O.; Alhotan, R.; Suliman, G.M.; Taha, A.E.; Ba-Awadh, H.; El-Tarabily, K.A.; Abd El-Hack, M.E. Ways to minimize bacterial infections, with special reference to Escherichia coli, to cope with the first-week mortality in chicks: An updated overview. Poult. Sci. 2021, 100, 101039. [Google Scholar] [CrossRef]
- Stamilla, A.; Ruiz-Ruiz, S.; Artacho, A.; Pons, J.; Messina, A.; Lucia Randazzo, C.; Caggia, C.; Lanza, M.; Moya, A. Analysis of the microbial intestinal tract in broiler chickens during the rearing period. Biology 2021, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Landínez, M. Food safety-Salmonella update in broilers. Anim. Feed Sci. Technol. 2019, 250, 53–58. [Google Scholar] [CrossRef]
- Choi, J.; Marshall, B.; Ko, H.; Shi, H.; Singh, A.K.; Thippareddi, H.; Holladay, S.; Gogal, R.M., Jr.; Kim, W.K. Antimicrobial and immunomodulatory effects of tannic acid supplementation in broilers infected with Salmonella Typhimurium. Poult. Sci. 2022, 101, 102111. [Google Scholar] [CrossRef] [PubMed]
- Rimet, C.-S.; Maurer, J.J.; Pickler, L.; Stabler, L.; Johnson, K.K.; Berghaus, R.D.; Villegas, A.M.; Lee, M.; França, M. Salmonella harborage sites in infected poultry that may contribute to contamination of ground meat. Front. Sustain. Food Syst. 2019, 3, 2. [Google Scholar] [CrossRef]
- Domınguez, C.; Gomez, I.; Zumalacarregui, J. Prevalence of Salmonella and Campylobacter in retail chicken meat in Spain. Int. J. Food Microbiol. 2002, 72, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Momtaz, H.; Dehkordi, F.S.; Rahimi, E.; Asgarifar, A.; Momeni, M. Virulence genes and antimicrobial resistance profiles of Staphylococcus aureus isolated from chicken meat in Isfahan province, Iran. J. Appl. Poult. Res. 2013, 22, 913–921. [Google Scholar] [CrossRef]
- Wang, C.-L.; Fan, Y.-C.; Wang, C.; Tsai, H.-J.; Chou, C.-H. The impact of Salmonella Enteritidis on lipid accumulation in chicken hepatocytes. Avian Pathol. 2016, 45, 450–457. [Google Scholar] [CrossRef]
- Sadeghi, A.A.; Izadi, W.; Shawrang, P.; Chamani, M.; Aminafshar, M. Effect of ginger (Zingiber officinale) powder supplementation on total antioxidant capacity of plasma and oxidative stress in broiler chicks challenged with salmonella enteritidis. World Appl. Sci. J 2012, 18, 130–134. [Google Scholar]
- Liaw, J.; Hong, G.; Davies, C.; Elmi, A.; Sima, F.; Stratakos, A.; Stef, L.; Pet, I.; Hachani, A.; Corcionivoschi, N. The Campylobacter jejuni type VI secretion system enhances the oxidative stress response and host colonization. Front. Microbiol. 2019, 10, 2864. [Google Scholar] [CrossRef]
- Hermans, D.; Van Deun, K.; Martel, A.; Van Immerseel, F.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Colonization factors of Campylobacter jejuni in the chicken gut. Vet. Res. 2011, 42, 82. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Kim, M.; Ryu, S.; Jeon, B. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PloS ONE 2011, 6, e22300. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H. Milestones in avian coccidiosis research: A review. Poult. Sci. 2014, 93, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Cornell, K.A.; Smith, O.M.; Crespo, R.; Jones, M.S.; Crossley, M.S.; Snyder, W.E.; Owen, J.P. Prevalence Patterns for Enteric Parasites of Chickens Managed in Open Environments of the Western United States. Avian Dis. 2022, 66, 60–68. [Google Scholar] [CrossRef]
- Chapman, H. Evaluation of the efficacy of anticoccidial drugs against Eimeria species in the fowl. Int. J. Parasitol. 1998, 28, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.S.; Wenceslau, A.A.; Teixeira, M.; Carneiro, J.A.M.; Melo, A.D.B.; Albuquerque, G.R. Diagnosis of Eimeria species using traditional and molecular methods in field studies. Vet. Parasitol. 2011, 176, 95–100. [Google Scholar] [CrossRef]
- Georgieva, N.V.; Gabrashanska, M.; Koinarski, V.; Yaneva, Z. Zinc supplementation against Eimeria acervulina-induced oxidative damage in broiler chickens. Vet. Med. Int. 2011, 2011, 647124. [Google Scholar] [CrossRef]
- Teng, P.-Y.; Yadav, S.; Shi, H.; Kim, W.K. Evaluating endogenous loss and standard ileal digestibility of amino acids in response to the graded severity levels of E. maxima infection. Poult. Sci. 2021, 100, 101426. [Google Scholar] [CrossRef]
- Dozier, W., III; Kidd, M.; Corzo, A. Dietary amino acid responses of broiler chickens. J. Appl. Poult. Res. 2008, 17, 157–167. [Google Scholar] [CrossRef]
- Choi, J.; Ko, H.; Tompkins, Y.H.; Teng, P.-Y.; Lourenco, J.M.; Callaway, T.R.; Kim, W.K. Effects of Eimeria tenella Infection on Key Parameters for Feed Efficiency in Broiler Chickens. Animals 2021, 11, 3428. [Google Scholar] [CrossRef]
- Choi, J.; Yadav, S.; Wang, J.; Lorentz, B.J.; Lourenco, J.M.; Callaway, T.R.; Kim, W.K. Effects of supplemental tannic acid on growth performance, gut health, microbiota, and fat accumulation and optimal dosages of tannic acid in broilers. Front. Physiol. 2022, 13, 912797. [Google Scholar] [CrossRef]
- Teng, P.-Y.; Choi, J.; Tompkins, Y.; Lillehoj, H.; Kim, W. Impacts of increasing challenge with Eimeria maxima on the growth performance and gene expression of biomarkers associated with intestinal integrity and nutrient transporters. Vet. Res. 2021, 52, 81. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-Y.; Yadav, S.; de Souza Castro, F.L.; Tompkins, Y.H.; Fuller, A.L.; Kim, W.K. Graded Eimeria challenge linearly regulated growth performance, dynamic change of gastrointestinal permeability, apparent ileal digestibility, intestinal morphology, and tight junctions of broiler chickens. Poult. Sci. 2020, 99, 4203–4216. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Teng, P.-Y.; Singh, A.; Choi, J.; Kim, W. Influence of Brassica spp. rapeseed and canola meal, and supplementation of bioactive compound (AITC) on growth performance, intestinal-permeability, oocyst shedding, lesion score, histomorphology, and gene expression of broilers challenged with E. maxima. Poult. Sci. 2022, 101, 101583. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.O.; Belal, S.A.; Kim, S.J.; Shim, K.S. Quality traits, fatty acids, mineral content of meat and blood metabolites changes of broiler chickens after artificial infection with sporulated Eimeria tenella oocysts. Ital. J. Anim. Sci. 2020, 19, 1472–1481. [Google Scholar] [CrossRef]
- Partovi, R.; Seifi, S.; Pabast, M.; Babaei, A. Effects of dietary supplementation with nanocurcumin on quality and safety of meat from broiler chicken infected with Eimeria species. J. Food Saf. 2019, 39, e12703. [Google Scholar] [CrossRef]
- Qaid, M.M.; Al-Mufarrej, S.I.; Azzam, M.M.; Al-Garadi, M.A.; Alqhtani, A.H.; Al-Abdullatif, A.A.; Hussein, E.O.; Suliman, G.M. Dietary Cinnamon Bark Affects Growth Performance, Carcass Characteristics, and Breast Meat Quality in Broiler Infected with Eimeria tenella Oocysts. Animals 2022, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Qaid, M.M.; Al-Mufarrej, S.I.; Azzam, M.M.; Al-Garadi, M.A.; Alqhtani, A.H.; Fazea, E.H.; Suliman, G.M.; Alhidary, I.A. Effect of rumex nervosus leaf powder on the breast meat quality, carcass traits, and performance indices of eimeria tenella oocyst-infected broiler chickens. Animals 2021, 11, 1551. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Ullah, H.; Ullah, Q.; Laudadio, V.; Qudratullah; Bozzo, G.; Tufarelli, V. Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies. Anim. Biotechnol. 2023, 34, 438–447. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.-L.; Collier, R. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality?—A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Tavaniello, S.; Slawinska, A.; Prioriello, D.; Petrecca, V.; Bertocchi, M.; Zampiga, M.; Salvatori, G.; Maiorano, G. Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress. Poult. Sci. 2020, 99, 612–619. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, G.; Zuo, J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef] [PubMed]
- Goo, D.; Kim, J.H.; Park, G.H.; Delos Reyes, J.B.; Kil, D.Y. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals 2019, 9, 107. [Google Scholar] [CrossRef]
- Zeferino, C.; Komiyama, C.; Pelícia, V.; Fascina, V.; Aoyagi, M.; Coutinho, L.L.; Sartori, J.; Moura, A. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Animal 2016, 10, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Gao, F.; Xu, X.; Zhang, W.; Song, S.; Zhou, G. Effects of dietary glutamine and gamma-aminobutyric acid on meat colour, pH, composition, and water-holding characteristic in broilers under cyclic heat stress. Br. Poult. Sci. 2012, 53, 471–481. [Google Scholar] [CrossRef]
- Allen, C.; Russell, S.; Fletcher, D. The relationship of broiler breast meat color and pH to shelf-life and odor development. Poult. Sci. 1997, 76, 1042–1046. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.; Warner, R.D.; Dunshea, F.R. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants 2019, 8, 336. [Google Scholar] [CrossRef]
- Peng, W.-X.; Marchal, J.; Van der Poel, A. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Ochieng, P.E.; Scippo, M.-L.; Kemboi, D.C.; Croubels, S.; Okoth, S.; Kang’ethe, E.K.; Doupovec, B.; Gathumbi, J.K.; Lindahl, J.F.; Antonissen, G. Mycotoxins in poultry feed and feed ingredients from Sub-Saharan Africa and their impact on the production of broiler and layer chickens: A review. Toxins 2021, 13, 633. [Google Scholar] [CrossRef]
- Ditta, Y.A.; Mahad, S.; Bacha, U. Aflatoxins: Their toxic effect on poultry and recent advances in their treatment. In Mycotoxins-Impact and Management Strategies; Intechopen: London, UK, 2018. [Google Scholar]
- Yunus, A.W.; Razzazi-Fazeli, E.; Bohm, J. Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: A review of history and contemporary issues. Toxins 2011, 3, 566–590. [Google Scholar] [CrossRef] [PubMed]
- Umaya, S.R.; Vijayalakshmi, Y.; Sejian, V. Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: Present status. Toxicon 2021, 200, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Riahi, I.; Ramos, A.J.; Pérez-Vendrell, A.M.; Marquis, V. A toxicokinetic study reflecting the absorption, distribution, metabolism and excretion of deoxynivalenol in broiler chickens. J. Appl. Anim. Res. 2021, 49, 284–288. [Google Scholar] [CrossRef]
- Awad, W.A.; Ruhnau, D.; Hess, C.; Doupovec, B.; Schatzmayr, D.; Hess, M. Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch. Toxicol. 2019, 93, 2057–2064. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, Y.; Duan, Y.; Wang, F.; Guo, F.; Yan, F.; Yang, X.; Yang, X. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. J. Anim. Sci. Biotechnol. 2018, 9, 74. [Google Scholar] [CrossRef]
- Aguzey, H.A.; Gao, Z.; Haohao, W.; Guilan, C.; Zhengmin, W.; Junhong, C. The effects of deoxynivalenol (DON) on the gut microbiota, morphology and immune system of chicken—A review. Ann. Anim. Sci. 2019, 19, 305–318. [Google Scholar] [CrossRef]
- Laurain, J.; Tardieu, D.; Matard-Mann, M.; Rodriguez, M.A.; Guerre, P. Fumonisin B1 accumulates in chicken tissues over time and this accumulation was reduced by feeding algo-clay. Toxins 2021, 13, 701. [Google Scholar] [CrossRef]
- Tardieu, D.; Travel, A.; Metayer, J.-P.; Le Bourhis, C.; Guerre, P. Fumonisin B1, B2 and B3 in muscle and liver of broiler chickens and turkey poults fed with diets containing fusariotoxins at the EU maximum tolerable level. Toxins 2019, 11, 590. [Google Scholar] [CrossRef]
- Antonissen, G.; Croubels, S.; Pasmans, F.; Ducatelle, R.; Eeckhaut, V.; Devreese, M.; Verlinden, M.; Haesebrouck, F.; Eeckhout, M.; De Saeger, S. Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Vet. Res. 2015, 46, 98. [Google Scholar] [CrossRef]
- Grenier, B.; Schwartz-Zimmermann, H.E.; Caha, S.; Moll, W.D.; Schatzmayr, G.; Applegate, T.J. Dose-dependent effects on sphingoid bases and cytokines in chickens fed diets prepared with fusarium verticillioides culture material containing fumonisins. Toxins 2015, 7, 1253–1272. [Google Scholar] [CrossRef]
- Battacone, G.; Nudda, A.; Pulina, G. Effects of ochratoxin A on livestock production. Toxins 2010, 2, 1796–1824. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K.; Nowak, A.; Chlebicz, A.; Żbikowski, A.; Pawłowski, K.; Szeleszczuk, P. Probiotic microorganisms detoxify ochratoxin A in both a chicken liver cell line and chickens. J. Sci. Food Agric. 2019, 99, 4309–4318. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Fijałkowska, M.; Purwin, C.; Kotlarczyk, S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed diets naturally contaminated with ochratoxin A. Arch. Anim. Nutr. 2019, 73, 431–444. [Google Scholar] [CrossRef]
- Abdelrahman, R.E.; Khalaf, A.A.A.; Elhady, M.A.; Ibrahim, M.A.; Hassanen, E.I.; Noshy, P.A. Quercetin ameliorates ochratoxin A-Induced immunotoxicity in broiler chickens by modulation of PI3K/AKT pathway. Chem.-Biol. Interact. 2022, 351, 109720. [Google Scholar] [CrossRef]
- Liu, J.; Applegate, T. Zearalenone (ZEN) in livestock and poultry: Dose, toxicokinetics, toxicity and estrogenicity. Toxins 2020, 12, 377. [Google Scholar] [CrossRef]
- Xu, J.; Li, S.; Jiang, L.; Gao, X.; Liu, W.; Zhu, X.; Huang, W.; Zhao, H.; Wei, Z.; Wang, K. Baicalin protects against zearalenone-induced chicks liver and kidney injury by inhibiting expression of oxidative stress, inflammatory cytokines and caspase signaling pathway. Int. Immunopharmacol. 2021, 100, 108097. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xu, S.; Zhao, S.; Liu, K.; Lu, Z.; Hou, Z. Protective effects of selenium against zearalenone-induced apoptosis in chicken spleen lymphocyte via an endoplasmic reticulum stress signaling pathway. Cell Stress Chaperones 2019, 24, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, J.; Xu, S.; Peng, X.; Zuo, Z.; Cui, H.; Wang, Y.; Ren, Z. Effects of Zearalenone on IL-2, IL-6, and IFN-γ mRNA levels in the splenic lymphocytes of chickens. Sci. World J. 2012, 2012, 567327. [Google Scholar] [CrossRef]
- Hort, V.; Nicolas, M.; Travel, A.; Jondreville, C.; Maleix, C.; Baéza, E.; Engel, E.; Guérin, T. Carry-over assessment of fumonisins and zearalenone to poultry tissues after exposure of chickens to a contaminated diet—A study implementing stable-isotope dilution assay and UHPLC-MS/MS. Food Control 2020, 107, 106789. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Nisar, S.; Asi, M.R.; Jinap, S. Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 2014, 43, 98–103. [Google Scholar] [CrossRef]
- Sørensen, L.M.; Mogensen, J.; Nielsen, K.F. Simultaneous determination of ochratoxin A, mycophenolic acid and fumonisin B2 in meat products. Anal. Bioanal. Chem. 2010, 398, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Ruhnau, D.; Hess, C.; Grenier, B.; Doupovec, B.; Schatzmayr, D.; Hess, M.; Awad, W.A. The mycotoxin Deoxynivalenol (DON) promotes Campylobacter jejuni multiplication in the intestine of broiler chickens with consequences on bacterial translocation and gut integrity. Front. Vet. Sci. 2020, 7, 573894. [Google Scholar] [CrossRef] [PubMed]
- Alaboudi, A.R.; Osaili, T.M.; Otoum, G. Quantification of mycotoxin residues in domestic and imported chicken muscle, liver and kidney in Jordan. Food Control 2022, 132, 108511. [Google Scholar] [CrossRef]
- Armanini, E.H.; Boiago, M.M.; Cécere, B.G.; Oliveira, P.V.; Teixeira, C.J.; Strapazzon, J.V.; Bottari, N.B.; Silva, A.D.; Fracasso, M.; Vendruscolo, R.G. Protective effects of silymarin in broiler feed contaminated by mycotoxins: Growth performance, meat antioxidant status, and fatty acid profiles. Trop. Anim. Health Prod. 2021, 53, 442. [Google Scholar] [CrossRef]
- Fan, Y.; Zhao, L.; Ma, Q.; Li, X.; Shi, H.; Zhou, T.; Zhang, J.; Ji, C. Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food Chem. Toxicol. 2013, 59, 748–753. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, G.; Wang, H.; Zhu, H.; Hou, Y.; Wang, W.; Ding, B. Effect of three mycotoxin adsorbents on growth performance, nutrient retention and meat quality in broilers fed on mould-contaminated feed. Br. Poult. Sci. 2011, 52, 255–263. [Google Scholar] [CrossRef]
- Mota, M.; Hermes, R.; Araújo, C.; Pereira, A.; Ultimi, N.; Leite, B.; Araújo, L. Effects on meat quality and black bone incidence of elevated dietary vitamin levels in broiler diets challenged with aflatoxin. Animal 2019, 13, 2932–2938. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, G.; Han, G.; Kil, D. Effect of feeding corn distillers dried grains with solubles naturally contaminated with deoxynivalenol on growth performance, meat quality, intestinal permeability, and utilization of energy and nutrients in broiler chickens. Poult. Sci. 2021, 100, 101215. [Google Scholar] [CrossRef] [PubMed]
- Rafiei-Tari, A.; Sadeghi, A.A.; Mousavi, S.N. Inclusion of vegetable oils in diets of broiler chicken raised in hot weather and effects on antioxidant capacity, lipid components in the blood and immune responses. Acta Sci.-Anim. Sci. 2021, 43, e50587. [Google Scholar] [CrossRef]
- Koo, B.; Nyachoti, C.M. Effects of thermally oxidized canola oil and tannic acid supplementation on nutrient digestibility and microbial metabolites in finishing pigs. J. Anim. Sci. 2019, 97, 2468–2478. [Google Scholar] [CrossRef]
- Dong, Y.; Lei, J.; Zhang, B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult. Sci. 2020, 99, 4892–4903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiao, S.; Lee, E.J.; Ahn, D.U. Consumption of oxidized oil increases oxidative stress in broilers and affects the quality of breast meat. J. Agric. Food Chem. 2011, 59, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-Y.; Choi, J.; Yadav, S.; Tompkins, Y.; Kim, W.K. Effects of low-crude protein diets supplemented with arginine, glutamine, threonine, and methionine on regulating nutrient absorption, intestinal health, and growth performance of Eimeria-infected chickens. Poult. Sci. 2021, 100, 101427. [Google Scholar] [CrossRef]
- Saleh, A.A.; El-Far, A.H.; Abdel-Latif, M.A.; Emam, M.A.; Ghanem, R.; Abd El-Hamid, H.S. Exogenous dietary enzyme formulations improve growth performance of broiler chickens fed a low-energy diet targeting the intestinal nutrient transporter genes. PLoS ONE 2018, 13, e0198085. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, Q.; Wang, H.; Chu, Q.; Zhang, J.; Yan, Z.; Liu, H.; Geng, A. Dietary metabolizable energy and crude protein levels affect pectoral muscle composition and gut microbiota in native growing chickens. Poult. Sci. 2022, 102, 102353. [Google Scholar] [CrossRef]
- Girish, C.; Rao, S.; Payne, R. Effect of reducing dietary energy and protein on growth performance and carcass traits of broilers. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; Springer: Berlin/Heidelberg, Germany, 2013; pp. 175–176. [Google Scholar]
- Abdel-Hafeez, H.M.; Saleh, E.S.E.; Tawfeek, S.S.; Youssef, I.; Hemida, M. Effects of high dietary energy, with high and normal protein levels, on broiler performance and production characteristics. J. Vet. Med. Res. 2016, 23, 94–108. [Google Scholar] [CrossRef]
- Lipiński, K.; Antoszkiewicz, Z.; Kotlarczyk, S.; Mazur-Kuśnirek, M.; Kaliniewicz, J.; Makowski, Z. The effect of herbal feed additive on the growth performance, carcass characteristics and meat quality of broiler chickens fed low-energy diets. Arch. Anim. Breed. 2019, 62, 33–40. [Google Scholar] [CrossRef]
- Rosa, P.; Faria Filho, D.; Dahlke, F.; Vieira, B.; Macari, M.; Furlan, R.L. Effect of energy intake on performance and carcass composition of broiler chickens from two different genetic groups. Braz. J. Poult. Sci. 2007, 9, 117–122. [Google Scholar] [CrossRef]
- Lesiów, T.; Kijowski, J. Impact of PSE and DFD meat on poultry processing—A review. Polish J. Food Nutr. Sci. 2003, 12, 3–8. [Google Scholar]
- Cai, K.; Shao, W.; Chen, X.; Campbell, Y.; Nair, M.; Suman, S.; Beach, C.; Guyton, M.; Schilling, M. Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat. Poult. Sci. 2018, 97, 337–346. [Google Scholar] [CrossRef]
- Arshad, M.; Bhatti, S.; Hassan, I.; Rahman, M.; Rehman, M. Effects of bile acids and lipase supplementation in low-energy diets on growth performance, fat digestibility and meat quality in broiler chickens. Braz. J. Poult. Sci. 2020, 22. [Google Scholar] [CrossRef]
- Ciftci, I.; Ceylan, N. Effects of dietary threonine and crude protein on growth performance, carcase and meat composition of broiler chickens. Br. Poult. Sci. 2004, 45, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Brink, M.; Janssens, G.P.; Demeyer, P.; Bağci, Ö.; Delezie, E. Reduction of dietary crude protein and feed form: Impact on broiler litter quality, ammonia concentrations, excreta composition, performance, welfare, and meat quality. Anim. Nutr. 2022, 9, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Chodová, D.; Tůmová, E.; Ketta, M.; Skřivanová, V. Breast meat quality in males and females of fast-, medium-and slow-growing chickens fed diets of 2 protein levels. Poult. Sci. 2021, 100, 100997. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, I. The effects of betaine supplementation in diets containing different levels of crude protein and methionine on the growth performance, blood components, total tract nutrient digestibility, excreta noxious gas emission, and meat quality of the broiler chickens. Poult. Sci. 2019, 98, 6808–6815. [Google Scholar] [PubMed]
- Estévez, M.; Geraert, P.-A.; Liu, R.; Delgado, J.; Mercier, Y.; Zhang, W. Sulphur amino acids, muscle redox status and meat quality: More than building blocks–Invited review. Meat Sci. 2020, 163, 108087. [Google Scholar] [CrossRef]
- Kim, W.K.; Singh, A.K.; Wang, J.; Applegate, T. Functional role of branched chain amino acids in poultry: A review. Poult. Sci. 2022, 101, 101715. [Google Scholar] [CrossRef]
- Teng, P.-Y.; Liu, G.; Choi, J.; Yadav, S.; Wei, F.; Kim, W.K. Effects of levels of methionine supplementations in forms of L or DL-methionine on the performance, intestinal development, immune response, and antioxidant system in broilers challenged with Eimeria spp. Poult. Sci. 2023, 102, 102586. [Google Scholar] [CrossRef]
- Wen, C.; Jiang, X.; Ding, L.; Wang, T.; Zhou, Y. Effects of dietary methionine on growth performance, meat quality and oxidative status of breast muscle in fast-and slow-growing broilers. Poult. Sci. 2017, 96, 1707–1714. [Google Scholar] [CrossRef]
- Koo, B.; Choi, J.; Holanda, D.M.; Yang, C.; Nyachoti, C.M. Comparative effects of dietary methionine and cysteine supplementation on redox status and intestinal integrity in immunologically challenged-weaned pigs. Amino Acids 2023, 55, 139–152. [Google Scholar] [CrossRef]
- Albrecht, A.; Hebel, M.; Heinemann, C.; Herbert, U.; Miskel, D.; Saremi, B.; Kreyenschmidt, J. Assessment of meat quality and shelf life from broilers fed with different sources and concentrations of methionine. J. Food Qual. 2019, 2019, 6182580. [Google Scholar] [CrossRef]
- Castro, F.; Su, S.; Choi, H.; Koo, E.; Kim, W. L-Arginine supplementation enhances growth performance, lean muscle, and bone density but not fat in broiler chickens. Poult. Sci. 2019, 98, 1716–1722. [Google Scholar] [CrossRef] [PubMed]
- Zampiga, M.; Soglia, F.; Petracci, M.; Meluzzi, A.; Sirri, F. Effect of different arginine-to-lysine ratios in broiler chicken diets on the occurrence of breast myopathies and meat quality attributes. Poult. Sci. 2019, 98, 2691–2697. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lin, Y.; Jiang, Z.; Zheng, C.; Zhou, G.; Yu, D.; Cao, T.; Wang, J.; Chen, F. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 2010, 38, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Murakami, T.; Nakai, N.; Nagasaki, M.; Harris, R.A. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 2004, 134, 1583S–1587S. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Li, F.; Wang, W.; Guo, Q.; Wen, C.; Yin, Y. Alteration of muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscle of growing pigs fed low-protein diets with varying branched-chain amino acid ratios. Oncotarget 2017, 8, 107011. [Google Scholar] [CrossRef]
- Zhang, L.; Li, F.; Guo, Q.; Duan, Y.; Wang, W.; Yang, Y.; Yin, Y.; Gong, S.; Han, M.; Yin, Y. Balanced branched-chain amino acids modulate meat quality by adjusting muscle fiber type conversion and intramuscular fat deposition in finishing pigs. J. Sci. Food Agric. 2022, 102, 3796–3807. [Google Scholar] [CrossRef]
- Imanari, M.; Kadowaki, M.; Fujimura, S. Regulation of taste-active components of meat by dietary branched-chain amino acids; effects of branched-chain amino acid antagonism. Br. Poult. Sci. 2008, 49, 299–307. [Google Scholar] [CrossRef]
- Kop-Bozbay, C.; Akdag, A.; Atan, H.; Ocak, N. Response of broilers to supplementation of branched-chain amino acids blends with different valine contents in the starter period under summer conditions. Anim. Biosci. 2021, 34, 295. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, I. The response in growth performance, relative organ weight, blood profiles, and meat quality to dietary threonine: Lysine ratio in broilers. J. Appl. Anim. Res. 2014, 42, 194–199. [Google Scholar] [CrossRef]
- Abidin, Z.; Khatoon, A. Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. Worlds Poult. Sci. J. 2013, 69, 135–152. [Google Scholar] [CrossRef]
- Shakeri, M.; Oskoueian, E.; Le, H.H.; Shakeri, M. Strategies to combat heat stress in broiler chickens: Unveiling the roles of selenium, vitamin E and vitamin C. Vet. Sci. 2020, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Lin, H.; Wang, X.; Song, Z.; Jiao, H. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poult. Sci. 2010, 89, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Pečjak, M.; Leskovec, J.; Levart, A.; Salobir, J.; Rezar, V. Effects of dietary vitamin E, vitamin C, selenium and their combination on carcass characteristics, oxidative stability and breast meat quality of broiler chickens exposed to cyclic heat stress. Animals 2022, 12, 1789. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Clark, D.L.; Jacobi, S.K.; Velleman, S.G. Effect of vitamin E and omega-3 fatty acids early posthatch supplementation on reducing the severity of wooden breast myopathy in broilers. Poult. Sci. 2020, 99, 2108–2119. [Google Scholar] [CrossRef]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Kaliniewicz, J.; Kotlarczyk, S.; Żukowski, P. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens exposed to high temperature. Arch. Anim. Nutr. 2019, 73, 111–126. [Google Scholar] [CrossRef]
- Savaris, V.D.L.; Broch, J.; de Souza, C.; Junior, N.R.; de Avila, A.S.; Polese, C.; Kaufmann, C.; de Oliveira Carvalho, P.L.; Pozza, P.C.; Vieites, F.M. Effects of vitamin A on carcass and meat quality of broilers. Poult. Sci. 2021, 100, 101490. [Google Scholar] [CrossRef]
- Garcia, A.F.Q.M.; Murakami, A.E.; do Amaral Duarte, C.R.; Rojas, I.C.O.; Picoli, K.P.; Puzotti, M.M. Use of vitamin D 3 and its metabolites in broiler chicken feed on performance, bone parameters and meat quality. Asian-Australas J. Anim. Sci. 2013, 26, 408–415. [Google Scholar] [CrossRef]
- Huang, Z.; Leibovitz, H.; Lee, C.M.; Millar, R. Effect of dietary fish oil on. omega.-3 fatty acid levels in chicken eggs and thigh flesh. J. Agric. Food Chem. 1990, 38, 743–747. [Google Scholar] [CrossRef]
- Gonzalez-Esquerra, R.; Leeson, S. Alternatives for enrichment of eggs and chicken meat with omega-3 fatty acids. Can. J. Anim. Sci. 2001, 81, 295–305. [Google Scholar] [CrossRef]
- Shin, D.; Narciso-Gaytán, C.; Park, J.; Smith, S.; Sánchez-Plata, M.; Ruiz-Feria, C. Dietary combination effects of conjugated linoleic acid and flaxseed or fish oil on the concentration of linoleic and arachidonic acid in poultry meat. Poult. Sci. 2011, 90, 1340–1347. [Google Scholar] [CrossRef]
- Jameel, Y.J.; Sulbi, I.M.; Hassan, W.H.; Hassan, A.H.; Kadhim, A.H. Fish Oil Individual or Combination with L-carnitine on Broiler lipid profile. J. Kerbala Agric. Sci. 2017, 4, 298–306. [Google Scholar]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration: Dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Tompkins, Y.H.; Chen, C.; Sweeney, K.M.; Kim, M.; Voy, B.H.; Wilson, J.L.; Kim, W.K. The effects of maternal fish oil supplementation rich in n-3 PUFA on offspring-broiler growth performance, body composition and bone microstructure. PloS ONE 2022, 17, e0273025. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B.; Guo, Y.; Jiao, P.; Long, F. Effects of dietary lipids andClostridium butyricum on fat deposition and meat quality of broiler chickens. Poult. Sci. 2010, 89, 254–260. [Google Scholar] [CrossRef]
- Kulkarni, R.R.; Gaghan, C.; Gorrell, K.; Sharif, S.; Taha-Abdelaziz, K. Probiotics as alternatives to antibiotics for the prevention and control of necrotic enteritis in chickens. Pathogens 2022, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-Y.; Kim, W.K. Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-Y.; Adhikari, R.; Llamas-Moya, S.; Kim, W.K. Effects of combination of mannan-oligosaccharides and β-glucan on growth performance, intestinal morphology, and immune gene expression in broiler chickens. Poult. Sci. 2021, 100, 101483. [Google Scholar] [CrossRef]
- Rajput, D.S.; Zeng, D.; Khalique, A.; Rajput, S.S.; Wang, H.; Zhao, Y.; Sun, N.; Ni, X. Pretreatment with probiotics ameliorate gut health and necrotic enteritis in broiler chickens, a substitute to antibiotics. AMB Express 2020, 10, 220. [Google Scholar] [CrossRef]
- El-Sharkawy, H.; Tahoun, A.; Rizk, A.M.; Suzuki, T.; Elmonir, W.; Nassef, E.; Shukry, M.; Germoush, M.O.; Farrag, F.; Bin-Jumah, M. Evaluation of Bifidobacteria and Lactobacillus probiotics as alternative therapy for Salmonella typhimurium infection in broiler chickens. Animals 2020, 10, 1023. [Google Scholar] [CrossRef]
- Redweik, G.A.; Stromberg, Z.R.; Van Goor, A.; Mellata, M. Protection against avian pathogenic Escherichia coli and Salmonella Kentucky exhibited in chickens given both probiotics and live Salmonella vaccine. Poult. Sci. 2020, 99, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Alshahrani, O.A.; Saghir, S.A.; Al-Wajeeh, A.S.; Al-Shargi, O.Y.; Taha, A.E.; Mesalam, N.M.; Abdel-Moneim, A.-M.E. Prebiotics can restrict Salmonella populations in poultry: A review. Anim. Biotechnol. 2023, 33, 1668–1677. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.; Alyemni, A.; Zakaria, H. Effect of two strains of probiotics on the antioxidant capacity, oxidative stress, and immune responses of Salmonella-challenged broilers. Braz. J. Poult. Sci. 2016, 18, 175–180. [Google Scholar] [CrossRef]
- Aluwong, T.; Kawu, M.; Raji, M.; Dzenda, T.; Govwang, F.; Sinkalu, V.; Ayo, J. Effect of yeast probiotic on growth, antioxidant enzyme activities and malondialdehyde concentration of broiler chickens. Antioxidants 2013, 2, 326–339. [Google Scholar] [CrossRef]
- Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L.; Wang, T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 2017, 96, 74–82. [Google Scholar] [CrossRef]
- Yin, L.; Hussain, S.; Tang, T.; Gou, Y.; He, C.; Liang, X.; Yin, Z.; Shu, G.; Zou, Y.; Fu, H. Protective Effects of Cinnamaldehyde on the Oxidative Stress, Inflammatory Response, and Apoptosis in the Hepatocytes of Salmonella Gallinarum-Challenged Young Chicks. Oxid. Med. Cell. Longev. 2022, 2022, 2459212. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Zaki, R.; Negm, E.; Mahmoud, M.; Cheng, H. Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens. Poult. Sci. 2021, 100, 100906. [Google Scholar] [CrossRef]
- Wang, H.; Ni, X.; Qing, X.; Zeng, D.; Luo, M.; Liu, L.; Li, G.; Pan, K.; Jing, B. Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front. Microbiol. 2017, 8, 1073. [Google Scholar] [CrossRef]
- Lin, Y.; Olukosi, O.A. Qualitative and quantitative profiles of jejunal oligosaccharides and cecal short-chain fatty acids in broiler chickens receiving different dietary levels of fiber, protein and exogenous enzymes. J. Sci. Food Agric. 2021, 101, 5190–5201. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Leung, H.; Akbari Moghaddam Kakhki, R.; Patterson, R.; Barta, J.R. Utility of feed enzymes and yeast derivatives in ameliorating deleterious effects of coccidiosis on intestinal health and function in broiler chickens. Front. Vet. Sci. 2019, 6, 473. [Google Scholar] [CrossRef]
- Hajati, H. Effects of enzyme supplementation on performance, carcass characteristics, carcass composition and some blood parameters of broiler chicken. Am. J. Anim. Vet. Sci. 2010, 5, 221–227. [Google Scholar] [CrossRef]
- Lu, P.; Choi, J.; Yang, C.; Mogire, M.; Liu, S.; Lahaye, L.; Adewole, D.; Rodas-Gonzalez, A.; Yang, C. Effects of antibiotic growth promoter and dietary protease on growth performance, apparent ileal digestibility, intestinal morphology, meat quality, and intestinal gene expression in broiler chickens: A comparison. J. Anim. Sci. 2020, 98, skaa254. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef] [PubMed]
- Kies, A.; Van Hemert, K.; Sauer, W. Effect of phytase on protein and amino acid digestibility and energy utilisation. Worlds Poult. Sci. J. 2001, 57, 109–126. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Y.; Zhang, X.; Wu, G. Effect of probiotic Lactobacillus reuteri XC1 coexpressing endoglucanase and phytase on intestinal pH and morphology, carcass characteristics, meat quality, and serum biochemical indexes of broiler chickens. Rev. Bras. de Zootec. 2019, 48, e20180273. [Google Scholar] [CrossRef]
- Hao, X.Z.; Yoo, J.S.; Kim, I.H. Effect of phytase supplementation on growth performance, nutrient digestibility, and meat quality in broilers. Korean J. Agric. Sci. 2018, 45, 401–409. [Google Scholar]
- Hakami, Z.; Al Sulaiman, A.R.; Alharthi, A.S.; Casserly, R.; Bouwhuis, M.A.; Abudabos, A.M. Growth performance, carcass and meat quality, bone strength, and immune response of broilers fed low-calcium diets supplemented with marine mineral complex and phytase. Poult. Sci. 2022, 101, 101849. [Google Scholar] [CrossRef]
- Choi, J.; Tompkins, Y.H.; Teng, P.-Y.; Gogal, R.M., Jr.; Kim, W.K. Effects of Tannic Acid Supplementation on Growth Performance, Oocyst Shedding, and Gut Health of in Broilers Infected with Eimeria Maxima. Animals 2022, 12, 1378. [Google Scholar] [CrossRef]
- Choi, J.; Singh, A.K.; Chen, X.; Lv, J.; Kim, W.K. Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens. Animals 2022, 12, 2178. [Google Scholar] [CrossRef]
- Soldado, D.; Bessa, R.J.; Jerónimo, E. Condensed tannins as antioxidants in ruminants—Effectiveness and action mechanisms to improve animal antioxidant status and oxidative stability of products. Animals 2021, 11, 3243. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, L.; Chen, Y.; Zhang, Y.; Han, H.; Niu, Y.; He, J.; Zhang, Y.; Cheng, Y.; Wang, T. Effects of bamboo leaf extract on growth performance, meat quality, and meat oxidative stability in broiler chickens. Poult. Sci. 2019, 98, 6787–6796. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, I. Effects of a protease and essential oils on growth performance, blood cell profiles, nutrient retention, ileal microbiota, excreta gas emission, and breast meat quality in broiler chicks. Poult. Sci. 2018, 97, 2854–2860. [Google Scholar] [CrossRef] [PubMed]
- Ghiasvand, A.; Khatibjoo, A.; Mohammadi, Y.; Akbari Gharaei, M.; Shirzadi, H. Effect of fennel essential oil on performance, serum biochemistry, immunity, ileum morphology and microbial population, and meat quality of broiler chickens fed corn or wheat-based diet. Br. Poult. Sci. 2021, 62, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Kaliniewicz, J.; Kotlarczyk, S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Arch. Anim. Breed. 2019, 62, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, X.; He, Z.; Chen, Y.; Li, Z.; Meng, T.; Li, Y.; Cao, Y. In vitro and in vivo antioxidant activity of eucalyptus leaf polyphenols extract and its effect on chicken meat quality and cecum microbiota. Food Res. Int. 2020, 136, 109302. [Google Scholar] [CrossRef]
- Yang, C.; Diarra, M.S.; Choi, J.; Rodas-Gonzalez, A.; Lepp, D.; Liu, S.; Lu, P.; Mogire, M.; Gong, J.; Wang, Q. Effects of encapsulated cinnamaldehyde on growth performance, intestinal digestive and absorptive functions, meat quality and gut microbiota in broiler chickens. Transl. Anim. Sci. 2021, 5, txab099. [Google Scholar] [CrossRef]
- Galli, G.M.; Gerbet, R.R.; Griss, L.G.; Fortuoso, B.F.; Petrolli, T.G.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Mesadri, J.; Wagner, R. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 2020, 139, 103916. [Google Scholar] [CrossRef]
- Luna, A.; Labaque, M.; Zygadlo, J.; Marin, R. Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poult. Sci. 2010, 89, 366–370. [Google Scholar] [CrossRef]
- Park, J.; Kim, I. Effects of dietary Achyranthes japonica extract supplementation on the growth performance, total tract digestibility, cecal microflora, excreta noxious gas emission, and meat quality of broiler chickens. Poult. Sci. 2020, 99, 463–470. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Zhou, Y.; Zhang, Z.; Xie, Z.; Zhang, J.; Wan, X. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J. Agric. Food Chem. 2013, 61, 8565–8572. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.H.; Kil, D.Y. Dietary organic acids for broiler chickens: A review. Rev. Colomb. Cienc. Pecu. 2015, 28, 109–123. [Google Scholar] [CrossRef]
- Salsinha, A.S.; Machado, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.; Pintado, M. Bioactive lipids: Chemistry, biochemistry, and biological properties. In Bioactive Lipids; Academic Press: Cambridge, MA, USA, 2023; pp. 1–35. [Google Scholar]
- Mani-López, E.; García, H.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Wolfenden, A.; Vicente, J.; Higgins, J.; Andreatti Filho, R.L.; Higgins, S.; Hargis, B.; Tellez, G. Effect of organic acids and probiotics on Salmonella enteritidis infection in broiler chickens. Int. J. Poult. Sci. 2007, 6, 403. [Google Scholar] [CrossRef]
- Galli, G.M.; Aniecevski, E.; Petrolli, T.G.; da Rosa, G.; Boiago, M.M.; Simões, C.A.; Wagner, R.; Copetti, P.M.; Morsch, V.M.; Araujo, D.N. Growth performance and meat quality of broilers fed with microencapsulated organic acids. Anim. Feed Sci. Technol. 2021, 271, 114706. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Mahfuz, S.; Long, S.; Wu, D.; Gao, J.; Piao, X. Supplementation of mixed organic acids improves growth performance, meat quality, gut morphology and volatile fatty acids of broiler chicken. Animals 2021, 11, 3020. [Google Scholar] [CrossRef]
Comparison Strains | Observations in Fast-Growing Broilers | Replicates per Treatments | References |
---|---|---|---|
Fast-growing (FG) vs. slow-growing (SG) chickens from La Gamme Hubbard (Sedar Co., Międzyrzec Podlaski, Poland) | A higher portion of breast and thigh yields Lower abdominal fats Higher fat and lower protein compositions Less yellowness | 8 | [29] |
Medium slow-growing broilers (SG, Hubbard Red JA) vs. Ross308 | Higher breast and lower thigh yields | 10 | [30] |
Strains from S & G Poultry, Clanton, AL vs. Cobb-Vantress Inc., Siloam Spring, AR | Lower protein and higher fat contents Lighter, more redness, and less yellowness Higher pH Lower drip loss and higher thaw and cooking loss | 80 | [31] |
Xueshan (Chinese local chickens) vs. Ross308 | Lower pH Lighter and less redness and yellowness Lower protein and higher fat contents | 6 | [32] |
Eimeria Species and Oocysts | Observations in the Breast Meat | Replicates per Treatments | References |
---|---|---|---|
1 × 104 Eimeria tenella | Reduced redness Increased thiobarbituric acid reactive substances, a byproduct of lipid peroxidation | 10 | [58] |
5 × 105 mixture of E. acervulina, E. maxima, and E. tenella | Increased drip loss and cooking loss Decreased protein content Reduced redness Increased the formation of malonaldehyde, a final product of lipid peroxidation | 10 | [59] |
4 × 104 Eimeria tenella | Reduced lightness Reduced drip loss | 5 | [61] |
4 × 104 Eimeria tenella | Increased lightness | 5 | [60] |
Observations in the Breast Meat | Replicates per Treatments | References |
---|---|---|
Increased pH | 10 | [67] |
Decreased cooking loss Increased thiobarbituric acid reactive substances, a byproduct of lipid peroxidation | 12 | [71] |
Increased pH Increased lightness and decreased redness Increased cooking loss Decreased shear force | 16 | [68] |
Increased pH Decreased lightness Increased yellowness Increased total lipid and reduced collagen Increased omega-3 polyunsaturated fatty acids | 6 | [65] |
Reduced protein content and increased fat content Decreased pH Increased cooking loss Increased lightness and reduced redness Increased shear force | 6 | [66] |
Mycotoxins | Absorption Rate in the Gastrointestinal Tract | Observations |
---|---|---|
Aflatoxins | Highly absorbable (80 to 90%) [74] | Induced mild negative effects on the gastrointestinal tract [75] Induced oxidative stress, damaged liver, damaged RNA and DNA, and suppressed immune system [76] |
Deoxynivalenol | Low absorption rate [77] | Increased intestinal permeability [78] Damaged intestinal morphology and induced intestinal inflammation [79] Induced severe intestinal damage [80] |
Fumonisins | Low absorption rate with quick plasma elimination but considerate accumulation rate [81,82] | Damaged ileum morphology and negatively affected gut microbiota [83] Induced mild inflammation in the gastrointestinal tract [84] |
Ochratoxin A | High absorption rate [85] | Damaged RNA and DNA [86] Induced oxidative stress, lipid peroxidation, and cell apoptosis and inhibited protein synthesis [87] Suppressed immune system [88] |
Zearalenone | High absorption rate [89] | Induced liver and kidney damage [90] Induced oxidative stress and suppressed immune system by damaging spleen [91,92] |
Mycotoxins in the Feed | Observations in the Breast Meat | Replicates per Treatments | References |
---|---|---|---|
172 to 200 μg/kg ochratoxin A | Reduced pH Increased drip loss Reduced fat content Increased short-chain fatty acids and reduced polyunsaturated fatty acids Increased omega-6 to omega-3 fatty acid ratio | 10 | [87] |
70 μg/kg aflatoxins B1 | Increased yellowness | 12 | [99] |
451 μg/kg aflatoxin B1, 684 μg/kg ochratoxin A, and 320 μg/kg of T-2 toxin | Decreased lightness Increased redness and yellowness | 6 | [100] |
0.05 μg/kg aflatoxin and 20 μg/kg fumonisin | Increased lightness Reduced cooking loss Modulated fatty acid composition Stimulated antioxidant system as a defensive reaction | 4 | [98] |
0.5 mg/kg aflatoxin | Increased thiobarbituric acid reactive substances, a byproduct of lipid peroxidation | 15 | [101] |
43.2 mg/kg deoxynivalenol | Decreased lightness | 8 | [102] |
Sources | Doses in the Feed | Bird Conditions/Replicates | Observations in the Breast Meat | References |
---|---|---|---|---|
Polyphenols originated from onions (quercetin and flavonols) and grape seeds (catechins, flavonols, pro-cyanidins, and anthocyanidins). | 100 or 200 mg/kg | Heat-stressed/8 | Reduced natural drip loss and water-holding capacity Increased crude ash Increased monounsaturated fatty acids and reduced omega-6 polyunsaturated fatty acids | [141] |
Fed rancid oils/10 | Increased lightness Modulated fatty acid composition Increased crude fat and ash | [179] | ||
Fed diets contaminated with ochratoxin A/10 | Enhanced water-holding capacity Modulated fatty acid composition (C12:0) | [87] | ||
Bamboo leaf extract | 1 to 5 g/kg | Normal condition/6 | Improved antioxidant capacity and alleviated lipid peroxidation | [176] |
Eucalyptus leaf polyphenol extract | 500 mg/kg | Normal condition/4 | Improved antioxidant capacity and increased redness | [180] |
Cinnamaldehyde | 50 mg/kg | Normal condition/8 | Increased pH | [181] |
A blend of essential oils: carvacrol, thymol, and cinnamaldehyde and curcumin | 150 mg/kg | Normal condition/3 | Improved antioxidant capacity and reduced thiobarbituric acid reactive substances, a byproduct of lipid peroxidation Reduced thawing loss Increased yellowness Reduced short-chain fatty acids and increased monounsaturated fatty acids and polyunsaturated fatty acids | [182] |
Thymol and carvacrol | 150 mg/kg | Normal condition/3 | Reduced lipid peroxidation during storage | [183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Kong, B.; Bowker, B.C.; Zhuang, H.; Kim, W.K. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals 2023, 13, 1386. https://doi.org/10.3390/ani13081386
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals. 2023; 13(8):1386. https://doi.org/10.3390/ani13081386
Chicago/Turabian StyleChoi, Janghan, Byungwhi Kong, Brian C. Bowker, Hong Zhuang, and Woo Kyun Kim. 2023. "Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review" Animals 13, no. 8: 1386. https://doi.org/10.3390/ani13081386
APA StyleChoi, J., Kong, B., Bowker, B. C., Zhuang, H., & Kim, W. K. (2023). Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals, 13(8), 1386. https://doi.org/10.3390/ani13081386