Effects of Processing Methods and Conditioning Temperatures on the Cassava Starch Digestibility and Growth Performance of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Study and Design
2.1.1. Preparation of Cassava
2.1.2. Extraction of Cassava Starch
2.1.3. In Vitro Digestibility of Cassava Starch
2.2. In Vivo Study and Design
2.2.1. Animals, Diets, and Management
2.2.2. Apparent Digestibility of Ileum and Total Tract
2.3. Statistical Analysis
3. Results
3.1. In Vitro Digestibility of Cassava Starch
3.2. In Vitro Digestion Properties of Cassava Starch
3.3. Growth Performance
3.4. Apparent Digestibility of Ileum
3.5. Apparent Digestibility of the Total Tract
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022; p. 260. [Google Scholar]
- Fathima, A.A.; Sanitha, M.; Tripathi, L.; Muiruri, S. Cassava (Manihot esculenta) dual use for food and bioenergy: A review. Food Energy Secur. 2023, 12, e380. [Google Scholar] [CrossRef]
- Qi, M.M.; Jiang, L.J.; Song, J.L.; Suo, W.J.; Deng, Y.X.; Li, L.X.; Liu, Y.; Wang, C.J.; Li, H.J. Extrusion modification of cassava flour for improved mashing efficiency. LWT 2023, 177, 114565. [Google Scholar] [CrossRef]
- Li, C.; Dong, G.Y.; Bian, M.; Liu, X.L.; Gong, J.; Hao, J.X.; Wang, W.Q.; Li, K.M.; Ou, W.J.; Xia, T. Brewing rich 2-phenylethanol beer from cassava and its producing metabolisms in yeast. J. Sci. Food Agric. 2021, 101, 4050–4058. [Google Scholar] [CrossRef]
- Wei, Y. Forecast 2022: Analysis of Cassava Harvest Area, Yield and Development Trend in China and the World. Available online: https://www.chyxx.com/industry/1120534.html (accessed on 5 August 2022).
- Luo, S.; Ma, Q.X.; Zhong, Y.Y.; Jing, J.L.; Wei, Z.W.; Zhou, W.Z.; Lu, X.L.; Tian, Y.N.; Zhang, P. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava. Plant Mol. Biol. 2022, 108, 429–442. [Google Scholar] [CrossRef]
- Liang, W.X.; Ding, L.; Guo, K.; Liu, Y.; Wen, X.X.; Kirkensgaard, J.J.K.; Khakimov, B.; Enemark-Rasmussen, K.; Hebelstrup, K.H.; Herburger, K. The relationship between starch structure and digestibility by time-course digestion of amylopectin-only and amylose-only barley starches. Food Hydrocoll. 2023, 139, 108491. [Google Scholar] [CrossRef]
- Karunaratne, N.D.; Abbott, D.A.; Chibbar, R.N.; Hucl, P.J.; Pozniak, C.J.; Classen, H.L. In vitro assessment of the starch digestibility of western Canadian wheat market classes and cultivars. Can. J. Anim. Sci. 2018, 98, 463–476. [Google Scholar] [CrossRef]
- Waterschoot, J.; Gomand, S.V.; Fierens, E.; Delcour, J.A. Production, structure, physicochemical and functional properties ofmaize, cassava, wheat, potato and rice starches. Starke 2015, 67, 14–29. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar] [PubMed]
- Ebsim, S. Establishing the Nutritional Value of Field Pea as Affected by Feed Processing and Pea Cultivar for Poultry. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2013. [Google Scholar]
- Selle, P.H.; Liu, S.Y.; Cai, J.; Cowieson, A.J. Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: Influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility. Anim. Prod. Sci. 2013, 53, 378–387. [Google Scholar] [CrossRef]
- Abdollahi, M.; Zaefarian, F.; Ravindran, V. Feed intake response of broilers: Impact of feed processing. Anim. Feed Sci. Technol. 2018, 237, 154–165. [Google Scholar] [CrossRef]
- Wang, Q.F.; Li, L.M.; Zheng, X.L. A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem. 2020, 315, 126267. [Google Scholar] [CrossRef] [PubMed]
- Palavecino, P.M.; Penci, M.C.; Ribotta, P.D. Effect of planetary ball milling on physicochemical and morphological properties of sorghum flour. J. Food Eng. 2019, 262, 22–28. [Google Scholar] [CrossRef]
- Lv, Y.Z.; Zhang, L.M.; Li, M.N.; He, X.H.; Hao, L.M.; Dai, Y.J. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols. Int. J. Biol. Macromol. 2019, 129, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Korompokis, K.; De Brier, N.; Delcour, J.A. Differences in endosperm cell wall integrity in wheat (Triticum aestivum L.) milling fractions impact on the way starch responds to gelatinization and pasting treatments and its subsequent enzymatic in vitro digestibility. Food Funct. 2019, 10, 4674–4684. [Google Scholar] [CrossRef] [PubMed]
- Massuquetto, A.; Durau, J.; Schramm, V.; Netto, M.T.; Krabbe, E.; Maiorka, A. Influence of feed form and conditioning time on pellet quality, performance and ileal nutrient digestibility in broilers. J. Appl. Poult. Res. 2018, 27, 51–58. [Google Scholar] [CrossRef]
- Zimonja, O.; Svihus, B. Effects of processing of wheat or oats starch on physical pellet quality and nutritional value for broilers. Anim. Feed Sci. Technol. 2009, 149, 287–297. [Google Scholar] [CrossRef]
- Gandhi, N.; Singh, B.; Singh, P.; Sharma, S. Functional, rheological, morphological, and micro-structural properties of extrusion-processed corn and potato starches. Starke 2021, 73, 2000140. [Google Scholar] [CrossRef]
- Yang, Q.Z.; Xiao, Z.G.; Zhao, Y.; Liu, C.J.; Xu, Y.; Bai, J.K. Effect of extrusion treatment on the thermal stability and structure of corn starch with different emulsifiers. Czech J. Food Sci. 2015, 33, 464–473. [Google Scholar] [CrossRef]
- Omosebi, M.O.; Osundahunsi, O.F.; Fagbemi, T.N. Effect of extrusion on protein quality, antinutritional factors, and digestibility of complementary diet from quality protein maize and soybean protein concentrate. J. Food Biochem. 2018, 42, e12508. [Google Scholar] [CrossRef]
- Martens, B.M.; Flécher, T.; De Vries, S.; Schols, H.A.; Bruininx, E.M.; Gerrits, W.J. Starch digestion kinetics and mechanisms of hydrolysing enzymes in growing pigs fed processed and native cereal-based diets. Br. J. Nutr. 2019, 121, 1124–1136. [Google Scholar] [CrossRef]
- Yoder, A.D.; Stark, C.R.; Tokach, M.D.; Jones, C.K. Effects of pellet processing parameters on pellet quality and nursery pig growth performance. Trans. ASABE 2019, 62, 439–446. [Google Scholar] [CrossRef]
- Rojas, O.; Vinyeta, E.; Stein, H. Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs. J. Anim. Sci. 2016, 94, 1951–1960. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Mills, A. Role of feed processing on gut health and function in pigs and poultry: Conundrum of optimal particle size and hydrothermal regimens. Front. Vet. Sci. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.X.; Huang, Y.K.; Yao, W.L.; He, Q.Y.; Shao, Y.F.; Li, H.; Li, Y.; Huang, F.R. Effect of conditioning temperature on pelleting characteristics, nutrient digestibility and gut microbiota of sorghum-based diets for growing pigs. Anim. Feed Sci. Technol. 2019, 254, 114227. [Google Scholar] [CrossRef]
- Huang, B.B.; Wang, L.; Wang, L.; Lyu, Z.Q.; Lai, C.H.; Li, D.F. Concentration of available energy and digestibility of amino acids in extruded and pelleted defatted rice bran fed to growing pigs. Anim. Feed Sci. Technol. 2021, 280, 115067. [Google Scholar] [CrossRef]
- Chauynarong, N.; Elangovan, A.V.; Iji, P.A. The potential of cassava products in diets for poultry. World’s Poult. Sci. J. 2009, 65, 23–36. [Google Scholar] [CrossRef]
- El Halal, S.L.M.; Kringel, D.H.; Zavareze, E.d.R.; Dias, A.R.G. Methods for extracting cereal starches from different sources: A review. Starke 2019, 71, 1900128. [Google Scholar] [CrossRef]
- Weurding, R.E.; Veldman, A.; Veen, W.A.; Van, P.J.; Verstegen, M.W. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens. J. Nutr. 2001, 131, 2336. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Poultry, 9th ed.; National Research Council; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Vantress, C. Cobb Broiler Management Guide; Cobb-Vantress: Siloam Springs, AR, USA, 2012. [Google Scholar]
- Boroojeni, F.G.; Männer, K.; Boros, D.; Wiśniewska, M.; Kühnel, S.; Beckmann, K.; Lukaszczuk, M.; Zentek, J. Spontaneous and enzymatic fermentation of rapeseed cake for broiler nutrition. Anim. Feed Sci. Technol. 2022, 284, 115135. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Agricultural Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Short, F.; Gorton, P.; Wiseman, J.; Boorman, K. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhang, Y.Y.; Li, J.L.; Wang, X.F.; Xing, T.; Zhu, X.; Zhang, L.; Gao, F. Growth performance, carcass traits and digestive function of broiler chickens fed diets with graded levels of corn resistant starch. Br. Poult. Sci. 2020, 61, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Karunaratne, N.D.; Abbott, D.A.; Hucl, P.J.; Chibbar, R.N.; Pozniak, C.J.; Classen, H.L. Starch digestibility and apparent metabolizable energy of western Canadian wheat market classes in broiler chickens. Poult. Sci. 2018, 97, 2818–2828. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.H.; Hao, L.Z.; Sun, P.; Degen, A. Effect of substituting steam-flaked corn for course ground corn on in vitro digestibility, average daily gain, serum metabolites and ruminal volatile fatty acids, and bacteria diversity in growing yaks. Anim. Feed Sci. Technol. 2023, 296, 115553. [Google Scholar] [CrossRef]
- Weurding, R.E.; Veldman, A.; Veen, W.A.; van der Aar, P.J.; Verstegen, M.W. Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J. Nutr. 2001, 131, 2329–2335. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.I.; Tsai, Y.H.; Wang, H.M.D.; Dong, C.D.; Huang, C.Y.; Kuo, C.H. Extrusion puffing pretreated cereals for rapid production of high-maltose syrup. Food Chem. 2022, 15, 100445. [Google Scholar] [CrossRef]
- Truelock, C.N.; Tokach, M.D.; Stark, C.R.; Paulk, C.B. Pelleting and starch characteristics of diets containing different corn varieties. Transl. Anim. Sci. 2020, 4, txaa189. [Google Scholar] [CrossRef]
- Ali, S.; Singh, B.; Sharma, S. Effect of processing temperature on morphology, crystallinity, functional properties, and in vitro digestibility of extruded corn and potato starches. J. Food Process. Preserv. 2020, 44, e14531. [Google Scholar] [CrossRef]
- Abdollahi, M.; Ravindran, V.; Wester, T.; Ravindran, G.; Thomas, D. Influence of feed form and conditioning temperature on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broiler starters fed wheat-based diet. Anim. Feed Sci. Technol. 2011, 168, 88–99. [Google Scholar] [CrossRef]
- Liermann, W.; Bochnia, M.; Berk, A.; Böschen, V.; Hüther, L.; Zeyner, A.; Dänicke, S. Effects of feed particle size and hydro-thermal processing methods on starch modification, nutrient digestibility and the performance and the gastrointestinal tract of broilers. Animals 2019, 9, 294. [Google Scholar] [CrossRef]
- Thachil, M.T.; Chouksey, M.K.; Gudipati, V. Amylose-lipid complex formation during extrusion cooking: Effect of added lipid type and amylose level on corn-based puffed snacks. Int. J. Food Sci. Technol. 2014, 49, 309–316. [Google Scholar] [CrossRef]
- Naderinejad, S.; Zaefarian, F.; Abdollahi, M.; Hassanabadi, A.; Kermanshahi, H.; Ravindran, V. Influence of feed form and particle size on performance, nutrient utilisation, and gastrointestinal tract development and morphometry in broiler starters fed maize-based diets. Anim. Feed Sci. Technol. 2016, 215, 92–104. [Google Scholar] [CrossRef]
- Abdollahi, M.; Zaefarian, F.; Hall, L.; Jendza, J. Feed acidification and steam-conditioning temperature influence nutrient utilization in broiler chickens fed wheat-based diets. Poult. Sci. 2020, 99, 5037–5046. [Google Scholar] [CrossRef]
- Ratanpaul, V.; Williams, B.A.; Black, J.L.; Gidley, M.J. Apparent amylase diffusion rates in milled cereal grains determined in vitro: Potential relevance to digestion in the small intestine of pigs. J. Cereal Sci. 2018, 82, 42–48. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Lee, S.A.; Jones, C.K.; Htoo, J.K.; Stein, H.H. Digestibility of amino acids, fiber, and energy by growing pigs, and concentrations of digestible and metabolizable energy in yellow dent corn, hard red winter wheat, and sorghum may be influenced by extrusion. Anim. Feed Sci. Technol. 2020, 268, 114602. [Google Scholar] [CrossRef]
- Veum, T.; Serrano, X.; Hsieh, F. Twin-or single-screw extrusion of raw soybeans and preconditioned soybean meal and corn as individual ingredients or as corn-soybean product blends in diets for weanling swine. J. Anim. Sci. 2017, 95, 1288–1300. [Google Scholar]
- Sun, T.; Lærke, H.N.; Jørgensen, H.; Knudsen, K.E.B. The effect of extrusion cooking of different starch sources on the in vitro and in vivo digestibility in growing pigs. Anim. Feed Sci. Technol. 2006, 131, 67–86. [Google Scholar] [CrossRef]
- Duodu, K.; Taylor, J.; Belton, P.; Hamaker, B. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38, 117–131. [Google Scholar] [CrossRef]
- Cowieson, A.; Hruby, M.; Faurschou Isaksen, M. The effect of conditioning temperature and exogenous xylanase addition on the viscosity of wheat-based diets and the performance of broiler chickens. Br. Poult. Sci. 2005, 46, 717–724. [Google Scholar] [CrossRef]
- Lundblad, K.; Hancock, J.; Behnke, K.; McKinney, L.; Alavi, S.; Prestløkken, E.; Sørensen, M. Ileal digestibility of crude protein, amino acids, dry matter and phosphorous in pigs fed diets steam conditioned at low and high temperature, expander conditioned or extruder processed. Anim. Feed Sci. Technol. 2012, 172, 237–241. [Google Scholar] [CrossRef]
Ingredient (%) | Starter (1–21 d) | Grower (22–42 d) |
---|---|---|
Cassava | 55.0 | 57.0 |
Soybean flour | 30.04 | 25.26 |
Vegetable oil | 4.00 | 6.00 |
Corn gluten flour | 3.00 | 4.00 |
Fish meal | 4.00 | 4.00 |
CaHP04 | 1.45 | 1.05 |
Limestone | 0.70 | 0.60 |
Premix 1 | 0.50 | 1.00 |
Sodium chloride | 0.41 | 0.41 |
DL-methionine | 0.25 | 0.13 |
Lysine | 0.25 | 0.15 |
Titanium dioxide | 0.40 | 0.40 |
Total | 100.0 | 100.0 |
Nutrient levels (%) 2 | ||
ME, MJ/kg 3 | 12.34 | 12.97 |
Crude protein | 20.0 | 18.0 |
Calcium | 1.00 | 0.90 |
Available phosphorous | 0.45 | 0.38 |
Methionine | 0.54 | 0.41 |
Lysine | 1.25 | 1.05 |
Threonine | 0.82 | 0.73 |
Tryptophan | 0.21 | 0.19 |
Arginine | 1.21 | 1.12 |
Leucine | 1.25 | 1.05 |
Histidine | 0.35 | 0.32 |
Valine | 0.84 | 0.73 |
Items | Incubation Time (h) | SDR (h−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.25 | 0.50 | 0.75 | 1 | 2 | 3 | 4 | 5 | 6 | |||
MC | 60 °C | 62.4 d | 73.5 g | 78.0 e | 82.0 f | 89.3 d | 97.0 | 97.9 | 98.3 | 98.0 | 2.70 f |
75 °C | 67.1 c | 80.9 e | 84.5 d | 88.5 de | 92.9 b | 98.2 | 98.2 | 97.6 | 98.1 | 3.39 e | |
90 °C | 73.6 b | 83.9 d | 89.9 c | 91.2 d | 97.2 a | 98.0 | 98.2 | 98.5 | 98.5 | 4.05 d | |
SC | 60 °C | 69.0 c | 80.9 e | 83.6 d | 88.7 de | 91.9 bc | 97.3 | 98.2 | 98.4 | 98.6 | 3.33 e |
75 °C | 69.1 c | 78.2 f | 83.0 d | 87.1 e | 90.6 cd | 98.1 | 98.7 | 98.5 | 98.0 | 3.21 e | |
90 °C | 75.8 b | 87.2 c | 92.3 ab | 95.1 ab | 97.4 a | 97.6 | 98.3 | 97.9 | 98.6 | 4.57 c | |
PU | 60 °C | 85.1 a | 91.7 ab | 93.9 a | 97.8 a | 98.5 a | 98.2 | 98.0 | 98.6 | 98.2 | 5.74 a |
75 °C | 82.9 a | 93.4 a | 94.3 a | 98.3 a | 97.9 a | 97.9 | 98.8 | 98.4 | 98.1 | 5.81 a | |
90 °C | 81.5 a | 90.0 b | 91.6 bc | 92.5 bc | 98.2 a | 98.1 | 98.1 | 98.6 | 98.0 | 4.91 b | |
SEM 1 | 1.45 | 1.07 | 0.98 | 1.26 | 0.68 | 0.46 | 0.71 | 0.84 | 0.92 | 0.07 | |
Main effect | |||||||||||
Conditioning temperatures | |||||||||||
60 °C | 72.2 | 82.0 | 85.2 | 89.5 | 93.2 | 97.5 | 98.0 | 98.4 | 98.3 | 3.92 | |
75 °C | 72.9 | 84.1 | 87.3 | 91.3 | 93.9 | 98.1 | 98.6 | 98.2 | 98.1 | 4.13 | |
90 °C | 77.3 | 87.0 | 91.3 | 92.9 | 97.6 | 97.9 | 98.2 | 98.3 | 98.4 | 4.50 | |
Processing methods | |||||||||||
MC | 67.7 | 79.4 | 84.1 | 87.2 | 93.1 | 97.8 | 98.1 | 98.1 | 98.2 | 3.38 | |
SC | 71.2 | 82.1 | 86.3 | 90.2 | 93.3 | 97.7 | 98.4 | 98.3 | 98.4 | 3.71 | |
PU | 83.5 | 91.7 | 93.3 | 96.3 | 98.2 | 98.1 | 98.3 | 98.5 | 98.1 | 5.48 | |
p-value | |||||||||||
Conditioning temperatures | ** | ** | ** | ** | ** | NS | NS | NS | NS | ** | |
Processing methods | ** | ** | ** | ** | ** | NS | NS | NS | NS | ** | |
Conditioning temperatures × Processing methods | ** | * | * | * | ** | NS | NS | NS | NS | ** |
Items | TS | Amylose | Amylopectin | Amylose/amylopectin | RDS | SDS | DS | RS | |
---|---|---|---|---|---|---|---|---|---|
MC | 60 °C | 71.3 | 21.6 d | 49.7 a | 0.43 d | 58.5 b | 9.5 a | 68.0 | 3.28 a |
75 °C | 70.0 | 27.0 b | 42.9 cde | 0.63 b | 60.4 b | 6.7 c | 67.1 | 3.02 cd | |
90 °C | 70.3 | 28.9 a | 41.4 e | 0.61 a | 64.1 a | 3.2 d | 67.3 | 3.02 cd | |
SC | 60 °C | 70.2 | 24.6 c | 45.7 bcd | 0.54 c | 59.7 b | 7.5 bc | 67.3 | 3.01 cd |
75 °C | 70.9 | 29.0 a | 41.9 de | 0.65 a | 59.3 b | 9.0 ab | 68.4 | 2.62 e | |
90 °C | 70.3 | 26.7 b | 43.5 cde | 0.61 b | 64.3 a | 3.1 d | 67.4 | 2.90 d | |
PU | 60 °C | 70.6 | 24.5 c | 46.2 abc | 0.53 c | 65.6 a | 1.9 d | 67.5 | 3.22 ab |
75 °C | 70.4 | 26.8 b | 44.6 bcde | 0.60 b | 65.7 a | 3.2 d | 68.9 | 2.50 e | |
90 °C | 70.4 | 22.5 d | 47.8 ab | 0.47 d | 65.1 a | 2.2 d | 67.8 | 3.09 bc | |
SEM 1 | 0.96 | 2.13 | 1.42 | 0.02 | 0.46 | 0.35 | 0.89 | 0.09 | |
Main effect | |||||||||
Conditioning temperatures | |||||||||
60 °C | 70.7 | 23.5 | 47.2 | 0.50 | 61.2 | 6.3 | 67.6 | 3.1 | |
75 °C | 70.8 | 27.3 | 43.1 | 0.64 | 61.0 | 6.3 | 68.1 | 2.7 | |
90 °C | 70.3 | 26.8 | 44.3 | 0.59 | 64.5 | 2.8 | 67.4 | 3.0 | |
Processing methods | |||||||||
MC | 70.5 | 25.8 | 44.7 | 0.59 | 61.0 | 6.4 | 67.5 | 3.1 | |
SC | 70.5 | 26.7 | 43.8 | 0.62 | 61.3 | 6.5 | 67.7 | 2.8 | |
PU | 70.8 | 24.8 | 46.2 | 0.54 | 65.5 | 2.4 | 67.9 | 2.9 | |
p-value | |||||||||
Conditioning temperatures | NS | ** | ** | ** | ** | ** | NS | ** | |
Processing methods | NS | ** | ** | ** | ** | ** | NS | ** | |
Conditioning temperatures × Processing methods | NS | * | * | * | ** | ** | NS | * |
Items | Starter (1–21 d) | Grower (22–42 d) | |||||
---|---|---|---|---|---|---|---|
ADG (g) | ADFI (g) | F/G | ADG (g) | ADFI (g) | F/G | ||
MC | 60 °C | 37.3 | 54.7 | 1.47 | 85.3 | 188 | 2.21 |
75 °C | 36.6 | 56.3 | 1.54 | 82.1 | 187 | 2.27 | |
90 °C | 37.1 | 58.1 | 1.57 | 85.0 | 192 | 2.26 | |
SC | 60 °C | 38.9 | 55.1 | 1.42 | 86.0 | 185 | 2.15 |
75 °C | 38.1 | 55.7 | 1.46 | 85.8 | 182 | 2.12 | |
90 °C | 37.6 | 58.9 | 1.57 | 83.0 | 192 | 2.31 | |
PU | 60 °C | 38.6 | 57.9 | 1.50 | 89.3 | 203 | 2.27 |
75 °C | 37.9 | 57.6 | 1.52 | 87.2 | 204 | 2.34 | |
90 °C | 36.8 | 57.6 | 1.56 | 86.1 | 207 | 2.40 | |
SEM 1 | 0.23 | 0.81 | 0.04 | 1.35 | 2.42 | 0.03 | |
Main effect | |||||||
Conditioning temperatures | |||||||
60 °C | 38.3 | 55.9 b | 1.46 c | 86.9 a | 192 | 2.21 b | |
75 °C | 37.5 | 56.5 b | 1.51 b | 85.0 ab | 191 | 2.25 b | |
90 °C | 37.2 | 58.2 a | 1.57 a | 84.7 b | 197 | 2.32 a | |
Processing methods | |||||||
MC | 37.0 b | 56.4 b | 1.52 a | 84.1 b | 189 b | 2.25 b | |
SC | 38.2 a | 56.6 b | 1.48 b | 84.9 b | 186 b | 2.19 c | |
PU | 37.8 ab | 57.7 a | 1.53 a | 87.5 a | 205 a | 2.34 a | |
p-value | |||||||
Conditioning temperatures | NS | * | * | * | NS | ** | |
Processing methods | * | * | * | ** | * | ** | |
Conditioning temperatures × Processing methods | NS | NS | NS | NS | NS | NS |
Items | Starter (d 21, %) | Grower (d 42, %) | |||||
---|---|---|---|---|---|---|---|
DM | CP | Starch | DM | CP | Starch | ||
MC | 60 °C | 68.2 | 73.4 bc | 94.4 c | 75.9 | 76.9 | 95.1 bc |
75 °C | 71.1 | 72.2 c | 93.3 c | 74.6 | 75.2 | 94.2 c | |
90 °C | 72.3 | 71.3 c | 95.9 bc | 80.7 | 73.1 | 96.4 ab | |
SC | 60 °C | 71.2 | 76.2 ab | 97.6 a | 80.5 | 76.7 | 97.3 a |
75 °C | 72.1 | 73.8 bc | 97.9 a | 75.7 | 74.1 | 97.2 a | |
90 °C | 72.9 | 74.5 b | 97.9 a | 76.0 | 73.3 | 97.0 a | |
PU | 60 °C | 71.6 | 78.1 a | 96.6 b | 76.9 | 78.1 | 97.2 a |
75 °C | 73.8 | 76.2 ab | 96.8 b | 75.1 | 76.4 | 97.1 a | |
90 °C | 69.2 | 73.6 bc | 96.2 b | 74.3 | 75.9 | 97.4 a | |
SEM 1 | 0.57 | 0.76 | 0.22 | 0.66 | 0.67 | 0.38 | |
Main effect | |||||||
Conditioning temperatures | |||||||
60 °C | 70.3 | 75.9 | 96.2 | 77.7 | 77.2 a | 96.5 | |
75 °C | 72.3 | 74.1 | 95.9 | 75.1 | 75.2 b | 96.1 | |
90 °C | 71.4 | 73.1 | 96.6 | 77.0 | 74.1 b | 96.9 | |
Processing methods | |||||||
MC | 70.5 | 72.3 | 94.5 | 77.0 | 75.1 | 95.2 | |
SC | 72.0 | 74.8 | 97.7 | 77.3 | 74.7 | 97.1 | |
PU | 71.5 | 76.0 | 96.5 | 75.4 | 76.8 | 97.2 | |
p-value | |||||||
Conditioning temperatures | NS | * | NS | NS | * | NS | |
Processing methods | NS | ** | * | NS | NS | * | |
Conditioning temperatures × Processing methods | NS | * | * | NS | NS | * |
Items | Starter (18–21 d) | Grower (38–41 d) | |||||
---|---|---|---|---|---|---|---|
DM (%) | Nitrogen Retention (%) | AME (MJ/Kg) | DM (%) | Nitrogen Retention (%) | AME (MJ/Kg) | ||
MC | 60 °C | 71.2 | 65.2 | 13.01 | 71.6 | 67.2 | 13.34 b |
75 °C | 75.2 | 68.2 | 13.03 | 72.5 | 69.7 | 13.35 b | |
90 °C | 73.9 | 68.8 | 12.94 | 72.1 | 74.9 | 13.28 bc | |
SC | 60 °C | 75.6 | 69.2 | 13.22 | 73.4 | 71.2 | 13.37 b |
75 °C | 74.9 | 66.8 | 13.16 | 71.3 | 69.7 | 13.51 ab | |
90 °C | 76.3 | 69.5 | 12.92 | 72.4 | 68.7 | 13.42 b | |
PU | 60 °C | 75.3 | 73.6 | 13.13 | 73.3 | 74.4 | 13.65 a |
75 °C | 73.4 | 76.2 | 13.06 | 70.8 | 66.1 | 13.28 bc | |
90 °C | 73.0 | 75.6 | 13.05 | 69.5 | 65.9 | 13.23 c | |
SEM 1 | 0.65 | 1.24 | 0.26 | 0.35 | 1.17 | 0.50 | |
Main effect | |||||||
Conditioning temperatures | |||||||
60 °C | 74.1 | 69.27 | 13.12 a | 72.80 | 70.96 | 13.45 | |
75 °C | 74.5 | 70.40 | 13.08 a | 71.56 | 68.54 | 13.38 | |
90 °C | 74.4 | 71.30 | 12.97 b | 71.35 | 69.86 | 13.31 | |
Processing methods | |||||||
MC | 73.4 | 67.33 b | 12.99 b | 72.10 | 70.62 | 13.32 | |
SC | 75.6 | 68.50 b | 13.10 a | 72.39 | 69.88 | 13.43 | |
PU | 73.9 | 75.13 a | 13.08 a | 71.23 | 68.88 | 13.39 | |
p-value | |||||||
Conditioning temperatures | NS | NS | * | NS | NS | * | |
Processing methods | NS | * | * | NS | NS | * | |
Conditioning temperatures × processing methods | NS | NS | NS | NS | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Du, B.; Nian, F.; Ru, Y.; Sun, L.; Qin, S.; Tang, D. Effects of Processing Methods and Conditioning Temperatures on the Cassava Starch Digestibility and Growth Performance of Broilers. Animals 2023, 13, 1373. https://doi.org/10.3390/ani13081373
Wang X, Du B, Nian F, Ru Y, Sun L, Qin S, Tang D. Effects of Processing Methods and Conditioning Temperatures on the Cassava Starch Digestibility and Growth Performance of Broilers. Animals. 2023; 13(8):1373. https://doi.org/10.3390/ani13081373
Chicago/Turabian StyleWang, Xuan, Baolong Du, Fang Nian, Yingjun Ru, Likun Sun, Shizhen Qin, and Defu Tang. 2023. "Effects of Processing Methods and Conditioning Temperatures on the Cassava Starch Digestibility and Growth Performance of Broilers" Animals 13, no. 8: 1373. https://doi.org/10.3390/ani13081373
APA StyleWang, X., Du, B., Nian, F., Ru, Y., Sun, L., Qin, S., & Tang, D. (2023). Effects of Processing Methods and Conditioning Temperatures on the Cassava Starch Digestibility and Growth Performance of Broilers. Animals, 13(8), 1373. https://doi.org/10.3390/ani13081373