Assessing Alternatives to Locomotion Scoring for Detecting Lameness in Dairy Cattle in Tanzania: Infrared Thermography
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Animals
2.2. Study Visits
2.3. Locomotion Scoring
2.4. Infrared Thermography
2.5. Statistical Data Analyses
3. Results
3.1. Effect of Foot and Foot Zone on Skin Temperature
3.1.1. Infrared Thermography versus Locomotion Scoring
3.1.2. Association of Foot Temperatures and Locomotion Scores
3.1.3. A Receiver Operating Characteristic (ROC) Analysis
4. Discussion
4.1. Suitability of IRT for Measuring Foot Skin Temperature during Milking
4.2. Effect of Claw and Zone on Skin Foot Temperature
4.3. Infrared Thermography as a Predictor of Locomotion Score
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leach, K.A.; Tisdall, D.A.; Bell, N.J.; Main, D.C.J.; Green, L.E. The effects of early treatment for hindlimb lameness in dairy cows on four commercial UK farms. Vet. J. 2012, 193, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Ghotoorlar, S.M.; Ghamsari, S.M.; Nowrouzian, I.; Ghidary, S.S. Lameness scoring system for dairy cows using force plates and artificial intelligence. Vet. Rec. 2012, 170, 126. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Wilson, J. Early detection and prompt effective treatment of lameness in dairy cattle. Livestock 2021, 26, 115–121. [Google Scholar] [CrossRef]
- Newsome, R.; Green, M.J.; Bell, N.J.; Chagunda, M.G.G.; Mason, C.S.; Rutland, C.S.; Sturrock, C.J.; Whay, H.R.; Huxley, J.N. Linking bone development on the caudal aspect of the distal phalanx with lameness during life. J. Dairy Sci. 2016, 99, 4512–4525. [Google Scholar] [CrossRef] [PubMed]
- Schlageter-Tello, A.A.; Bokkers, E.A.; Koerkamp, P.W.G.; Van Hertem, T.; Viazzi, S.; Romanini, C.E.; Halachmi, I.; Bahr, C.; Berckmans, D.; Lokhorst, K. Manual and automatic locomotion scoring systems in dairy cows: A review. Prev. Vet. Med. 2014, 116, 12–25. [Google Scholar] [CrossRef]
- Ramanoon, S.Z.; Sadiq, M.B.; Shaik Mossadeq, W.; Mansor, R.; Syed-Hussain, S. The impact of lameness on dairy cattle welfare: Growing need for objective methods of detecting lame cows and assessment of associated pain. In Animal Welfare; IntechOpen: London, UK, 2018; pp. 51–72. [Google Scholar]
- Van Nuffel, A.; Zwertvaegher, I.; Van Weyenberg, S.; Pluym, L.; Pastell, M.; Thorup, V.M.; Sonck, B.; Saeys, W. Lameness detection in dairy cows: Part 1. How to distinguish between non-lame and lame cows based on differences in locomotion or behavior. Animals 2015, 5, 838–860. [Google Scholar] [CrossRef]
- Schlageter-Tello, A.A.; Bokkers, E.A.; Koerkamp, P.W.G.; Van Hertem, T.; Viazzi, S.; Romanini, C.E.; Halachmi, I.; Bahr, C.; Berckmans, D.; Lokhorst, K. Comparison of locomotion scoring for dairy cows by experienced and inexperienced raters using live or video observation methods. Anim. Welf. 2015, 24, 69–79. [Google Scholar] [CrossRef]
- Schlageter-Tello, A.; Van Hertem, T.; Bokkers, E.A.M.; Viazzi, S.; Bahr, C.; Lokhorst, K. Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows. J. Dairy Sci. 2018, 101, 6322–6335. [Google Scholar] [CrossRef]
- Eddy, A.L.; Van Hoogmoed, L.M.; Snyder, J.R. The role of thermography in the management of equine lameness. Vet. J. 2001, 162, 172–181. [Google Scholar] [CrossRef]
- Berry, R.J.; Kennedy, A.D.; Scott, S.L.; Kyle, B.L.; Schaefer, A.L. Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: Potential for mastitis detection. Can. J. Anim. Sci. 2003, 83, 687–693. [Google Scholar] [CrossRef]
- Rainwater-Lovett, K.; Pacheco, J.M.; Packer, C.; Rodriguez, L.L. Detection of foot-and-mouth disease virus infected cattle using infrared thermography. Vet. J. 2009, 180, 317–324. [Google Scholar] [CrossRef]
- Alsaaod, M.; Syring, C.; Dietrich, J.; Doherr, M.G.; Gujan, T.; Steiner, A. A field trial of infrared thermography as a non-invasive diagnostic tool for early detection of digital dermatitis in dairy cows. Vet. J. 2014, 199, 281–285. [Google Scholar] [CrossRef]
- Harris-Bridge, G.; Young, L.; Handel, I.; Farish, M.; Mason, C.; Mitchell, M.A.; Haskell, M.J. The use of infrared thermography for detecting digital dermatitis in dairy cattle: What is the best measure of temperature and foot location to use? Vet. J. 2018, 237, 26–33. [Google Scholar] [CrossRef]
- Fabbri, G.; Fiore, E.; Piccione, G.; Giudice, E.; Gianesella, M.; Morgante, M.; Armato, L.; Bonato, O.; Giambelluca, S.; Arfuso, F. Detection of digital and interdigital dermatitis in Holstein Friesian dairy cows by means of infrared thermography. Large Anim. Rev. 2020, 26, 113–116. [Google Scholar]
- Alsaaod, M.; Büscher, W. Detection of hoof lesions using digital infrared thermography in dairy cows. J. Dairy Sci. 2012, 95, 735–742. [Google Scholar] [CrossRef]
- Wilhelm, K.; Wilhelm, J.; Fürll, M. Use of thermography to monitor sole haemorrhages and temperature distribution over the claws of dairy cattle. Vet. Rec. 2015, 176, 146. [Google Scholar] [CrossRef] [PubMed]
- Orman, A.; Endres, M.I. Use of thermal imaging for identification of foot lesions in dairy cattle. Acta Agric. Scand. Sect. A—Anim. Sci. 2016, 66, 1–7. [Google Scholar] [CrossRef]
- Nikkhah, A.; Plaizier, J.C.; Einarson, M.S.; Berry, R.J.; Scott, S.L.; Kennedy, A.D. Infrared thermography and visual examination of hooves of dairy cows in two stages of lactation. J. Dairy Sci. 2005, 88, 2749–2753. [Google Scholar] [CrossRef]
- Bobić, T.; Mijić, P.; Gantner, V.; Glavaš, H.; Gregić, M. The effects of parity and stage of lactation on hoof temperature of dairy cows using a thermovision camera. J. Cent. Eur. Agric. 2018, 19, 777–783. [Google Scholar] [CrossRef]
- Main, D.C.; Stokes, J.E.; Reader, J.D.; Whay, H.R. Detecting hoof lesions in dairy cattle using a hand-held thermometer. Vet. Rec. J. Br. Vet. Assoc. 2012, 171, 504. [Google Scholar] [CrossRef]
- Wang, F.-K.; Shih, J.-Y.; Juan, P.-H.; Su, Y.-C.; Wang, Y.-C. Non-invasive cattle body temperature measurement using infrared thermography and auxiliary sensors. Sensors 2021, 21, 2425. [Google Scholar] [CrossRef]
- Gloster, J.; Ebert, K.; Gubbins, S.; Bashiruddin, J.; Paton, D.J. Normal variation in thermal radiated temperature in cattle: Implications for foot-and-mouth disease detection. BMC Vet. Res. 2011, 7, 73. [Google Scholar] [CrossRef]
- Werema, C.W.; Laven, L.; Mueller, K.; Laven, R. Evaluating Alternatives to Locomotion Scoring for Lameness Detection in Pasture-Based Dairy Cows in New Zealand: Infra-Red Thermography. Animals 2021, 11, 3473. [Google Scholar] [CrossRef]
- DairyNZ. DairyNZ Lameness Scoring. Available online: https://www.dairynz.co.nz/animal/cow-health/lameness/lameness-scoring/ (accessed on 5 April 2023).
- AHDB. AHDB Dairy UK Mobility with AHDB Dairy. Available online: https://ahdb.org.uk/knowledge-library/mobilityscoring-for-dairy-cows (accessed on 5 April 2023).
- Stokes, J.E.; Leach, K.A.; Main, D.C.J.; Whay, H.R. An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet. J. 2012, 193, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Whay, H.; Bell, M.; Main, D. Validation of lame limb identification through thermal imaging. In Proceedings of the 13th International Symposium and 5th Conference on Lameness in Ruminants, Maribor, Slovenia, 11–15 February 2004. [Google Scholar]
- Abdi, H. Bonferroni and Šidák corrections for multiple comparisons. Encycl. Meas. Stat. 2007, 3, 103–107. [Google Scholar]
- Astivia, O.L.O.; Zumbo, B.D. Heteroskedasticity in Multiple Regression Analysis: What it is, How to Detect it and How to Solve it with Applications in R and SPSS. Pract. Assess. Res. Eval. 2019, 24, 1. [Google Scholar]
- Murray, R.; Downham, D.; Clarkson, M.; Faull, W.; Hughes, J.; Manson, F.; Merritt, J.; Russell, W.; Sutherst, J.; Ward, W. Epidemiology of lamenessin dairy cattle: Description and analysis of foot lesions. Vet. Rec. 1996, 138, 586–591. [Google Scholar] [CrossRef]
- Chesterton, R.; Lawrence, K.; Laven, R. A descriptive analysis of the foot lesions identified during veterinary treatment for lameness on dairy farms in north Taranaki. N. Z. Vet. J. 2008, 56, 130–138. [Google Scholar] [CrossRef]
- Fjeldaas, T.; Knappe-Poindecker, M.; Bøe, K.; Larssen, R. Water footbath, automatic flushing, and disinfection to improve the health of bovine feet. J. Dairy Sci. 2014, 97, 2835–2846. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.R.; Olivares, F.J.; Descouvieres, P.T.; Werner, M.P.; Tadich, N.A.; Bustamante, H.A. Thermographic assessment of hoof temperature in dairy cows with different mobility scores. Livest. Sci. 2016, 184, 92–96. [Google Scholar] [CrossRef]
- Lin, Y.C.; Mullan, S.; Main, D.C. Optimising lameness detection in dairy cattle by using handheld infrared thermometers. Vet. Med. Sci. 2018, 4, 218–226. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.; Byrne, D.; O’Connor, A.; Shalloo, L. Invited review: Cattle lameness detection with accelerometers. J. Dairy Sci. 2020, 103, 3895–3911. [Google Scholar] [CrossRef] [PubMed]
Foot/Zone * | Description |
---|---|
Mean temperature | Average temperature, across both feet (all 14 zones) |
Hottest zone | Highest zone temperature, across both feet (all 14 zones) |
Hottest zone 4 | The highest zone 4 temperature on either foot |
Hottest coronary band (CB) | The highest zone 1 or 5 temperature on either foot |
Hottest above the coronary band zone (ACB) | The highest zone 2 or 6 temperature on either foot |
Hottest zone below the accessory digit (BAD) | The highest zone 3 or 7 temperature on either foot |
Farm Name | Locomotion Score | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | Total | |
1 | 11 (21.2) | 24 (46.1) | 12 (23.1) | 5 (9.6) | 52 |
2 | 15 (25.9) | 25 (43.1) | 15 (25.9) | 3 (5.1) | 58 |
3 | 13 (21.7) | 26 (43.3) | 14 (23.3) | 7 (1.7) | 60 |
Total | 39 (23.0) | 75 (44.1) | 41 (24.1) | 15 (8.8) | 170 |
Zone | Mean | 95% Confidence Interval | |
---|---|---|---|
Lower | Upper | ||
1 | 37.82 | 37.78 | 37.87 |
2 | 37.02 | 36.96 | 37.09 |
3 | 37.46 | 37.45 | 37.47 |
4 | 38.31 | 38.29 | 38.32 |
5 | 37.58 | 37.52 | 37.65 |
6 | 36.74 | 36.70 | 36.77 |
7 | 37.30 | 37.26 | 37.33 |
(I) Zone | (J) Zone | Mean Difference (I − J) | 95% Confidence Interval | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
1 | 2 | 0.80 | 0.53 | 1.08 |
3 | 0.36 | 0.09 | 0.64 | |
5 | 0.24 | −0.03 | 0.52 | |
6 | 1.09 | 0.81 | 1.36 | |
7 | 0.53 | 0.25 | 0.80 | |
2 | 6 | 0.28 | 0.01 | 0.56 |
3 | 2 | 0.44 | 0.17 | 0.72 |
6 | 0.72 | 0.45 | 1.00 | |
7 | 0.16 | −0.11 | 0.44 | |
4 | 1 | 0.48 | 0.21 | 0.76 |
2 | 1.29 | 1.01 | 1.56 | |
3 | 0.85 | 0.57 | 1.12 | |
5 | 0.73 | 0.45 | 1.00 | |
6 | 1.57 | 1.30 | 1.85 | |
7 | 1.01 | 0.74 | 1.30 | |
5 | 2 | 0.56 | 0.29 | 0.83 |
3 | 0.12 | −0.16 | 0.40 | |
6 | 0.84 | 0.57 | 1.12 | |
7 | 0.28 | 0.01 | 0.56 | |
7 | 2 | 0.28 | 0.00 | 0.55 |
6 | 0.56 | 0.29 | 0.84 |
Locomotion Score | Mean | 95% Confidence Interval | |
---|---|---|---|
Lower | Upper | ||
0 | 36.45 | 36.12 | 36.76 |
1 | 37.35 | 37.19 | 37.51 |
2 | 38.19 | 38.00 | 38.38 |
3 | 38.81 | 38.63 | 38.99 |
Temperature Measure | (I) LS | (J) LS | Mean Difference (I − J) | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
MT | 1 | 0 | 0.91 | 0.50 | 1.31 |
2 | 0 | 1.74 | 1.28 | 2.20 | |
1 | 0.83 | 0.43 | 1.23 | ||
3 | 0 | 2.39 | 1.76 | 3.01 | |
1 | 1.48 | 0.90 | 2.06 | ||
2 | 0.65 | 0.03 | 1.27 | ||
Hottest zone | 1 | 0 | 0.83 | 0.42 | 1.24 |
2 | 0 | 1.56 | 1.10 | 2.03 | |
1 | 0.73 | 0.33 | 1.13 | ||
3 | 0 | 2.26 | 1.63 | 2.90 | |
1 | 1.43 | 0.84 | 2.02 | ||
2 | 0.70 | 0.07 | 1.33 | ||
Hottest zone 4 | 1 | 0 | 0.89 | 0.44 | 1.35 |
2 | 0 | 1.57 | 1.06 | 2.09 | |
1 | 0.68 | 0.23 | 1.12 | ||
3 | 0 | 2.36 | 1.66 | 3.06 | |
1 | 1.47 | 0.82 | 2.11 | ||
2 | 0.79 | 0.09 | 1.48 | ||
Hottest CB | 1 | 0 | 0.81 | 0.37 | 1.25 |
2 | 0 | 1.60 | 1.10 | 2.09 | |
1 | 0.79 | 0.36 | 1.22 | ||
3 | 0 | 2.33 | 1.65 | 3.00 | |
1 | 1.52 | 0.89 | 2.14 | ||
2 | 0.73 | 0.06 | 1.40 | ||
Hottest zone ACB | 1 | 0 | 0.82 | 0.38 | 1.26 |
2 | 0 | 1.68 | 1.18 | 2.19 | |
1 | 0.86 | 0.43 | 1.30 | ||
3 | 0 | 2.26 | 1.58 | 2.94 | |
1 | 1.44 | 0.80 | 2.07 | ||
2 | 0.57 | −0.10 | 1.25 | ||
Hottest zone BAD | 1 | 0 | 0.87 | 0.47 | 1.27 |
2 | 0 | 1.64 | 1.18 | 2.10 | |
1 | 0.77 | 0.37 | 1.17 | ||
3 | 0 | 2.36 | 1.74 | 2.98 | |
1 | 1.49 | 0.91 | 2.07 | ||
2 | 0.72 | 0.11 | 1.34 |
Model Parameter | 95% Confidence Interval | ||
---|---|---|---|
Lower Bound | Upper Bound | ||
Mean temperature (intercept) | 38.66 | 38.39 | 38.93 |
Locomotion score * | 0.57 | 0.46 | 0.70 |
Hottest zone (intercept) | 40.06 | 39.81 | 40.31 |
Locomotion score * | 0.57 | 0.46 | 0.70 |
Hottest zone 4 (intercept) | 39.81 | 39.56 | 40.07 |
Locomotion score * | 0.70 | 0.57 | 0.87 |
Hottest coronary band (intercept) | 39.47 | 39.18 | 39.75 |
Locomotion score * | 0.66 | 0.53 | 0.81 |
Hottest zone ACB (intercept) | 38.47 | 38.18 | 38.76 |
Locomotion score * | 0.67 | 0.54 | 0.83 |
Hottest zone BAD (intercept) | 39.13 | 38.90 | 39.37 |
Locomotion score * | 0.56 | 0.46 | 0.70 |
Temperature Measure 1 | Optimal Threshold (°C) | AUC (95% CI) | Specificity (95% CI) | Sensitivity (95% CI) | PPV (95% CI) * | NPV (95% CI) * |
---|---|---|---|---|---|---|
Mean temperature | 38.0 | 0.88 (0.83–0.93) | 86.0 (78.2–91.8) | 73.2 (59.7–84.2) | 71.9 (61.3–80.6) | 86.7 (80.8–91.0) |
Hottest zone | 39.0 | 0.85 (0.79–0.91) | 80.7 (72.3–87.5) | 78.6 (65.6–88.4) | 66.7 (57.3–74.9) | 88.5 (82.2–92.7) |
Hottest zone 4 | 38.9 | 0.84 (0.78–0.90) | 79.8 (71.3–86.8) | 71.4 (57.8–82.7) | 63.5 (53.8–72.2) | 85.1 (78.8–89.7) |
Hottest CB | 38.6 | 0.85 (0.79–0.91) | 82.5 (74.2–88.9) | 75.0 (61.6–85.6) | 67.7 (57.8–76.3) | 87.0 (80.9–91.4) |
Hottest zone ACB | 38.1 | 0.87 (0.81–0.92) | 86.8 (79.2–92.4) | 69.6 (55.9–81.2) | 72.2 (61.1–81.1) | 85.3 (79.6–89.7) |
Hottest zone BAD | 38.7 | 0.86 (0.80–0.92) | 93.9 (87.8–97.5) | 64.3 (50.4–76.6) | 83.7 (71.0–91.5) | 84.3 (79.0–88.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werema, C.W.; Laven, L.J.; Mueller, K.R.; Laven, R.A. Assessing Alternatives to Locomotion Scoring for Detecting Lameness in Dairy Cattle in Tanzania: Infrared Thermography. Animals 2023, 13, 1372. https://doi.org/10.3390/ani13081372
Werema CW, Laven LJ, Mueller KR, Laven RA. Assessing Alternatives to Locomotion Scoring for Detecting Lameness in Dairy Cattle in Tanzania: Infrared Thermography. Animals. 2023; 13(8):1372. https://doi.org/10.3390/ani13081372
Chicago/Turabian StyleWerema, Chacha W., Linda J. Laven, Kristina R. Mueller, and Richard A. Laven. 2023. "Assessing Alternatives to Locomotion Scoring for Detecting Lameness in Dairy Cattle in Tanzania: Infrared Thermography" Animals 13, no. 8: 1372. https://doi.org/10.3390/ani13081372
APA StyleWerema, C. W., Laven, L. J., Mueller, K. R., & Laven, R. A. (2023). Assessing Alternatives to Locomotion Scoring for Detecting Lameness in Dairy Cattle in Tanzania: Infrared Thermography. Animals, 13(8), 1372. https://doi.org/10.3390/ani13081372