Colostrum Quality in Different Goat Breeds Reared in Northern Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Enrolled
2.2. Colostrum Collection
2.3. Colostrum Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scherf, B.; Pilling, D. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO: Rome, Italy, 2015; ISBN 978-92-5-108820-3. [Google Scholar]
- Battaglini, L.; Bovolenta, S.; Gusmeroli, F.; Salvador, S.; Sturaro, E. Environmental Sustainability of Alpine Livestock Farms. Ital. J. Anim. Sci. 2014, 13, 431–443. [Google Scholar] [CrossRef]
- Bigi, D.; Zanon, A. Atlante Delle Razze Autoctone, Bovini, Equini, Ovicaprini, Suini Allevati in Italia; Edagricole, Ed.; II; Edagricole: Milano, Italy, 2020. [Google Scholar]
- Curone, G.; Filipe, J.; Cremonesi, P.; Trevisi, E.; Amadori, M.; Pollera, C.; Castiglioni, B.; Turin, L.; Tedde, V.; Vigo, D.; et al. What We Have Lost: Mastitis Resistance in Holstein Friesians and in a Local Cattle Breed. Res. Vet. Sci. 2018, 116, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Curone, G.; Filipe, J.; Cremonesi, P.; Piccioli-Cappelli, F.; Trevisi, E.; Amadori, M. Relevance of the Dairy Cow Biodiversity in the Development of a Profitable and Environmentally Sustainable Livestock. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14, 1–11. [Google Scholar] [CrossRef]
- ASSONAPA Associazione Nazionale Della Pastorizia. Available online: http://www.assonapa.it/ (accessed on 1 August 2023).
- FAO Domestic Animal Diversity Information System (DAD-IS). Available online: http://www.fao.org/dad-is/en/ (accessed on 1 February 2022).
- Agradi, S.; Menchetti, L.; Curone, G.; Faustini, M.; Vigo, D.; Villa, L.; Zanzani, S.A.; Postoli, R.; Kika, T.S.; Riva, F.; et al. Comparison of Female Verzaschese and Camosciata Delle Alpi Goats’ Hematological Parameters in The Context of Adaptation to Local Environmental Conditions in Semi-Extensive Systems in Italy. Animals 2022, 12, 1703. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Curone, G.; Chandler, T.L.; Moroni, P.; Cha, J.; Bhawal, R.; Zhang, S. Heat Treatment of Bovine Colostrum: I. Effects on Bacterial and Somatic Cell Counts, Immunoglobulin, Insulin, and IGF-I Concentrations, as Well as the Colostrum Proteome. J. Dairy Sci. 2020, 103, 9368–9383. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Curone, G.; Chandler, T.L.; Sipka, A.; Cha, J.; Bhawal, R.; Zhang, S. Heat Treatment of Bovine Colostrum: II. Effects on Calf Serum Immunoglobulin, Insulin, and IGF-I Concentrations, and the Serum Proteome. J. Dairy Sci. 2020, 103, 9384–9406. [Google Scholar] [CrossRef]
- Uruakpa, F.O.; Ismond, M.A.H.; Akobundu, E.N.T. Colostrum and Its Benefits: A Review. Nutr. Res. 2002, 22, 755–767. [Google Scholar] [CrossRef]
- Bergman, A.J.; Turner, C.W. The Composition of the Colostrum of the Dairy Goat. J. Dairy Sci. 1937, 20, 37–45. [Google Scholar] [CrossRef]
- Rudovsky, A.; Locher, L.; Zeyner, A.; Sobiraj, A.; Wittek, T. Measurement of Immunoglobulin Concentration in Goat Colostrum. Small Rumin. Res. 2008, 74, 265–269. [Google Scholar] [CrossRef]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Immunoglobulin G Content and Colostrum Composition of Different Goat and Sheep Breeds in Switzerland and Germany. J. Dairy Sci. 2019, 102, 5542–5549. [Google Scholar] [CrossRef]
- Sánchez-Macías, D.; Moreno-Indias, I.; Castro, N.; Morales-delaNuez, A.; Argüello, A. From Goat Colostrum to Milk: Physical, Chemical, and Immune Evolution from Partum to 90 Days Postpartum. J. Dairy Sci. 2014, 97, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Arguello, A.; Castri, N.; Alvarez, S.; Capote, J. Effects of the Number of Lactations and Litter Size on Chemical Composition and Physical Characteristics of Goat Colostrum. Small Rumin. Res. 2006, 64, 53–59. [Google Scholar] [CrossRef]
- Romero, T.; Beltran, M.C.; Rodriguez, M.; Marti De Olives, A.; Molina, M.P. Short Communication: Goat Colostrum Quality: Litter Size and Lactation Number Effects. J. Dairy Sci. 2013, 96, 7526–7531. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Indias, I.; Sánchez-Macías, D.; Castro, N.; Morales-delaNuez, A.; Hernández-Castellano, L.E.; Capote, J.; Argüello, A. Chemical Composition and Immune Status of Dairy Goat Colostrum Fractions during the First 10h after Partum. Small Rumin. Res. 2012, 103, 220–224. [Google Scholar] [CrossRef]
- Keskin, M.; Güler, Z.; Gul, S.; Biçer, O. Changes in Gross Chemical Compositions of Ewe and Goat Colostrum during Ten Days Postpartum. J. Appl. Anim. Res. 2007, 32, 25–28. [Google Scholar] [CrossRef]
- Yang, M.; Zou, Y.; Wu, Z.H.; Li, S.L.; Cao, Z.J. Colostrum Quality Affects Immune System Establishment and Intestinal Development of Neonatal Calves. J. Dairy Sci. 2015, 98, 7153–7163. [Google Scholar] [CrossRef]
- Levieux, D.; Morgan, F.; Geneix, N.; Masle, I.; Bouvier, F. Caprine Immunoglobulin G, β-Lactoglobulin, α-Lactalbumin and Serum Albumin in Colostrum and Milk during the Early Post Partum Period. J. Dairy Res. 2002, 69, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Claps, S.; Di Napoli, M.A.; Caputo, A.R.; Rufrano, D.; Sepe, L.; Di Trana, A. Factor Affecting the 3’ Sialyllactose, 6’ Sialyllactose and Disialyllactose Content in Caprine Colostrum and Milk: Breed and Parity. Small Rumin. Res. 2016, 134, 8–13. [Google Scholar] [CrossRef]
- Claps, S.; Di Napoli, M.A.; Sepe, L.; Caputo, A.R.; Rufrano, D.; Di Trana, A.; Annicchiarico, G.; Fedele, V. Sialyloligosaccharides Content in Colostrum and Milk of Two Goat Breeds. Small Rumin. Res. 2014, 121, 116–119. [Google Scholar] [CrossRef]
- Zhou, A.; Liu, G.; Jiang, X. Characteristic of the Components and the Metabolism Mechanism of Goat Colostrum: A Review. Anim. Biotechnol. 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Xu, W.; Mann, S.; Curone, G. Kenéz Heat Treatment of Bovine Colostrum: Effects on Colostrum Metabolome and Serum Metabolome of Calves. Animal 2021, 15, 100180. [Google Scholar] [CrossRef] [PubMed]
- Filipescu, I.E.; Leonardi, L.; Menchetti, L.; Guelfi, G.; Traina, G.; Casagrande-Proietti, P.; Piro, F.; Quattrone, A.; Barbato, O.; Brecchia, G. Preventive Effects of Bovine Colostrum Supplementation in TNBS-Induced Colitis in Mice. PLoS ONE 2018, 13, e0202929. [Google Scholar] [CrossRef] [PubMed]
- Menchetti, L.; Traina, G.; Tomasello, G.; Casagrande-Proietti, P.; Leonardi, L.; Barbato, O.; Brecchia, G. Potential Benefits of Colostrum in Gastrointestinal Diseases. Front. Biosci. 2016, 8, 331–351. [Google Scholar] [CrossRef]
- Menchetti, L.; Curone, G.; Filipescu, I.E.; Barbato, O.; Leonardi, L.; Guelfi, G.; Traina, G.; Casagrande-Proietti, P.; Riva, F.; Casano, A.B.; et al. The Prophylactic Use of Bovine Colostrum in a Murine Model of TNBS-Induced Colitis. Animals 2020, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Rachman, A.B.; Maheswari, R.R.A.; Bachroem, M.S. Composition and Isolation of Lactoferrin from Colostrum and Milk of Various Goat Breeds. Procedia Food Sci. 2015, 3, 200–210. [Google Scholar] [CrossRef]
- Hiss, S.; Meyer, T.; Sauerwein, H. Lactoferrin Concentrations in Goat Milk throughout Lactation. Small Rumin. Res. 2008, 80, 87–90. [Google Scholar] [CrossRef]
- Yang, X.Y.; Chen, J.P.; Zhang, F.X. Research on the Chemical Composition of Saanen Goat Colostrum. Int. J. Dairy Technol. 2009, 62, 500–504. [Google Scholar] [CrossRef]
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals 2019, 9, 1070. [Google Scholar] [CrossRef]
- Sandrucci, A.; Bava, L.; Tamburini, A.; Gislon, G.; Zucali, M. Management Practices and Milk Quality in Dairy Goat Farms in Northern Italy. Ital. J. Anim. Sci. 2019, 18, 1–12. [Google Scholar] [CrossRef]
- Nicoloso, L.; Bomba, L.; Colli, L.; Negrini, R.; Milanesi, M.; Mazza, R.; Sechi, T.; Frattini, S.; Talenti, A.; Coizet, B.; et al. Genetic Diversity of Italian Goat Breeds Assessed with a Medium-Density SNP Chip. Genet. Sel. Evol. 2015, 47, 1–10. [Google Scholar] [CrossRef]
- Sponseller, J.K.; Steele, J.A.; Schmidt, D.J.; Kim, H.B.; Beamer, G.; Sun, X.; Tzipori, S. Hyperimmune Bovine Colostrum as a Novel Therapy to Combat Clostridium Difficile Infection. J. Infect. Dis. 2015, 211, 1334–1341. [Google Scholar] [CrossRef] [PubMed]
- Otto, W.; Najnigier, B.; Stelmasiak, T.; Robins-Browne, R.M. Randomized Control Trials Using a Tablet Formulation of Hyperimmune Bovine Colostrum to Prevent Diarrhea Caused by Enterotoxigenic Escherichia Coli in Volunteers. Scand. J. Gastroenterol. 2011, 46, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Florén, C.H.; Chinenye, S.; Elfstrand, L.; Hagman, C.; Ihse, I. ColoPlus, a New Product Based on Bovine Colostrum, Alleviates HIV-Associated Diarrhoea. Scand. J. Gastroenterol. 2006, 41, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Agradi, S.; Cremonesi, P.; Menchetti, L.; Balzaretti, C.; Severgnini, M.; Riva, F.; Castiglioni, B.; Draghi, S.; Di Giancamillo, A.; Castrica, M.; et al. Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits. Animals 2023, 13, 976. [Google Scholar] [CrossRef] [PubMed]
- Serra, V.; Castrica, M.; Agradi, S.; Curone, G.; Vigo, D.; Di Giancamillo, A.; Modina, S.C.; Riva, F.; Balzaretti, C.M.; De Bellis, R.; et al. Antioxidant Activity of Different Tissues from Rabbits Fed Dietary Bovine Colostrum Supplementation. Animals 2023, 13, 850. [Google Scholar] [CrossRef]
- Balan, P.; Sik-Han, K.; Moughan, P.J. Impact of Oral Immunoglobulins on Animal Health—A Review. Anim. Sci. J. 2019, 90, 1099–1110. [Google Scholar] [CrossRef]
- ARAL (Associazione Regioanle Allevatori Lombardia). Razze Animali Da Reddito Allevate in Lombardia. Available online: http://old.aral.lom.it/OpuscoloRazze/index-2.html (accessed on 1 August 2023).
- Crepaldi, P.; Negrini, R.; Milanesi, E.; Gorni, C.; Cicogna, M.; Ajmone-Marsan, P. Diversity in Five Goat Populations of the Lombardy Alps: Comparison of Estimates Obtained from Morphometric Traits and Molecular Markers. J. Anim.Breed. Genet. 2001, 118, 173–180. [Google Scholar] [CrossRef]
- Ajmone-Marsan, P.; Negrini, R.; Crepaldi, P.; Milanesi, E.; Gorni, C.; Valentini, A.; Cicogna, M. Assessing Genetic Diversity in Italian Goat Populations Using AFLP® Markers. Anim. Genet. 2001, 32, 281–288. [Google Scholar] [CrossRef]
- Chiatti, F.; Chessa, S.; Bolla, P.; Cigalino, G.; Caroli, A.; Pagnacco, G. Effect of K-Casein Polymorphism on Milk Composition in the Orobica Goat. J. Dairy Sci. 2007, 90, 1962–1966. [Google Scholar] [CrossRef]
- Associazione Formaggi Principi delle Orobie Forme. Available online: https://festivalpastoralismo.org/formaggi-orobici/principi/ (accessed on 1 August 2023).
- Crepaldi, P.; Gemo, G.; Brambilla, L.; Cicogna, M.; Renieri, C. Characterization of Val Di Livo Goat: Visible Phenotypic Profile and Body Measurements. Zootecnia e Nutrizione Animale 1999, 25, 229–242. [Google Scholar]
- Higaki, S.; Nagano, M.; Katagiri, S.; Takahashi, Y. Effects of Parity and Litter Size on the Energy Contents and Immunoglobulin G Concentrations of Awassi Ewe Colostrum. Turk. J. Vet. Anim. Sci. 2013, 37, 109–112. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage Publications Ltd.: Southend Oaks, CA, USA, 2013; Volume 58. [Google Scholar]
- Garson, G.; David, V. Discriminant Function Analysis; Statistical Associates Blue Book Series 27, Ed.; Statistical Associates Publishers: Asheboro, NC, USA, 2012. [Google Scholar]
- Agradi, S.; Curone, G.; Negroni, D.; Vigo, D.; Brecchia, G.; Bronzo, V.; Panseri, S.; Chiesa, L.M.; Peric, T.; Danes, D.; et al. Determination of Fatty Acids Profile in Original Brown Cows Dairy Products and Relationship with Alpine Pasture Farming System. Animals 2020, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Dairy Chemistry and Biochemistry; Springer International Publishing: Basel, Switzerland, 2015. [Google Scholar]
- Hurley, W.L.; Theil, P.K. Perspectives on Immunoglobulins in Colostrum and Milk. Nutrients 2011, 3, 442–474. [Google Scholar] [CrossRef] [PubMed]
- Altvater-Hughes, T.E.; Hodgins, D.C.; Wagter-Lesperance, L.; Beard, S.C.; Cartwright, S.L.; Mallard, B.A. Concentration and Heritability of Immunoglobulin G and Natural Antibody Immunoglobulin M in Dairy and Beef Colostrum along with Serum Total Protein in Their Calves. J. Anim. Sci. 2022, 100, skac006. [Google Scholar] [CrossRef] [PubMed]
Parameter | Breed | p Value of ANOVA | p Value of the Contrast | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Camosciata | Frisa | Lariana | Orobica | |||||||
Mean ± SEM | Range (Min–Max) | Mean ± SEM | Range (Min–Max) | Mean ± SEM | Range (Min–Max) | Mean ± SEM | Range (Min–Max) | |||
Fat (%) | 6.92a ± 0.53 | 2.40–12.62 | 8.33ab ± 0.52 | 4.66–13.06 | 10.18b ± 0.66 | 3.80–16.06 | 7.13a ± 0.59 | 3.46–10.94 | 0.001 | 0.018 |
Protein (%) | 14.16b ± 0.59 | 7.10–20.44 | 15.43b ± 0.81 | 8.14–23.34 | 16.20b ± 0.72 | 7.54–23.86 | 10.77a ± 1.07 | 3.52–19.78 | 0.001 * | 0.969 |
Lactose (%) | 2.50b ± 0.12 | 1.12–3.50 | 2.42ab ± 0.16 | 0.22–4.08 | 1.87a ± 0.17 | 0.14–3.18 | 3.16c ± 0.17 | 1.34–4.30 | <0.001 | 0.959 |
Total solid (%) | 26.37ab ± 0.62 | 20.90–32.84 | 28.76bc ± 0.99 | 20.10–38.36 | 30.73c ± 1.02 | 16.68–39.36 | 24.11a ± 1.29 | 15.66–35.44 | 0.001 * | 0.100 |
IgG (mg/mL) | 74.75a ± 4.12 | 34.21–106.38 | 100.90c ± 1.56 | 75.70–113.30 | 93.07bc ± 2.71 | 64.29–108.00 | 80.27ab ± 5.57 | 37.38–105.58 | <0.001 * | 0.001 |
IgM (mg/mL) | 1.40 ± 0.16 | 0.22–2.87 | 1.85 ± 0.12 | 0.29–3.30 | 1.57 ± 0.13 | 0.41–2.75 | 1.44 ± 0.24 | 0.05–3.19 | 0.122 * | 0.243 |
Lactoferrin (µg/mL) | 763.10a ± 76.31 | 435.68–1920.03 | 1781.31b ± 168.69 | 345.35–3232.93 | 1148.00a ± 179.03 | 327.94–3321.82 | 1132.41ab ± 153.08 | 425.56–2759.11 | <0.001 * | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agradi, S.; González-Cabrera, M.; Argüello, A.; Hernández-Castellano, L.E.; Castro, N.; Menchetti, L.; Brecchia, G.; Vigo, D.; Tuccia, E.; Curone, G. Colostrum Quality in Different Goat Breeds Reared in Northern Italy. Animals 2023, 13, 3146. https://doi.org/10.3390/ani13193146
Agradi S, González-Cabrera M, Argüello A, Hernández-Castellano LE, Castro N, Menchetti L, Brecchia G, Vigo D, Tuccia E, Curone G. Colostrum Quality in Different Goat Breeds Reared in Northern Italy. Animals. 2023; 13(19):3146. https://doi.org/10.3390/ani13193146
Chicago/Turabian StyleAgradi, Stella, Marta González-Cabrera, Anastasio Argüello, Lorenzo Enrique Hernández-Castellano, Noemí Castro, Laura Menchetti, Gabriele Brecchia, Daniele Vigo, Edoardo Tuccia, and Giulio Curone. 2023. "Colostrum Quality in Different Goat Breeds Reared in Northern Italy" Animals 13, no. 19: 3146. https://doi.org/10.3390/ani13193146
APA StyleAgradi, S., González-Cabrera, M., Argüello, A., Hernández-Castellano, L. E., Castro, N., Menchetti, L., Brecchia, G., Vigo, D., Tuccia, E., & Curone, G. (2023). Colostrum Quality in Different Goat Breeds Reared in Northern Italy. Animals, 13(19), 3146. https://doi.org/10.3390/ani13193146