Oral Sampling of Little Brown Bat (Myotis lucifugus) Maternity Colonies for SARS-CoV-2 in the Northeast and Mid-Atlantic, USA
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. RNA Extraction
2.4. RT-qPCR for SARS-CoV-2
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teeling, E.C.; Vernes, S.C.; Dávalos, L.M.; Ray, D.A.; Gilbert, M.T.P.; Myers, E.; Bat1K Consortium. Bat biology, genomes, and the Bat1K project: To generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 2018, 6, 23–46. [Google Scholar] [CrossRef]
- Deshpande, K.; Vanak, A.T.; Devy, M.S.; Krishnaswamy, J. Forbidden fruits? Ecosystem services from seed dispersal by fruit bats in the context of latent zoonotic risk. Oikos 2022, 2, 2022. [Google Scholar] [CrossRef]
- Kunz, T.H.; de Torrez, E.B.; Bauer, D.; Lobova, T.; Fleming, T.H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Teeling, E.C.; Springer, M.S.; Madsen, O.; Bates, P.; O’brien, S.J.; Murphy, W.J. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 2005, 307, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.D.; Jarvis, J.A.; Pouliott, C.E.; Morgan, S.M.D.; Rudd, R.J. Susceptibility and pathogenesis of little brown bats (Myotis lucifugus) to heterologous and homologous rabies viruses. J. Virol. 2013, 87, 9008–9015. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Aguilar, I.; Lorenzo, C.; Santos-Moreno, A.; Naranjo, E.J.; Navarrete-Gutiérrez, D. Coronaviruses in bats: A review for the Americas. Viruses 2021, 13, 1226. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Aravena, M.; McKee, C.; Gamble, A.; Lunn, T.; Morris, A.; Snedden, C.E.; Yinda, C.K.; Port, J.R.; Buchholz, D.W.; Yeo, Y.Y.; et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 2022, 20, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.P.A. Possible case of interspecific transmission of rabies in insectivorous bats. J. Mammal. 1980, 61, 528–530. [Google Scholar] [CrossRef]
- Banerjee, A.; Kulcsar, K.; Misra, V.; Frieman, M.; Mossman, K. Bats and coronaviruses. Viruses 2019, 11, 41. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, B.J.; He, Y.Q.; Liu, X.L.; Zhuang, Z.X.; Cheung, C.L.; Luo, S.W.; Li, P.H.; Zhang, L.J.; Guan, Y.J.; et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003, 302, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Zeng, L.P.; Yang, X.L.; Ge, X.Y.; Zhang, W.; Li, B.; Xie, J.Z.; Shen, X.R.; Zhang, Y.Z.; Wang, N.; et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017, 13, e1006698. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Holmes, E.C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 2020, 181, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; Lau, S.K.P.; Lam, C.S.F.; Lau, C.C.Y.; Tsang, A.K.L.; Lau, J.H.N.; Bai, R.; Teng, J.L.L.; Tsang, C.C.C.; Wang, M.; et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012, 86, 3995–400825. [Google Scholar] [PubMed]
- Franklin, A.B.; Bevins, S.N. Spillover of SARS-CoV-2 into novel wild hosts in North America: A conceptual model for perpetuation of the pathogen. Sci. Total Environ. 2020, 733, 139358. [Google Scholar] [CrossRef]
- Jo, W.K.; de Oliveira-Filho, E.F.; Rasche, A.; Greenwood, A.D.; Osterrieder, K.; Drexler, J.F. Potential zoonotic sources of SARS-CoV-2 infections. Transbound. Emerg. Dis. 2021, 68, 1824–1834. [Google Scholar] [CrossRef]
- Runge, M.C.; Grant, E.C.; Coleman, J.T.H.; Reichard, J.D.; Gibbs, S.E.J.; Cryan, P.M.; Olival, K.J.; Walsh, D.P.; Bleher, D.S.; Hopkins, M.C.; et al. Assessing the risks posed by SARS-CoV-2 in and via North American bats-decision framing and rapid risk assessment. Open-File Rep.-US Geol. Surv. 2020, 1060, 14. [Google Scholar]
- Cook, J.D.; Campbell Grant, E.H.; Coleman, J.T.H.; Sleeman, J.M.; Runge, M.C. Evaluating the risk of SARS-CoV-2 transmission to bats in the context of wildlife research, rehabilitation, and control. Wildl. Soc. Bull. 2022, 46, e1262. [Google Scholar] [CrossRef]
- Nerpel, A.; Yang, L.; Sorger, J.; Käsbohrer, A.; Walzer, C.; Desvars-Larrive, A. SARS-ANI: A global open access dataset of reported SARS-CoV-2 events in animals. Sci Data 2022, 9, 438. [Google Scholar] [CrossRef]
- Kuchipudi, S.V.; Surendran-Nair, M.; Ruden, R.M.; Yon, M.; Nissly, R.H.; Vandegrift, K.J.; Nelli, R.K.; Li, L.; Jayarao, B.M.; Maranas, C.D.; et al. Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proc. Natl. Acad. Sci. USA 2022, 119, e2121644119. [Google Scholar] [CrossRef]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- Pickering, B.; Lung, O.; Maguire, F.; Kruczkiewicz, P.; Kotwa, J.D.; Buchanan, T.; Gagnier, M.; Guthrie, J.L.; Jardine, C.M.; Marchand-Austin, A.; et al. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat Microbiol. 2022, 7, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Oude Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; Van Der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef]
- Molenaar, R.J.; Vreman, S.; Hakze-van der Honing, R.W.; Zwart, R.; de Rond, J.; Weesendorp, E.; Smit, L.A.; Koopmans, M.; Bouwstra, R.; Stegeman, A.; et al. Clinical and pathological findings in SARS-CoV-2 disease outbreaks in farmed mink (Neovison vison). Vet. Pathol. 2020, 57, 653–657. [Google Scholar] [CrossRef]
- Chandler, J.C.; Bevins, S.N.; Ellis, J.W.; Linder, T.J.; Tell, R.M.; Jenkins-Moore, M.; Root, J.J.; Lenoch, J.B.; Robbe-Austerman, S.; Deliberto, T.J.; et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl. Acad. Sci. USA 2021, 118, 47. [Google Scholar] [CrossRef]
- Kurta, A.; Baker, R.H. Eptesicus fuscus. Mamm. Species 1990, 356, 1–10. [Google Scholar] [CrossRef]
- Fenton, M.B.; Barclay, R.M.R. Myotis lucifugus. Mamm. Species 1980, 142, 1–8. [Google Scholar] [CrossRef]
- Dobony, C.A.; Hicks, A.C.; Langwig, K.E.; Von Linden, R.I.; Okoniewski, J.C.; Rainbolt, R.E. Little brown myotis persist despite exposure to white-nose syndrome. Fish Wildl. Manag. 2011, 2, 190–195. [Google Scholar] [CrossRef]
- Vonhof, M.J.; Russell, A.L.; Miller-Butterworth, C.M. Range-wide genetic analysis of little brown bat (Myotis lucifugus) populations: Estimating the risk of spread of white-nose syndrome. PLoS ONE 2015, 10, e0128713. [Google Scholar] [CrossRef]
- Thomas, D.W.; Fenton, M.B.; Barclay, R.M.R. Social behavior of the little brown bat, Myotis lucifugus: I. Mating behavior. Behav. Ecol. Sociobiol. 1979, 6, 129–136. [Google Scholar] [CrossRef]
- Johnson, L.N.L.; McLeod, B.A.; Burns, L.E.; Arseneault, K.; Frasier, T.R.; Broders, H.G. Population genetic structure within and among seasonal site types in the little brown bat (Myotis lucifugus) and the northern long-eared bat (M. septentrionalis). PLoS ONE 2015, 10, e0126309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.S.; Knowles, S.; Nashold, S.W.; Ip, H.S.; Leon, A.E.; Rocke, T.; Keller, S.; Carossino, M.; Balasuriya, U.; Hofmeister, E. Experimental challenge of a North American bat species, big brown bat (Eptesicus fuscus), with SARS-CoV-2. Transbound. Emerg. Dis. 2021, 68, 3443–3452. [Google Scholar] [CrossRef] [PubMed]
- Chothe, S.K.; Jakka, P.; Boorla, V.S..; Ramasamy, S.; Gontu, A.; Nissly, R.H.; Brown, J.; Turner, G.; Sewall, B.J.; Reeder, D.; et al. SARS-CoV-2 compatible ACE2 receptors in Little Brown Bats (Myotis lucifugus). Available online: https://ssrn.com/abstract=4304726 (accessed on 25 January 2023).
- Frick, W.F.; Reynolds, D.S.; Kunz, T.H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 2010, 79, 128–136. [Google Scholar] [CrossRef]
- Thogmartin, W.E.; Andrew King, R.; McKann, P.C.; Szymanski, J.A.; Pruitt, L. Population-level impact of white-nose syndrome on the endangered Indiana bat. J. Mammal. 2012, 93, 1086–1098. [Google Scholar] [CrossRef]
- Olival, K.J.; Cryan, P.M.; Amman, B.R.; Baric, R.S.; Blehert, D.S.; Brook, C.E.; Calisher, C.H.; Castle, K.T.; Coleman, J.T.; Daszak, P.; et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathog. 2020, 16, e1008758. [Google Scholar] [CrossRef]
- True, M.C.; Reynolds, R.J.; Ford, W.M. Monitoring and modeling tree bat (Genera: Lasiurus, Lasionycteris) occurrence using acoustics on structures off the mid-Atlantic coast—Implications for offshore wind development. Animals 2021, 11, 3146. [Google Scholar] [CrossRef]
- Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B.M.; Buckles, E.L.; Coleman, J.T.; Darling, S.R.; Gargas, A.; Niver, R.; et al. Bat white-nose syndrome: An emerging fungal pathogen? Science 2009, 323, 227. [Google Scholar] [CrossRef]
- Gargas, A.; Trest, M.T.; Christensen, M.; Volk, T.J.; Blehert, D.S. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 2009, 108, 147–154. [Google Scholar] [CrossRef]
- Cheng, T.L.; Reichard, J.D.; Coleman, J.T.; Weller, T.J.; Thogmartin, W.E.; Reichert, B.E.; Bennett, A.B.; Broders, H.G.; Campbell, J.; Etchison, K.; et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 2021, 35, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- White-Nose Syndrome Response Team. Where Is WNS Now? Available online: https://sciencebase.usgs.gov/geoserver/wns_status/wfs?service=WFS&request=GetFeature&srs=EPSG:4326&crs=EPSG:4326&typeName=wnsstatus:vwwnsdetermination4326&outputFormat=application/json (accessed on 23 December 2022).
- Environmental Conservation Online System. Little brown bat (Myotis Lucifugus). Available online: https://ecos.fws.gov/ecp/species/9051 (accessed on 23 December 2022).
- Solari, S. Myotis lucifugus (Amended Version of 2018 Assessment). The IUCN Red List of Threatened Species 2021. Available online: https://dx.doi.org/10.2305/IUCN.UK.2021-3.RLTS.T14176A208031565.en (accessed on 23 December 2022).
- Davy, C.M.; Donaldson, M.E.; Subudhi, S.; Rapin, N.; Warnecke, L.; Turner, J.M.; Bollinger, T.K.; Kyle, C.J.; Dorville, N.A.Y.; Kunkel, E.L.; et al. White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats. Sci. Rep. 2018, 8, 15508. [Google Scholar] [CrossRef]
- Cook, J.D.; Grant, E.H.C.; Coleman, J.T.H.; Sleeman, J.M.; Runge, M.C. Risks posed by SARS-CoV-2 to North American bats during winter fieldwork. Conserv. Sci. Pract. 2021, 3, e410. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, S.; Rapin, N.; Bollinger, T.K.; Hill, J.E.; Donaldson, M.E.; Davy, C.M.; Warnecke, L.; Turner, J.M.; Kyle, C.J.; Willis, C.K.; et al. A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. J. Gen. Virol. 2017, 98, 2297. [Google Scholar] [CrossRef] [PubMed]
- Odom, R.H.; Ford, W.M. Assessing the vulnerability of military installations in the coterminous United States to potential biome shifts resulting from rapid climate change. Environ. Manag. 2020, 66, 564–589. [Google Scholar] [CrossRef] [PubMed]
- Reichard, J.D. Wing-Damage Index Used for Characterizing Wing Condition of Bats Affected by White-Nose Syndrome. Unpublished Report. 2008. Available online: https://sbdn.org/wp-content/uploads/2018/08/Reichard_Scarring-index-bat-wings.pdf (accessed on 20 December 2022).
- Menzel, M.A.; Menzel, J.M.; Castleberry, S.B.; Ozier, J.; Ford, W.M.; Edwards, J.W.; Pearson, E.W. Illustrated Key to Skins and Skulls of Bats in the Southeastern and Mid-Atlantic States; Research Note NE-376; USDA Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2002.
- Hall, J.S.; Hofmeister, E.; Ip, H.S.; Nashold, S.W.; Leon, A.E.; Malavé, C.M.; Falendysz, E.A.; Rocke, T.E.; Carossino, M.; Balasuriya, U.; et al. Experimental infection of Mexican free-tailed bats (Tadarida brasiliensis) with SARS-CoV-2. bioRxiv 2022, e00263-22. [Google Scholar] [CrossRef] [PubMed]
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe 2020, 1, e218–e225. [Google Scholar] [CrossRef] [PubMed]
- Urushadze, L.; Babuadze, G.; Shi, M.; Escobar, L.E.; Mauldin, M.R.; Natradeze, I.; Machablishvili, A.; Kutateladze, T.; Imnadze, P.; Nakazawa, Y.; et al. A cross sectional sampling reveals novel coronaviruses in bat populations of Georgia. Viruses 2021, 14, 72. [Google Scholar] [CrossRef]
- Wilkins, K.T. Tadarida brasiliensis. Mamm. Species 1989, 331, 1–10. [Google Scholar] [CrossRef]
- Fuller, N.W.; McGuire, L.P.; Pannkuk, E.L.; Blute, T.; Haase, C.G.; Mayberry, H.W.; Risch, T.S.; Willis, C.K. Disease recovery in bats affected by white-nose syndrome. J. Exp. Biol. 2020, 223, jeb211912. [Google Scholar] [CrossRef]
- Reichard, J.D.; Fuller, N.W.; Bennett, A.B.; Darling, S.R.; Moore, M.S.; Langwig, K.E.; Preston, E.D.; Von Oettingen, S.; Richardson, C.S.; Reynolds, D.S. Interannual survival of Myotis lucifugus (Chiroptera: Vespertilionidae) near the epicenter of white-nose syndrome. Northeast. Nat. 2014, 21, N56. [Google Scholar] [CrossRef]
- Fuller, N.W.; Reichard, J.D.; Nabhan, M.L.; Fellows, S.R.; Pepin, L.C.; Kunz, T.H. Free-ranging little brown myotis (Myotis lucifugus) heal from wing damage associated with white-nose syndrome. EcoHealth 2011, 8, 154–162. [Google Scholar] [CrossRef]
- Langwig, K.E.; Hoyt, J.R.; Parise, K.L.; Frick, W.F.; Foster, J.T.; Kilpatrick, A.M. Resistance in persisting bat populations after white-nose syndrome invasion. Philos. Trans. R. Soc. 2017, 372, 20160044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslo, B.; Valent, M.; Gumbs, J.F.; Frick, W.F. Conservation implications of ameliorating survival of little brown bats with white-nose syndrome. Ecol. Appl. 2015, 25, 1832–1840. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.T.; Víquez-R, L.; Leopardi, S.; Vicente-Santos, A.; Mendenhall, I.H.; Frick, W.F.; Kading, R.C.; Medellín, R.A.; Racey, P.; Kingston, T. Setting the terms for zoonotic diseases: Effective communication for research, conservation, and public policy. Viruses 2021, 13, 1356. [Google Scholar] [CrossRef] [PubMed]
- López-Baucells, A.; Rocha, R.; Fernández-Llamazares, Á. When bats go viral: Negative framings in virological research imperil bat conservation. Mamm. Rev. 2018, 48, 62–66. [Google Scholar] [CrossRef] [Green Version]
Location | Female | Pregnant | Lactating | Male | Avg. Weight (g) | Avg. Forearm Length (mm) | Avg. Wing Score |
---|---|---|---|---|---|---|---|
Maryland | 25 | 44% | 0% | 17 | 8.14 (1.70) | 37.10 (1.25) | 0.33 (0.57) |
New Hampshire | 31 | 10% | 87% | 0 | 8.36 (0.86) | 38.54 (0.98) | 0.03 (0.18) |
New Jersey East | 25 | 0% | 0% | 1 | 7.80 (0.76) | 38.25 (0.93) | 0.04 (0.20) |
New Jersey West | 12 | 0% | 0% | 0 | 8.01 (1.02) | 37.77 (1.05) | 0.08 (0.29) |
New York | 33 | 39% | 56% | 0 | 9.15 (1.61) | 37.72 (1.13) | 0.27 (0.45) |
Rhode Island East | 40 | 55% | 42% | 0 | 9.00 (1.35) | 38.01 (1.10) | 0.16 (0.37) |
Rhode Island West | 20 | 5% | 71% | 1 | 7.85 (0.92) | 38.12 (1.04) | 0.10 (0.30) |
Virginia | 27 | 0% | 70% | 3 | 7.49 (1.94) | 36.41 (1.27) | 0.06 (0.25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moran, M.L.; Boyd, W.; De La Cruz, J.L.; Bertke, A.S.; Ford, W.M. Oral Sampling of Little Brown Bat (Myotis lucifugus) Maternity Colonies for SARS-CoV-2 in the Northeast and Mid-Atlantic, USA. Animals 2023, 13, 550. https://doi.org/10.3390/ani13040550
Moran ML, Boyd W, De La Cruz JL, Bertke AS, Ford WM. Oral Sampling of Little Brown Bat (Myotis lucifugus) Maternity Colonies for SARS-CoV-2 in the Northeast and Mid-Atlantic, USA. Animals. 2023; 13(4):550. https://doi.org/10.3390/ani13040550
Chicago/Turabian StyleMoran, Megan L., William Boyd, Jesse L. De La Cruz, Andrea S. Bertke, and W. Mark Ford. 2023. "Oral Sampling of Little Brown Bat (Myotis lucifugus) Maternity Colonies for SARS-CoV-2 in the Northeast and Mid-Atlantic, USA" Animals 13, no. 4: 550. https://doi.org/10.3390/ani13040550
APA StyleMoran, M. L., Boyd, W., De La Cruz, J. L., Bertke, A. S., & Ford, W. M. (2023). Oral Sampling of Little Brown Bat (Myotis lucifugus) Maternity Colonies for SARS-CoV-2 in the Northeast and Mid-Atlantic, USA. Animals, 13(4), 550. https://doi.org/10.3390/ani13040550