Goose Meat as a Source of Dietary Manganese—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Manganese Content in Raw Goose Meat
4. Manganese Content in Goose Meat after Thermal Treatment
5. Recommendation for Manganese Intake and Its Consumption in Different Countries
Age, Both Sexes | IOM (2001) NIZP-PZH (2020) [44,49] | EFSA (2013) [9] | DACH (2021) [47] | NHMRC, AGDHA NZMH (2006) [46,48] | ||
---|---|---|---|---|---|---|
Infants | ||||||
0–6 months | 0.003 | 4–12 months | 0.6–1.0 | 0.003 | ||
7–12 months | 0.6 | 7–11 months | 0.02–0.5 | 0.600 | ||
Children and adolescents | ||||||
1–3 years | 1.2 | 1–3 years | 0.5 | 1–3 years | 1.0–1.5 | 2.0 |
4–8 years | 1.5 | 4–6 years | 1 | 4–6 years | 1.5–2.0 | 2.5 |
9–13 years | 1.9 ♂ 1.6 ♀ | 7–10 years | 1.5 | 7–9 years | 2.0–3.0 | 3.0 ♂ 2.5 ♀ |
14–18 years | 2.2 ♂ 1.6 ♀ | 11–14 years | 2.0 | ≥10 years | 2.0–5.0 | 3.5 ♂ 3.0 ♀ |
15–17 years | 3.0 | |||||
Adults | ||||||
>18 years | 2.3 ♂ 1.8 ♀ | ≥18 years | 3.0 | 5.5 ♂ 5.0 ♀ | ||
Pregnant all ages | 2.0 | 3.0 | 5.0 | |||
Lactation all ages | 2.6 | 3.0 | 5.0 |
6. Coverage of the Adequate Daily Intake of Manganese (AI) and Nutrient Reference Values-Requirements by Goose Meat in Adults
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Yang, X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxid. Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldin, O.P.; Aschner, M. Effects of Manganese on Thyroid Hormone Homeostasis: Potential Links. Neurotoxicology 2007, 28, 951–956. [Google Scholar] [CrossRef] [Green Version]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A. Manganese. In Modern Nutrition in Health and Disease; Ross, C., Cousins, R., Tucker, K., Ziegler, T., Eds.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014; pp. 238–244. [Google Scholar]
- Freeland-Graves, J.H.; Mousa, T.Y.; Kim, S. International Variability in Diet and Requirements of Manganese: Causes and Consequences. J. Trace Elem. Med. Biol. 2016, 38, 24–32. [Google Scholar] [CrossRef]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.B.; Aschner, M. Manganese-Induced Neurotoxicity: A Review of Its Behavioral Consequences and Neuroprotective Strategies. BMC Pharmacol. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, S.-P.; Lu, L.; Wang, R.-L.; Xi, L.; Zhang, L.-Y.; Luo, X.-G. Manganese Source Affects Manganese Transport and Gene Expression of Divalent Metal Transporter 1 in the Small Intestine of Broilers. Br. J. Nutr. 2012, 108, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Todd, G.D.; Roney, N.; Crawford, J.; Coles, C.; McClure, P.R.; Garey, J.D.; Zaccaria, K.; Citra, M. Toxicological Profile for Manganese; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2012.
- EFSA Scientific Opinion on Dietary Reference Values for Manganese. EFSA J. 2013, 11, 3419. [CrossRef] [Green Version]
- Mullee, A.; Brown, T.; Collings, R. Literature Search and Review Related to Specific Preparatory Work in the Establishment of Dietary Reference Values Preparation of an Evidence Report Identifying Health Outcomes upon Which Dietary Reference Values Could. EFSA Support. Publ. 2012, 9, 256E. [Google Scholar] [CrossRef]
- Nam, K.-C.; Jo, C.; Lee, M. Meat Products and Consumption Culture in the East. Meat Sci. 2010, 86, 95–102. [Google Scholar] [CrossRef]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production Factors Affecting Poultry Carcass and Meat Quality Attributes. Animal 2022, 16, 100331. [Google Scholar] [CrossRef]
- Goluch-Koniuszy, Z.; Haraf, G. Geese for Slaughter and Wild Geese as a Source of Selected Mineral Elements in a Diet. J. Elem. 2018, 23, 1343–1360. [Google Scholar] [CrossRef]
- Kalisińska, E. (Ed.) Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments; Springer Nature: Cham, Switzerland, 2019; ISBN 9783030001193. [Google Scholar]
- Kim, J.; Oh, J.-M. Tissue Distribution of Metals in White-Fronted Geese and Spot-Billed Ducks from Korea. Bull. Environ. Contam. Toxicol. 2013, 91, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Wideman, N.; O’bryan, C.A.; Crandall, P.G. Factors Affecting Poultry Meat Colour and Consumer Preferences—A Review. Worlds. Poult. Sci. J. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. The Fatty Acid, Amino Acid, and Mineral Composition of Egyptian Goose Meat as Affected by Season, Gender, and Portion. Poult. Sci. 2015, 94, 1075–1087. [Google Scholar] [CrossRef]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of Poultry Meat in a Balanced Diet Aimed at Maintaining Health and Wellbeing: An Italian Consensus Document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stangierski, J.; Lesnierowski, G. Nutritional and Health-Promoting Aspects of Poultry Meat and Its Processed Products. Worlds. Poult. Sci. J. 2015, 71, 71–82. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 105906. [Google Scholar] [CrossRef]
- Scopus. Available online: https://www.scopus.com/ (accessed on 17 October 2022).
- Web of Science. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (accessed on 17 October 2022).
- Science Direct. Available online: https://www.sciencedirect.com/ (accessed on 17 October 2022).
- Agro Base. Available online: http://agro.icm.edu.pl/agro/search/article.action?cid=d5857527-6593-4747-9d30-0a3390556d94 (accessed on 17 October 2022).
- USDA National Nutrient Database for Standard Reference Release. Available online: https://fdc.nal.usda.gov/fdc-app.html#/?query=goose,meat (accessed on 17 December 2022).
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tables of Composition and Nutritional Value of Food; PZWL: Warszawa, Poland, 2020. [Google Scholar]
- Falandysz, J.; Centkowska, D.; Falandysz, J.; Lorenc-Biała, H. Trace Metals and Organochlorine Pesticides Content in Duck, Goose, and Rabbit Tissues. Bromatol. Chem. Toksykol. 1986, 19, 151–155. [Google Scholar]
- Falandysz, J.; Centkowska, D.; Lorenc-Biała, H. Levels of Certain Metals (Ca, Pb, Cu, Zn, Fe, Mn and As) in the Muscles, Liver and Kidneys of Slaughtered Domestic Animals and Game in Northern Poland, 1984. Rocz. Państowego Zakałdu Hig. 1987, 38, 347–355. [Google Scholar]
- Falandysz, J.; Lorenc-Biała, H. Metals in Muscle Tissue, Liver and Kidney of Slaughter Animals from the Northern Region of Poland. Bromatol. Chem. Toksykol. 1989, 22, 19–22. [Google Scholar]
- Falandysz, J.; Lorenc-Biała, H.; Centkowska, D. Metals in Muscles, Liver and Kidney of Slaughtered Animals Froma the Northern Region of Poland, 1985. Rocz. Panstw. Zakl. Hig. 1989, 40, 279–283. [Google Scholar] [PubMed]
- Falandysz, J. Manganese, Copper, Zinc, Iron, Cadmium, Mercury and Lead in Muscle Meat, Liver and Kidneys of Poultry, Rabbit and Sheep Slaughtered in the Northern Part of Poland, 1987. Food Addit. Contam. 1991, 8, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Kotecka, W.; Kannan, K. Mercury, Lead, Cadmium, Manganese, Copper, Iron and Zinc Concentrations in Poultry, Rabbit and Sheep from the Northern Part of Poland. Sci. Total Environ. 1994, 141, 51–57. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. Aspects of the Nutritional Value of Cooked Egyptian Goose (Alopochen Aegyptiacus) Meat Compared with Other Well-Known Fowl Species. Poult. Sci. 2013, 92, 3050–3059. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Lin, Y.W.; Kao, Y.M.; Shih, Y.C. Trace Elements and Heavy Metals in Poultry and Livestock Meat in Taiwan. Food Addit. Contam. Part B Surveill. 2013, 6, 231–236. [Google Scholar] [CrossRef]
- Oz, F.; Celik, T. Proximate Composition, Color and Nutritional Profile of Raw and Cooked Goose Meat with Different Methods. J. Food Process. Preserv. 2015, 39, 2442–2454. [Google Scholar] [CrossRef]
- Goluch, Z.; Barbara, K.; Haraf, G.; Wołoszyn, J.; Okruszek, A.; Wereńska, M. Impact of Various Types of Heat Processing on the Energy and Nutritional Values of Goose Breast Meat. Poult. Sci. 2021, 100, 101473. [Google Scholar] [CrossRef]
- Gerber, N.; Scheeder, M.R.L.; Wenk, C. The Influence of Cooking and Fat Trimming on the Actual Nutrient Intake from Meat. Meat Sci. 2009, 81, 148–154. [Google Scholar] [CrossRef]
- Tomović, V.M.; Vujadinović, D.D.; Grujić, R.P.; Jokanović, M.R.; Kevrešan, Ž.S.; Škaljac, S.B.; Šojić, B.V.; Tasić, T.A.; Ikonić, P.M.; Hromiš, N.M. Effect of Endpoint Internal Temperature on Mineral Contents of Boiled Pork Loin. J. Food Process. Preserv. 2015, 39, 1854–1858. [Google Scholar] [CrossRef]
- Sobral, M.M.C.; Cunha, S.C.; Faria, M.A.; Ferreira, I.M. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018, 17, 309–333. [Google Scholar] [CrossRef] [Green Version]
- Yong, W.; Amin, L.; Dongpo, C. Status and Prospects of Nutritional Cooking. Food Qual. Saf. 2019, 3, 137–143. [Google Scholar] [CrossRef]
- Oz, F.; Aksu, M.İ.; Turan, M.A. The Effects of Different Cooking Methods on Some Quality Criteria and Mineral Composition of Beef Steaks. J. Food Process. Preserv. 2017, 41, e13008. [Google Scholar] [CrossRef]
- Purchas, R.W.; Wilkinson, B.H.P.; Carruthers, F.; Jackson, F. A Comparison of the Nutrient Content of Uncooked and Cooked Lean from New Zealand Beef and Lamb. J. Food Compos. Anal. 2014, 35, 75–82. [Google Scholar] [CrossRef]
- Freeland-Graves, J.H.; Behmardi, F.; Bales, C.W.; Dougherty, V.; Lin, P.-H.; Crosby, J.B.; Trickett, P.C. Metabolic Balance of Manganese in Young Men Consuming Diets Containing Five Levels of Dietary Manganese. J. Nutr. 1988, 118, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001.
- Commision of the European Communities Nutrient and Energy Intakes for the European Community. Reports of the Scientific Committee for Food (Thirty-First Series); Commision of the European Communities: Luxembourg, 1993. [Google Scholar]
- Health Council of the Netherlands. An Evaluation of the EFSA’s Dietary Reference Values (DRVs), Part 1. Dietary Reference Values for Vitamins and Minerals for Adults, No. 2018/19A; Health Council of the Netherlands: The Hague, The Netherlands, 2018. [Google Scholar]
- D-A-C-H-Referenzwerte Für Die Nährstoffzufuhr 2; Deutsche Ges. f. Ernährung: Bonn, Germany, 2021; ISBN 978-3-88749-261-8.
- NHMRC Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; National Health and Medical Research Council: Canberra, Australia, 2006; ISBN 1864962372.
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Dietary Reference Values for the Polish Population and Their Application; National Institute of Public Health-National Institute of Hygiene: Warszawa, Poland, 2020; ISBN 9788365870285. [Google Scholar]
- Szponar, L.; Sekuła, W.; Rychlik, E.; Ołtarzewski, M.; Figurska, K. Household Food Consumption and Anthropometric Survey: Report of the Project TCP/POL/8921(A); Szponar, L., Ed.; National Food and Nutrition Institute: Warszawa, Poland, 2003; ISBN 83-86060-60-3. [Google Scholar]
- Rubio, C.; Gutiérrez, Á.J.; Revert, C.; Reguera, J.I.; Burgos, A.; Hardisson, A. Daily Dietary Intake of Iron, Copper, Zinc and Manganese in a Spanish Population. Int. J. Food Sci. Nutr. 2009, 60, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Livsmedelsverkets Swedish Market Basket Survey; Livsmedelsverkets National Food Angency: Uppsala, Sweden, 2017; Volume 26.
- Pedersen, A.N.; Christensen, T.; Matthiessen, J.; Knudsen, V.K.; Rosenlund-Sørensen, M.; Biltoft-Jensen, A.; Hinsch, H.-J.; Ygil, K.H.; Kørup, K.; Saxholt, E.; et al. Danskernes Kostvaner 2011–2013; National Food Institute, Technical University of Denmark: Søborg, Denmark, 2015; ISBN 9788793109391. [Google Scholar]
- Filippini, T.; Cilloni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Bottecchi, I.; Ferrari, A.; Vescovi, L.; Vinceti, M. Dietary Intake of Cadmium, Chromium, Copper, Manganese, Selenium and Zinc in a Northern Italy Community. J. Trace Elem. Med. Biol. 2018, 50, 508–517. [Google Scholar] [CrossRef]
- Sachse, B.; Kolbaum, A.E.; Ziegenhagen, R.; Andres, S.; Berg, K.; Dusemund, B.; Hirsch-Ernst, K.I.; Kappenstein, O.; Müller, F.; Röhl, C.; et al. Dietary Manganese Exposure in the Adult Population in Germany—What Does It Mean in Relation to Health Risks? Mol. Nutr. Food Res. 2019, 63, 1900065. [Google Scholar] [CrossRef]
- Lewis, J. Codex Nutrient Reference Values; Food and Agriculture Organisation of the United Nations and World Health Organisation: Rome, Italy, 2019; ISBN 9781626239777. [Google Scholar]
- European Parliament Regulation (EU) No 1169/2011 of the European Parliament and of the Counsil of 25 October 2011 on the Provision of Food Information to Consumers. Off. J. Eur. Union 2011, 304, 18–41.
- Codex Allimentarius Commission. Report of the Trirty-Sixt Session of the Codex Cimmittee on Nutrition and Foods for Specjal Dietary Uses, 38th ed.; Codex Allimentarius Commission: Geneva, Switzerland, 2015. [Google Scholar]
- Wang, C.; Zhu, Y.; Long, H.; Ou, M.; Zhao, S. Relationship between Blood Manganese and Bone Mineral Density and Bone Mineral Content in Adults: A Population-Based Cross-Sectional Study. PLoS ONE 2022, 17, e0276551. [Google Scholar] [CrossRef]
- Du, S.; Wu, X.; Han, T.; Duan, W.; Liu, L.; Qi, J.; Niu, Y.; Na, L.; Sun, C. Dietary Manganese and Type 2 Diabetes Mellitus: Two Prospective Cohort Studies in China. Diabetologia 2018, 61, 1985–1995. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, R.C.; Mukhopadhyay, S.; McBride, D.; Veevers, J.; Harrison, F.E.; Aschner, M.; Haynes, E.N.; Bowman, A.B. Brain Manganese and the Balance between Essential Roles and Neurotoxicity. J. Biol. Chem. 2020, 295, 6312–6329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slawinska, K.; Bielecka, G.; Iwaniak, K.; Wosko, S.; Poleszak, E. Selenium and Manganese in Depression—Preclinical and Clinical Studies. Curr. Issues Pharm. Med. Sci. 2017, 30, 151–155. [Google Scholar] [CrossRef]
- Juchnowicz, D.; Karakuła, K.H.; Sitarz, E.; Forma, A.; Padała, O.; Ryczkowski, A.J. Is There Any Association between Manganese Level and Schizophrenia?—A Descriptive Review. Curr. Probl. Psychiatry 2020, 21, 39–44. [Google Scholar] [CrossRef]
First Author | Year | Source | References |
---|---|---|---|
Falandysz et al. | 1986 | Agro | [27] |
Falandysz et al. | 1987 | Agro | [28] |
Falandysz et al. | 1989 | Agro | [29] |
Falandysz et al. | 1989 | Scopus | [30] |
Falandysz J. | 1991 | Scopus, WoS | [31] |
Falandysz et al. | 1994 | Scopus, WoS | [32] |
Geldenhuys et al. | 2013 | Scopus, WoS | [33] |
Geldenhuys et al. | 2015 | Scopus, WoS, Science Direct | [17] |
Chen et al. | 2013 | Scopus, WoS | [34] |
Oz and Celik | 2015 | Scopus | [35] |
Goluch et al. | 2021 | Scopus, WoS, Science Direct | [36] |
Kunachowicz et al. | 2020 | Tables of composition and nutritional value of food. | [26] |
USDA Food Data Central | 2022 | Websites | [25] |
Meat | Goose | n | Age | Carcass | Breast | Leg/Thigh | Reference |
---|---|---|---|---|---|---|---|
Meat raw | Anser Anser | 29 | n.d. | 0.17 ± 0.04 (0.12–0.24) | n.d. | n.d. | [27] |
Meat raw | Anser Anser | 18 | n.d. | 0.38 (0.14–2.41) | n.d. | n.d. | [28] |
Meat raw | Anser Anser | 18 | n.d. | 0.25 (0.17–0.31) | n.d. | n.d. | [30] |
Meat raw | Anser Anser | 39 | n.d. | 0.26 (0.14–0.48) | n.d. | n.d. | [29] |
Meat raw | Anser Anser | 32 | 4–7 months | 0.27 (0.15–0.42) | n.d. | n.d. | [31] |
Meat raw | Anser Anser | 16 | 4–7 months | 0.25 ± 0.06 (0.15–0.30) | n.d. | n.d. | [32] |
Meat raw | Anser Anser | n.d. | n.d. | 0.20 | n.d. | n.d. | [26] |
Meat raw | Anser Anser | 10 | n.d. | 0.268 ± 0.073 (0.151–0.367) | n.d. | n.d. | [34] |
Meat only, raw | Anser Anser | n.d. | n.d. | 0.24 | n.d. | n.d. | [25] |
Meat and skin, raw | Anser Anser | n.d. | n.d. | 0.20 | n.d. | n.d. | [25] |
Meat raw | Turkish goose | 16 | 16 weeks | n.d. | 0.2 | 5.0 | [35] |
Meat raw: | White Kołuda® | 24 | 17 weeks | n.d | n.d | [36] | |
Without skin | 1.7 | ||||||
With skin | 1.5 | ||||||
Meat raw | Egyptian goose Alopochen aegyptiacus | 36 | n.d. | n.d. | 0.6 ± 0.01 ♀♂ 0.6 ± 0.08 season winter/summer | n.d. | [17] |
Meat raw, skinless | Canada goose Branta canadensis | 6 | n.d. | 0.50 | n.d. | n.d. | [25] |
Meat | Goose | n | Age | Carcass | Breast | Leg/Thigh | Reference |
---|---|---|---|---|---|---|---|
Meat only, cooked, roasted | Anser Anser | n.d. | n.d. | 0.24 | n.d. | n.d. | [25] |
Meat and skin, cooked, roasted | Anser Anser | n.d. | n.d. | 0.23 | n.d. | n.d. | [25] |
Meat and skin, cooked, roasted | Anser Anser | n.d. | n.d. | 0.30 | n.d. | n.d. | [26] |
Meat: | Turkish goose | 16 | 16 weeks | n.d. | [35] | ||
Boiled | 0.7 ± 0.2 | 8.0 ± 8.0 | |||||
Grilled | 0.4 ± 0.1 | 5.0 ± 3.0 | |||||
Pan fried without fat or oil | 4.5 ± 6.0 | 3.4 ± 3.1 | |||||
Pan with oil | 0.5 ± 0.5 | 16.3 ± 18.1 | |||||
Deep-fat fried | 0.6 ± 0.7 | 2.1 ± 0.3 | |||||
Oven cooked | 0.3 ± 0.3 | 2.4 ± 0.9 | |||||
Microwave | 0.1 ± 0.1 | 1.15 ± 2.0 | |||||
Meat: | White Kołuda® | 48 | 17 weeks | n.d. | n.d. | [36] | |
Water bath cooking | |||||||
Without skin | 2.7 | ||||||
With skin | 1.4 | ||||||
Grilled | |||||||
Without skin | 2.0 | ||||||
With skin | 3.8 | ||||||
Oven convection Roasting | |||||||
Without skin | 1.3 | ||||||
With skin | 1.1 | ||||||
Pan fried | |||||||
Without skin | 1.1 | ||||||
With skin | 1.3 | ||||||
Meat breast, cooked | Egyptian goose Alopochen aegyptiacus | 6 | n.d. | n.d. | 1.0 | n.d. | [33] |
Meat | Goose | Manganese Content [mg/100 g] | Reference | IOM (2001) NIPH-NIH (2020) [44,49] | EFSA (2013) [9] | NHMRC, AGDHA NZMH (2006) [46,48] | DACH (2021) [47] | NRV-R [57] | ||
---|---|---|---|---|---|---|---|---|---|---|
♀ 1.8 mg | ♂ 2.3 mg | ♀♂ 3.0 mg | ♀ 5.0 mg | ♂ 5.5 mg | ♀♂ 2.0–5.0 mg | ♀♂ 2.0 mg | ||||
Raw | ||||||||||
Meat raw, only | Anser Anser | 0.024 carcass | [25] | 1.33 | 1.04 | 0.8 | 0.48 | 0.44 | 1.2–0.48 | 1.2 |
Meat and skin, raw | Anser Anser | 0.020 carcass | [25] | 1.11 | 0.86 | 0.67 | 0.4 | 0.36 | 1.0–0.4 | 1.0 |
Meat raw | Turkish | 0.020 breast 0.50 leg | [35] | 1.11 27.8 | 0.86 21.7 | 0.86 16.7 | 0.4 10.0 | 0.36 9.09 | 1.0–0.4 10.0 | 1.0 25.0 |
Meat raw without skin | White Kołuda® | 0.17 breast | [36] | 9.44 | 7.39 | 5.67 | 3.4 | 3.09 | 8.5–3.4 | 8.5 |
Meat raw with skin | White Kołuda® | 0.15 breast | [36] | 8.33 | 6.52 | 5.0 | 3.0 | 2.73 | 7.5–3.0 | 7.5 |
Meat raw, skinless | Canada goose | 0.05 carcass | [25] | 2.78 | 2.17 | 1.67 | 1.0 | 0.91 | 2.5–1.0 | 2.5 |
Meat raw | Egyptian goose | 0.06 ♂♀ | [17] | 3.33 | 2.60 | 2.0 | 1.2 | 10.9 | 3.0–1.2 | 3.0 |
Thermal treatment | ||||||||||
Meat only, cooked, roasted | Answer Anser | 0.024 carcass | [25] | 1.33 | 1.04 | 0.8 | 0.48 | 0.44 | 1.2–0.48 | 1.2 |
Meat and skin, cooked, roasted | Anser Anser | 0.023 carcass | [25] | 1.28 | 1.0 | 0.77 | 0.46 | 0.42 | 1.15–0.46 | 1.15 |
Meat: | Turkish goose | Breast/leg | [35] | |||||||
Boiled | 0.07/0.08 | 3.89/4.44 | 3.04/3.48 | 2.33/2.67 | 1.4/1.6 | 1.27/1.27 | 3.5/4.4–1.4/1.6 | 3.5/4.0 | ||
Grilled | 0.04/0.50 | 2.22/27.8 | 1.74/2.17 | 1.33/16.7 | 0.8/10.0 | 0.73/9.09 | 2.0/25.0–0.8/10.0 | 2.0/25.0 | ||
Pan fried without fat or oil | 0.45/0.34 | 25.0/18.9 | 19.6/14.8 | 15.0/11.3 | 9.0/6.8 | 8.18/6.18 | 22.5/17.0–9.0/6.8 | 22.5/17.0 | ||
Pan with oil | 0.05/1.63 | 2.78/90.6 | 2.17/70.9 | 1.67/54.3 | 1.0/32.5 | 0.91/29.6 | 2.5/81.5–1.0/32.5 | 2.5/81.5 | ||
Deep-fat fried | 0.06/0.21 | 3.33/11.7 | 2.61/9.13 | 2.0/7.0 | 1.2/4.2 | 1.09/3.82 | 3.2/10.5–1.2/4.2 | 3.0/10.5 | ||
Oven cooked | 0.03/0.24 | 1.67/13.3 | 1.30/10.4 | 1.0/8.0 | 0.6/4.8 | 0.55/4.36 | 1.5/12.0–0.6/4.8 | 1.5/12.0 | ||
Microwave | 0.01/0.15 | 0.56/3.33 | 0.43/6.52 | 0.33/5.0 | 0.2/3.0 | 0.18/2.73 | 0.5/7.5–0.2/3.0 | 0.5/7.5 | ||
Meat: | White Kołuda® | breast | [36] | |||||||
Water bath cooking | ||||||||||
Without skin | 0.27 | 15.0 | 11.7 | 9.0 | 5.4 | 4.91 | 13.5–5.4 | 13.5 | ||
With skin | 0.14 | 7.8 | 6.09 | 4.67 | 2.8 | 2.55 | 7.0–2.8 | 7.0 | ||
Grilled | ||||||||||
Without skin | 0.20 | 11.1 | 8.70 | 6.67 | 4.0 | 4.0 | 10.0–4.0 | 10.0 | ||
With skin | 0.38 | 21.1 | 16.5 | 12.7 | 7.6 | 6.91 | 19.0–7.6 | 19.0 | ||
Oven convection Roasting | ||||||||||
Without skin | 0.13 | 7.22 | 5.65 | 4.33 | 2.6 | 2.36 | 6.5–2.6 | 6.5 | ||
With skin | 0.11 | 6.11 | 4.78 | 3.67 | 2.2 | 2.0 | 5.5–2.2 | 5.5 | ||
Pan fried | ||||||||||
Without skin | 0.11 | 6.11 | 4.78 | 3.67 | 2.2 | 2.0 | 5.5–2.2 | 5.5 | ||
With skin | 0.13 | 7.22 | 5.65 | 4.33 | 2.6 | 2.36 | 6.5–2.6 | 6.5 | ||
Meat breast, cooked | Egyptian goose | breast | [17] | |||||||
0.60 | 33.3 | 26.1 | 20.0 | 12.0 | 10.9 | 30.0-12.0 | 30.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goluch, Z.; Haraf, G. Goose Meat as a Source of Dietary Manganese—A Systematic Review. Animals 2023, 13, 840. https://doi.org/10.3390/ani13050840
Goluch Z, Haraf G. Goose Meat as a Source of Dietary Manganese—A Systematic Review. Animals. 2023; 13(5):840. https://doi.org/10.3390/ani13050840
Chicago/Turabian StyleGoluch, Zuzanna, and Gabriela Haraf. 2023. "Goose Meat as a Source of Dietary Manganese—A Systematic Review" Animals 13, no. 5: 840. https://doi.org/10.3390/ani13050840
APA StyleGoluch, Z., & Haraf, G. (2023). Goose Meat as a Source of Dietary Manganese—A Systematic Review. Animals, 13(5), 840. https://doi.org/10.3390/ani13050840