Effects of Dietary Supplementation of L-Carnitine and Mannan-Oligosaccharides on Growth Performance, Selected Carcass Traits, Content of Basic and Mineral Components in Liver and Muscle Tissues, and Bone Quality in Turkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird, Experimental Design, and Management
2.2. Experimental Measurements
2.3. Sample Collection and Chemical Analyses
2.3.1. Diets and Muscles
2.3.2. Bone Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance and Selected Carcass Characteristics
3.2. Content of Basic and Mineral Components in the Breast and Thigh Muscle
3.3. Content of Basic and Mineral Components in the Liver
3.4. Bone Quality Indicators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henchion, M.; Zimmermann, J. Animal food products: Policy, market and social issues and their influence on demand and supply of meat. Proc. Nutr. Soc. 2021, 80, 252–263. [Google Scholar] [CrossRef] [PubMed]
- OECD FAO Agricultural Outlook 2021–2030. 2021, pp. 163–177. Available online: https://reliefweb.int/attachments/237350c5-87ab-3e2a-acb5-45e72071993f/cb5332en.pdf (accessed on 14 February 2023).
- Murali, P.; George, S.K.; Ally, K.; Dipu, M.T. Effect of L-carnitine supplementation on growth performance, nutrient utilization, and nitrogen balance of broilers fed with animal fat. Vet. World 2015, 8, 482–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadl, S.E.; El-Gammal, G.; Sakr, O.A.; Salah, A.A.; Atia, A.A.; Prince, A.M.; Hegazy, A.M. Impact of dietary Mannan-oligosaccharide and β-Glucan supplementation on growth, histopathology, E-coli colonization and hepatic transcripts of TNF-α and NF-κB of broiler challenged with E. coli O78. BMC Vet. Res. 2020, 16, 204. [Google Scholar] [CrossRef] [PubMed]
- Azizi-Chekosari, Μ.; Bouye, Μ.; Seidavi, A.R. Effects of L-carnitine supplementation in diets of broiler chickens. J. Hell. Vet. Medical Soc. 2021, 72, 2611–2628. [Google Scholar] [CrossRef]
- Spring, P.; Wenk, C.; Connolly, A.; Kiers, A. A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals. J. Appl. Anim. Nutr. 2015, 3, e8. [Google Scholar] [CrossRef] [Green Version]
- Kwiecień, M.; Kasperek, K.; Grela, E.R.; Jeżewska-Witkowska, G. Effect of caponization on the production performance, slaughter yield and fatty acid profile of muscles of Greenleg Partridge cocks. J. Food Sci. Technol. 2015, 52, 7227–7235. [Google Scholar] [CrossRef]
- Kwiecień, M.; Kasperek, K.; Tomaszewska, E.; Muszyński, S.; Jeżewska-Witkowska, G.; Winiarska-Mieczan, A.; Grela, E.R.; Kamińska, E. Effect of Breed and Caponisation on the Growth Performance, Carcass Composition, and Fatty Acid Profile in the Muscles of Greenleg Partridge and Polbar Breeds. Braz. J. Poult. Sci. 2018, 20, 583–594. [Google Scholar] [CrossRef]
- Song, S.K.; Beck, B.R.; Kim, D.; Park, J.; Kim, J.; Kim, H.D.; Ringo, E. Prebiotics as immunostimulants in aquaculture: A review. Fish Shellf. Immunol. 2014, 40, 40–48. [Google Scholar] [CrossRef]
- Lourenço, M.C.; de Souza, A.M.; Hayashi, R.M.; da Silva, A.B.; Santin, E. Immune response of broiler chickens supplemented with prebiotic from Saccharomyces cerevisiae challenged with Salmonella enteritidis or minnesota. J. Appl. Poult. Res. 2016, 25, 165–172. [Google Scholar] [CrossRef]
- Rizwan, H.M.; Khan, M.K.; Iqbal, Z.; Deeba, F. Immunological and therapeutic evaluation of wheat (Triticum aestivum) derived beta-glucans against coccidiosis in chicken. Int. J. Agric. Biol. 2016, 18, 895–902. [Google Scholar] [CrossRef]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef]
- Xiao, R.; Power, R.F.; Mallonee, D.; Routt, K.; Spangler, L.; Pescatore, A.J.; Cantor, A.H.; Ao, T.; Pierce, J.L.; Dawson, K.A. Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens. Poult. Sci. 2012, 91, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Al-Hamid, A.E.; Ibrahim, S.; Al-Harthi, M.A.; Bovera, F.; Elnaggar, A.S. Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently. Livest. Sci. 2014, 164, 87–95. [Google Scholar] [CrossRef]
- Szymańska-Czerwińska, M.; Bednarek, D. Effect of prebiotics on immunological processes in animals. Med. Weter. 2008, 64, 262–264. [Google Scholar]
- Shao, Y.; Guo, Y.; Wang, Z. Beta-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poult. Sci. 2013, 92, 1764–1773. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, T.C. Mineral utilization in Layers as Influenced by Dietary Oligofructose and Inulin. Int. J. Poult. Sci. 2004, 3, 442–445. [Google Scholar]
- Ghoreyshi, S.M.; Omri, B.; Chalghoumi, R.; Bouyeh, M.; Seidavi, A.; Dadashbeiki, M.; Lucarini, M.; Durazzo, A.; Hoven, R.V.D.; Santini, A. Effects of dietary supplementation of l-carnitine and excess lysine-methionine on growth performance, carcass characteristics, and immunity markers of broiler chicken. Animals 2019, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Z.; Naz, S.; Khan, R.U.; Tahir, M. An update on the potential application of L-carnitine in poultry. Worlds Poult. Sci. J. 2017, 73, 823–830. [Google Scholar] [CrossRef]
- Cave, M.C.; Hurt, R.T.; Frazier, T.H.; Matheson, P.J.; Garrison, R.N.; McClain, C.J.; McClave, S.A. Obesity, inflammation, and the potential application of pharmaconutrition. Nutr. Clin. Pract. 2008, 23, 16–34. [Google Scholar] [CrossRef]
- Rinaudo, M.T.; Curto, M.; Bruno, R.; Piccinini, M.; Marino, C. Acid soluble, short chain esterified and free carnitine in the liver, heart, muscle and brain of pre- and post-hatched chicks. Int. J. Biochem. 1991, 23, 59–65. [Google Scholar] [CrossRef]
- Szilagyi, M.; Lindberg, P.; Sankari, S. Serum L-carnitine concentration in domestic animals. In Proceedings of the 5th Congress of International Society of Animal Clinical Biochemistry, Parma, Italy, 2–6 September 1992; pp. 389–391. [Google Scholar]
- Rebouche, C.J. Carnitine function and requirements during the life cycle. FASEB J. 1992, 6, 3379–3386. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Andolfi, A.; Troise, C.; Zonno, M.C.; Santini, A.; Tuzi, A.; Vurro, M.; Ash, G.; Evidente, A. Phomentrioloxin: A novel phytotoxic pentasubstituted geranylcyclohexentriol produced by Phomopsis sp., a potential mycoherbicide for Carthamus lanathus biocontrol. J. Nat. Prod. 2012, 75, 1130–1137. [Google Scholar] [CrossRef]
- Parsaeimehr, K.; Farhoomand, P.; Najafi, R. The effects of L-carnitine with animal fat on performance, carcass characteristics and some blood parameters of broiler chickens. Ann. Biol. Res. 2012, 3, 3663–3666. [Google Scholar]
- Sawicka, A.K.; Renzi, G.; Olek, R.A. The bright and the dark sides of L-carnitine supplementation: A systematic review. J. Inter. Soc. Sport. Nutr. 2020, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Tatara, M.R. Current methods for in vivo assessment of the skeletal system in poultry. Med. Wet. 2006, 62, 266–269. [Google Scholar]
- Buchwalder, T.; Huber-Eicher, B. Effect of the analgesic butorphanol on behaviour in turkeys (Meleagris gallopavo). Res. Vet. Sci. 2005, 79, 239–244. [Google Scholar] [CrossRef]
- Williams, B.; Solomon, S.; Waddington, D.; Thorp, B.; Farquharson, C. Skeletal development in the meat-type chicken. Br. Poult. Sci. 2000, 41, 141–149. [Google Scholar] [CrossRef]
- Julian, R.J. Production and growth related disorders and other metabolic diseases of poultry-a review. Vet. J. 2005, 169, 350–369. [Google Scholar] [CrossRef]
- Hooshmand, S.; Balakrishnan, A.; Clark, R.M.; Owen, K.Q.; Koo, S.I.; Arjmandi, B.H. Dietary l-carnitine supplementation improves bone mineral density by suppressing bone turnover in aged ovariectomized rats. Phytomedicine 2008, 15, 595–601. [Google Scholar] [CrossRef]
- Orsal, E.; Halici, Z.; Bayir, Y.; Cadirci, E.; Bilen, H.; Ferah, I.; Aydin, A.; Ozkanlar, S.; Ayan, A.K.; Seven, B.; et al. The role of carnitine on ovariectomy and inflammation-induced osteoporosis in rats. Exp. Biol. Med. 2013, 238, 1406–1412. [Google Scholar] [CrossRef]
- Aydin, A.; Halici, Z.; Albayrak, A.; Polat, B.; Karakus, E.; Yildirim, O.S.; Bayir, Y.; Cadirci, E.; Ayan, A.K.; Aksakal, A.M. Treatment with Carnitine Enhances Bone Fracture Healing under Osteoporotic and/or Inflammatory Conditions. Basic Clin. Pharmacol. Toxicol. 2015, 117, 173–179. [Google Scholar] [CrossRef] [PubMed]
- McCabe, L.; Britton, R.A.; Parameswaran, N. Prebiotic and probiotic regulation of bone health: Role of the intestine and its microbiome. Curr. Osteoporos. Rep. 2015, 13, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, C.M. Diet, gut microbiome, and bone health. Curr. Osteoporos. Rep. 2015, 13, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Takahara, S.; Morohashi, T.; Sano, T.; Ohta, A.; Yamada, S.; Sasa, R. Fructooligosaccharide consumption enhances femoral bone volume and mineral concentration in rats. J. Nutr. 2000, 130, 1792–1795. [Google Scholar] [CrossRef] [Green Version]
- Kruger, M.C.; Brown, K.E.; Collet, G.; Layton, L.; Schollum, L.M. The effect of fructooligosaccharides with different degree of polymerization on calcium bioavailability in the growing rat. Exp. Biol. Med. 2003, 228, 683–688. [Google Scholar] [CrossRef]
- Lu, V.B.; Gribble, F.M.; Reimann, F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021, 13, 883. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- García-Cabrerizo, R.; Carbia, C.; O’Riordan, K.J.; Schellekens, H.; Cryan, J.F. Microbiota-gut-brain axis as a regulator of reward processes. J. Neurochem. 2021, 157, 1495–1524. [Google Scholar] [CrossRef]
- Ghazalah, A.A.; Fouad El-Manylawi, M.A.; Motawe, H.F.A.; Khattab, M.S.; Youssef, Y.I. Growth Performance, Nutrient Digestibility, Biochemical Properties, Hematological Traits, and Intestinal Histopathology of Broiler Chicks Fed Mannan Oligosaccharides. World Vet. J. 2021, 11, 621–633. [Google Scholar] [CrossRef]
- Teng, P.Y.; Adhikari, R.; Llamas-Moya, S.; Kim, W.K. Effects of combination of mannan-oligosaccharides and β-glucan on growth performance, intestinal morphology, and immune gene expression in broiler chickens. Poult. Sci. 2021, 100, 101483. [Google Scholar] [CrossRef]
- British United Turkeys. Aviagen Turkeys. Management Guidelines for Raising Commercial Turkeys. 2013. Available online: https://www.aviagenturkeys.com/media/183481/aviagencommercial-guide.pdf (accessed on 1 February 2023).
- Research Council National. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Hahn, G.; Spindler, M. Method of dissection of turkey carasses. World’s Poultry Sci. J. 2002, 58, 179–197. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 21th ed; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2019. [Google Scholar]
- PN-EN ISO 6869; Animal Feeding Stuffs-Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc-Method Using Atomic Absorption Spectrometry. Polish Committee for Standardization: Warsaw, Poland, 2002.
- PN-76/R-64781; Feed, Determination of Phosphorus Content. Polish Committee for Standardization: Warsaw, Poland, 1976.
- Ziaie, H.; Bashtani, M.; Torshizi, M.K.; Naeeimipour, H.; Farhangfar, H.; Zeinali, A. Effect of antibiotic and its alternatives on morphometric characteristics, mineral content and bone strength of tibia in Ross broiler chickens. Glob. Vet. 2011, 7, 315–322. [Google Scholar]
- Kwiecień, M.; Winiarska-Mieczan, A.; Milczarek, A.; Tomaszewska, E.; Matras, J. Effects of zinc glycine chelate on growth performance, carcass characteristics, bone quality, and mineral content in bone of broiler chicken. Livest. Sci. 2016, 191, 43–50. [Google Scholar] [CrossRef]
- Kwiatkowska, K.; Kwiecień, M.; Winiarska-Mieczan, A. Fast-growing chickens fed with lucerne protein-xanthophyll concentrate: Growth performance, slaughter yield and bone quality. J. Anim. Feed Sci. 2017, 26, 131–140. [Google Scholar] [CrossRef]
- Kwiecień, M.; Winiarska-Mieczan, A.; Zawiślak, K.; Sroka, S. Effect of copper glycinate chelate on biomechanical, morphometric and chemical properties of chicken femur. Ann. Anim. Sci. 2014, 14, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Krysiak, K.; Konkol, D.; Korczyński, M. Overview of the Use of Probiotics in Poultry Production. Animals 2021, 11, 1620. [Google Scholar] [CrossRef]
- Farghly, M.F.A.; Ahmad, E.A.M.; Alagawany, M.; Abd El-Hack, M.E.; Ali, R.A.M.; Elnesr, S.S.; Taha, A.E.; Salah, A.S. Use of some nutritional supplements in drinking water of growing turkeys during 1st month of age and their effect on performance, meat quality, blood profile and antioxidant status. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1625–1633. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef]
- Murali, P.; George, S.K.; Ally, K.; Dipu, M.T.; Dominic, G. Effect of dietary L-carnitine supplementation with animal fat on carcass characteristics of broiler chicken. J. Anim. Res. 2015, 5, 713–717. [Google Scholar] [CrossRef]
- Ognik, K.; Krauze, M. Dietary supplementation of mannanoligosaccharides to turkey hens on their growth performance and antioxidant status in the blood. S. Afr. J. Anim. 2012, 42, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Hooge, D.M. Meta-analysis of broiler chicken pen trials evaluating dietary oligosaccharide, 1993–2003. Int. J. Poult. Sci. 2004, 3, 163–174. [Google Scholar]
- Silva, V.K.; Silva, J.D.T.D.; Gravena, R.A.; Marques, R.H.; Hada, F.H.; Moraes, V.M.B.D. Yeast extract and prebiotic in pre-initial phase diet for broiler chickens raised under different temperatures. R. Bras. Zootec. 2010, 39, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Haldar, S.; Ghosh, T.K.; Bedford, M.R. Effects of yeast (Saccharomyces cerevisiae) and yeast protein concentrate on production performance of broiler chickens exposed to heat stress and challenged with Salmonella enteritidis. Anim. Feed Sci. Technol. 2011, 168, 61–71. [Google Scholar] [CrossRef]
- Nikpiran, H.; Vahdatpour, T.; Babazadeh, D.; Vahdatpour, S. Effects of Saccharomyces cerevisiae the pax and their combination on blood enzymes and performance of Japanese quails (Coturnix japonica). J. Anim. Plant Sci. 2013, 23, 369–375. [Google Scholar]
- Tufail, M.; Naila, C.; Rafiullah Shakoor, A.; Rifat, U.K.; Muhammad, M.; Shabana, N. Mannan oligosaccharide (mos) in broiler diet during the finisher phase: 2. growth traits and intestinal histomorpholgy. Pak. J. Zool. 2019, 51, 597–602. [Google Scholar] [CrossRef]
- Rehman, A.; Arif, M.; Sajjad, N.; Al-Ghadi, M.Q.; Alagawany, M.; Abd El-Hack, M.E.; Alhimaidi, A.R.; Elnesr, S.S.; Almutairi, B.O.; Amran, R.A.; et al. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult. Sci. 2020, 99, 6946–6953. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Mohan, N.; Dev, K.; Mir, N.A.; Tiwari, A.K. Effect of dietary mannan oligosaccharides and fructo-oligosaccharides on physico-chemical indices, antioxidant and oxidative stability of broiler chicken meat. Sci. Rep. 2021, 11, 20567. [Google Scholar] [CrossRef]
- El-Saway, H.B.; Soliman, M.M.; Sadek, K.M.; Nassef, E.; Abouzed, T.K. Beneficial impact of dietary methyl methionine sulfonium chloride and/or L-carnitine supplementation on growth performance, feed efficiency, and serum biochemical parameters in broiler chicken: Role of IGF-1 and MSTN genes. Trop. Anim. Health Prod. 2022, 54, 98. [Google Scholar] [CrossRef]
- Thabet, H.A.; Shourrap, M.I.; Abdelaziz, M.A.M.; Abdel-Salam, A.F. Effect of using L-carnitine, ascorbic acid and probiotics on productive performance, microbial load and histological observations in locally-developed broilers. Egypt. J. Nutr. Feed. 2015, 18, 113–128. [Google Scholar] [CrossRef]
- Khoshkhoo, P.H.; Azad, G.A.; Ila, N.; Moayer, F.; Nayeri, H.D. Effect of dietary L-carnitine supplementation on overall performance, carcass traits, serum components and immune response in broiler chicken. In Proceedings of the EPC 12th European Poultry Conference, Verona, Italy, 10–14 September 2006. [Google Scholar]
- Hossininezhad, M.M.; Irani, M.; Seidavi, A. Dietary effects of L-carnitine supplement on performance and blood parameters of broiler chickens. J. Food. Agric. Environ. 2011, 9, 475–481. [Google Scholar]
- Kidd, M.T.; Gilbert, J.; Corzo, A.; Page, C.; Virden, W.S.; Woodworth, J.C. Dietary L-carnitine influences broiler thigh yield. Asian-Australas. J. Anim. Sci. 2009, 22, 681–685. [Google Scholar] [CrossRef]
- Mirzapor Sarab, S.; Salari, S.; Mirzadeh, K.; Aghaei, A. Effect of different levels of vitamin C and L-carnitine on performance and some blood and immune parameters of broilers under heat stress. Iran. J. Appl. Anim. Sci. 2016, 8, 141–153. [Google Scholar]
- Fujimoto, H.; Matsumoto, K.; Koseki, M.; Yamashiro, H.; Yamada, T.; Takada, R. Effects of rice feeding and carnitine addition on growth performance and mRNA expression of protein metabolism related genes in broiler grower chicks. Anim. Sci. J. 2020, 91, e13390. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Mehrzad-Gilmalek, H.; Bouyeh, M.; Qotbi, A.; Amouei, H.; Seidavi, A.; Paz, E.; Laudadio, V. Effect of different levels of L-carnitine and excess, lysine-methionine on broiler performance, carcass characteristics, blood constituents, immunity and triiodothyronine hormone. Agriculture 2020, 10, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Khemalapure, S.; Ramteke, B.; Gadegaonkar, G.; Karambele, N.; Jagadale, S. Effect of Supplementation of Combination of Prebiotic and Acidifier on Performance of Broiler Chicken. Indian J. Vet. Sci. Biotechnol. 2022, 18, 112–114. [Google Scholar]
- Moilwa, M.N.; Kumar, R.; Roy, D.; Ali, N.; Yadav, S.P.; Sahu, D.S.; Tomar, K. Effect of prebiotics supplementation on carcass quality traits in commercial broiler. J. Entomol. Zool. Stud. 2021, 9, 320–323. [Google Scholar]
- Yang, Y.; Iji, P.A.; Choct, M. Effects of different dietary levels of mannanoligosaccharide on growth performance and gut development of broiler chickens. Asian-australas. J. Anim. Sci. 2007, 20, 1084–1091. [Google Scholar] [CrossRef]
- Mehdizadeh Taklimi, S.M.; Ghazvinian, K.; Ahmadi Kasgari, M.R. Effect of L-carnitine on performance and carcass quality of broiler chickens. Acad. J. Sci. Res. 2015, 3, 50–54. [Google Scholar]
- El-kelawy, M. Effects of L-carnitine on production performance, blood parameters, lipid metabolism and antioxidative properties of broiler chicks. Egypt. Poult. Sci. J. 2017, 37, 873–892. [Google Scholar] [CrossRef]
- Dev, K.; Mir, N.A.; Biswas, A.; Kannoujia, J.; Begum, J.; Kant, R.; Mandal, A. Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serum biochemistry, meat quality, and lipid oxidative stability in broiler chickens. Anim. Nutr. 2020, 6, 325–332. [Google Scholar] [CrossRef]
- Bonos, E.M.; Christaki, E.V.; Floroupaneri, P.C. Performance and carcass characteristics of Japanese quail as affected by sex or mannan oligosaccharides and calcium propionate. S. Afr. J. Anim. Sci. 2010, 40, 173–184. [Google Scholar] [CrossRef]
- Lipiński, K.; Tywończuk, J.; Siwicki, A. Effect of dietary (mannan)-oligosaccharides on health status and meat quality of broiler chickens. Food Sci. Technol. Qual. 2009, 4, 26–33. [Google Scholar]
- Rajabzadeh Nesvan, M.; Rezaee, M.; Ansari Pirsaraee, Z. Effect of L-carnitine supplementation to finisher diets with different sources of fat on the performance, carcass characteristics and body composition in broiler chickens. J. Manag. Syst. 2013, 92, 51–68. [Google Scholar]
- Lettner, F.; Zollitsch, W.; Halbmayer, E. L-carnitine in broilers. Bodencultur 1992, 43, 161–167. [Google Scholar]
- Rabie, M.H.; Szilagyi, M.; Gippert, T. Effects of dietary L-carnitine supplementation and protein level on performance and degree of meatiness and fatness of broilers. Acta Biol. Hung. 1997, 48, 221–239. [Google Scholar] [CrossRef]
- Rabie, M.H.; Szilagyi, M.; Gippert, T.; Votisky, E.; Gerendai, D. Influence of dietary L-carnitine on performance and carcass quality of broiler chickens. Acta Biol. Hung. 1997, 48, 241–252. [Google Scholar] [CrossRef]
- Xu, Z.R.; Wang, M.Q.; Mao, H.X.; Zhang, X.A.; Hu, C.H. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poul. Sci. 2003, 82, 408–413. [Google Scholar] [CrossRef]
- Cheng, Y.; Du, M.; Xu, Q.; Chen, Y.; Wen, C.; Zhou, Y. Dietary mannan oligosaccharide improves growth performance, muscle oxidative status, and meat quality in broilers under cyclic heat stress. J. Therm. Biol. 2018, 75, 106–111. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Prebiotics and probiotics: Are they functional foods? Am. J. Clin. Nutr. 2000, 71, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Abdel Magied, H.; Ghazal, M.N.; Abo El-Azayem, E. Synergic effect of adding or combining either raw or extracted phytogenic feed additives with prebiotic on productive and physiological treats of growing New Zealand White Rabbits. Egypt. J. Rabbit. Sci. 2021, 31, 25–56. [Google Scholar] [CrossRef]
- Corduk, M.; Ceylan, N.; Ildiz, F. Effects of dietary energy density and L-carnitine supplementation of growth performance, carcass traits and blood parameters of broiler chicken. S. Afr. J. Anim. Sci. 2007, 37, 65–73. [Google Scholar] [CrossRef]
- Adamski, M.; Kuzniacka, J.; Milczewska, N. Preferences of consumers for choosing poultry meat. Pol. J. Natur. Sci. 2017, 32, 261–271. [Google Scholar]
- Oliveira, M.C.; Gravena, R.A.; Marques, R.H.; Rodrgues, E.A.; Moraes, V.M.B. Effect of mannan oligosaccharides and enzyme utilization on broiler bone parameters. Biotemas 2009, 22, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Kita, K.; Kato, S.; Aman Yaman, M.; Okumura, J.; Yokota, H. Dietary L-carnitine increases plasma insulin-like growth factor-I concentration in chicks fed a diet with adequate dietary protein level. Br. Poult. Sci. 2002, 43, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Olkowski, A.A.; Laarveld, B.; Wojnarowicz, C.; Chirino-Trejo, M.; Chapman, D.; Wysokiński, T.W.; Quaroni, L. Biochemical and physiological weaknesses associated with the pathogenesis of femoral bone degeneration in broiler chickens. Avian Pathol. 2011, 40, 639–650. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Koreleski, J. Effect of 25-hydroxycholecalciferol in feed on bone quality of caged laying hens. Med. Wet. 2005, 61, 814–817. [Google Scholar]
- Puzio, I.; Bieńko, M.; Radzki, R.; Kapica, M.; Filip, R. Influence of phytase and calcitriol on strength properties of femur bones of boiler chickens. Med. Wet. 2004, 60, 1103–1105. [Google Scholar]
- Sacakli, P.; Sehu, A.; Ergun, A.; Genc, B.; Selcuk, Z. The effect of phytase and organic acid on growth performance, carcass yield and tibia ash in quails fed diets with low levels of non-phytate phosphorus. Asian-Australas. J. Anim. Sci. 2006, 19, 198–202. [Google Scholar] [CrossRef]
- Kim, W.K.; Donalson, L.M.; Mitchell, A.D.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Effects of alfalfa and fructooligosaccharide on molting parameters and bone qualities using dual X-ray absorptiometry and conventional bone assays. Poultry Sci. 2006, 85, 15–20. [Google Scholar] [CrossRef]
- Kwiatkowska, K.; Kwiecień, M.; Winiarska-Mieczan, A.; Bąkowski, M. The effect of copper glycine chelate on physicochemical, morphometric and strength parameters of tibia bones in broiler chickens. Ann. UMCS Zootech. 2016, 34, 1–13. [Google Scholar]
- Szablicka, D.; Różewicz, M. Diatomaceous earth as a feed additive for poultry. Wiadomości Zootech. 2017, 55, 112–117. [Google Scholar]
- Mignon-Grasteau, S.; Chantry-Darmon, C.; Boscher, M.Y.; Sellier, N.; Chabault-Dhuit, M.; Le Bihan-Duval, E.; Narcy, A. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study. Bone Rep. 2016, 5, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatara, M.R.; Rosenbeiger, P.; Chmielowiec, K.; Charuta, A.; Krupski, W. Skeletal system disorders in breeding poultry. Mag. Wet. 2014, 23, 378–384. [Google Scholar]
- Frieske, A.; Mroczkowski, S. Pain in poultry production. Med. Weter. 2014, 70, 342–347. [Google Scholar]
- Oso, A.O.; Fafiolu, A.O.; Adeleke, M.A.; Ladokun, O.A.; Sobayo, R.A.; Jegede, A.V.; Peters, S.O.; Oyebamiji, O.A.; Akinsola, J. Effect of dosage and application mode of L-carnitine on plasma lipid and egg-yolk cholesterol of turkeys, hatchability of eggs and post-hatch growth of their offsprings. J. Anim. Physiol. Anim. Nutr. 2014, 98, 766–774. [Google Scholar] [CrossRef]
- Hrnčár, C.; Gašparovič, M.; Hanusová, E.; Hanus, A.; Pistová, V.; Arpášová, H.; Fik, M.; Bujko, J.; Gašparík, J. Effect of adding L-carnitine and probiotic on performance and carcass parameters of broiler chickens. Anim. Sci. Biotechnol. 2017, 50, 86–93. [Google Scholar]
- Asadi, H.; Sadeghi, A.A.; Eila, N.; Aminafshar, M. Carcass Traits and Immune Response of Broiler Chickens Fed Dietary L-Carnitine, Coenzyme Q 10 and Ractopamine. Braz. J. Poult. Sci. 2016, 18, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Gross, K.L.; Zicker, S.C. L-carnitine increases muscle mass, bone mass and bone density in growing large breed puppies. J. Anim. Sci. 2000, 78, 176. [Google Scholar]
- Chen, Y.C.; Nakthong, C.; Chen, T.C. Improvement of laying hen performance by dietary prebiotic chicory oligofructose and inulin. Int. J. Poult. Sci. 2005, 4, 103–108. [Google Scholar]
- Świątkiewicz, S.; Koreleski, J.; Arczewska-Włoek, A. Effect of inulin and oligofructose on performance and bone characteristics of broiler chickens fed on diets with different concentrations of calcium and phosphorus. Br. Poult. Sci. 2011, 52, 483–491. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Koreleski, J.; Arczewska, A. Effect of organic acids and prebiotics on bone quality in laying hens fed diets with two levels of calcium and phosphorus. Acta Vet. Brno 2010, 79, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, L.T.; Rodríguez, M.L.; Alzueta, C.; Rebolé, A.; Treviño, J. Effect of inulin on growth performance, intestinal tract sizes, mineral retention and tibial bone mineralisation in broiler chickens. Br. Poult. Sci. 2009, 50, 325–332. [Google Scholar] [CrossRef]
- Zafar, T.A.; Weaver, C.M.; Zhao, Y.; Martin, B.R.; Wastney, M.E. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J. Nutr. 2004, 134, 399–402. [Google Scholar] [PubMed] [Green Version]
- Malcolm, A. Metabolic bone disease. Curr. Diagn. Pathol. 2002, 8, 19–25. [Google Scholar] [CrossRef]
- Bozkurt, M.; Bintaş, E.; Kırkan, Ş.; Akşit, H.; Küçükyılmaz, K.; Erbaş, G.; Çabuk, M.; Akşit, D.; Parın, U.; Ege, G.; et al. Comparative evaluation of dietary supplementation with mannan oligosaccharide and oregano essential oil in forced molted and fully fed laying hens between 82 and 106 weeks of age. Poult. Sci. 2016, 95, 2576–2591. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Abd El Reheem, M.H.; Elbahy, D.A. L-Carnitine ameliorates the osteoporotic changes and protects against simvastatin induced myotoxicity and hepatotoxicity in glucocorticoid-induced osteoporosis in rats. Biomed. Pharmacother. 2022, 152, 113221. [Google Scholar] [CrossRef] [PubMed]
- Scholz-Ahrens, K.E.; Ade, P.; Marten, B.; Weber, P.; Timm, W.; Açil, Y.; Glüer, C.C.; Schrezenmeir, J. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr. 2007, 137, 838S–846S. [Google Scholar] [CrossRef]
- Asemi, Z.; Aarabi, M.H.; Hajijafari, M.; Alizadeh, S.A.; Razzaghi, R.; Mazoochi, M.; Esmaillzadeh, A. Effects of synbiotic food consumption on serum minerals, liver enzymes, and blood pressure in patients with type 2 diabetes: A double-blind randomized cross-over controlled clinical trial. Int. J. Prev. Med. 2017, 8, 43. [Google Scholar]
- Yan, F.F.; Mohammed, A.A.; Murugesan, G.R.; Cheng, H.W. Effects of a dietary synbiotic inclusion on bone health in broilers subjected to cyclic heat stress episodes. Poult. Sci. 2019, 98, 1083–1089. [Google Scholar] [CrossRef]
- Nisar, H.; Sharif, M.; Rahman, M.A.; Rehman, S.; Kamboh, A.A.; Saeed, M. Effects of dietary supplementations of synbioticson growth performance, carcass characteristics and nutrient digestibility of broiler chicken. Braz. J. Poult. Sci. 2021, 23, 1–10. [Google Scholar] [CrossRef]
Ingredient | Diets | ||
---|---|---|---|
Grower 1 (6–9 Week) | Grower 2 (10–13 Week) | Finisher 1 (14–16 Week) | |
Maize, % | 25.0 | 25.0 | 20.0 |
Wheat, % | 30.6 | 36.8 | 56.6 |
Soybean, % | 33.5 | 28.0 | 15.0 |
Meat and bone meal, % | 5.00 | 5.00 | 4.00 |
Soya oil, % | 2.00 | 2.00 | 1.20 |
Limestone, % | 0.70 | 0.50 | 0.50 |
Cytromix Plus 1, % | 0.20 | 0.20 | 0.20 |
Vitamin–mineral premix 2, % | 3.00 | 2.50 | 2.50 |
Calculated nutrient composition, % | |||
Metabolizable energy, MJ‧kg−1 | 12.13 | 12.34 | 12.55 |
Crude protein, g kg−1 | 23.0 | 19.5 | 17.0 |
Lysine, g kg−1 | 1.45 | 1.25 | 1.05 |
Methionine+cysteine, g kg−1 | 0.95 | 0.85 | 0.75 |
Tryptophan, g kg−1 | 0.25 | 0.21 | 0.18 |
Threonine, g kg−1 | 0.92 | 0.79 | 0.67 |
Na, g kg−1 | 0.15 | 0.15 | 0.15 |
Mineral Components | Diets | ||
---|---|---|---|
Grower 1 (6–9 Week) | Grower 2 (10–13 Week) | Finisher 1 (14–16 Week) | |
Mg, g·kg−1 | 1.77 | 2.48 | 2.43 |
Ca, g·kg−1 | 8.58 | 7.77 | 7.67 |
K, g·kg−1 | 10.7 | 10.8 | 8.30 |
P, g·kg−1 | 10.4 | 10.9 | 9.89 |
Cu, mg·kg−1 | 22.1 | 34.8 | 16.6 |
Zn, mg·kg−1 | 171.6 | 131.3 | 123.7 |
Fe, mg·kg−1 | 304.7 | 327.3 | 345.4 |
Experimental Factors | Groups | ||
---|---|---|---|
Control | L-Carnitine | Bio-Mos | |
Dose of Bio-Mos, % kg−1 mixture | - | - | 0.5 |
Dose of L-carnitine, mL·L−1 H2O | - | 0.83 | - |
Number of birds in the group | 120 | 120 | 120 |
Number of birds slaughtered | 12 | 12 | 12 |
Item | Control | L-Carnitine | Bio-Mos | p-Value | SEM | |
---|---|---|---|---|---|---|
Body weight, kg | 6 weeks | 1.74 | 1.76 | 1.78 | 0.061 | 0.025 |
9 weeks | 3.23 | 3.58 | 3.69 | 0.057 | 0.247 | |
15 weeks | 8.51 | 8.77 | 8.98 | 0.058 | 0.321 | |
16 weeks | 9.12 b | 9.67 a | 9.68 a | 0.047 | 0.273 | |
Gain, kg (6–16 weeks of life) | 7.83 | 7.90 | 7.91 | 0.054 | 0.054 | |
FCR, kg‧kg−1 (6–16 weeks of life) | 2.68 | 2.69 | 2.61 | 0.051 | 0.045 | |
Organ weight, g | ||||||
Breast muscle | 1657 | 1884 | 1875 | 0.057 | 0.036 | |
Thigh muscle | 658 | 699 | 687 | 0.051 | 0.023 | |
Liver | 154 | 147 | 143 | 0.087 | 0.021 |
Item | Control | L-Carnitine | Bio-Mos | p-Value | SEM |
---|---|---|---|---|---|
Basic nutrients, g 100 g−1 | |||||
Dry matter | 27.2 | 27.8 | 26.9 | 0.058 | 0.235 |
Crude ash | 3.28 a | 2.79 b | 2.93 b | 0.043 | 0.112 |
Crude protein | 26.1 | 25.9 | 24.9 | 0.058 | 0.153 |
Crude fat | 0.93 a | 0.69 c | 0.71 b | 0.029 | 0.031 |
Mineral elements | |||||
Mg, g·kg−1 | 0.43 | 0.47 | 0.45 | 0.064 | 0.005 |
Ca, g·kg−1 | 0.06 | 0.08 | 0.08 | 0.074 | 0.001 |
K, g·kg−1 | 2.58 | 2.67 | 2.59 | 0.059 | 0.031 |
Na, g·kg−1 | 0.45 ab | 0.43 b | 0.48 a | 0.049 | 0.053 |
Fe, mg·kg−1 | 6.71 | 7.28 | 6.97 | 0.058 | 0.951 |
Cu, mg·kg−1 | 1.68 b | 1.81 ab | 2.64 a | 0.038 | 0.124 |
Zn, mg·kg−1 | 14.9 | 15.4 | 13.9 | 0.087 | 0.313 |
Item | Control | L-Carnitine | Bio-Mos | p-Value | SEM |
---|---|---|---|---|---|
Basic nutrients (g 100 g−1) | |||||
Dry matter | 23.9 | 24.0 | 24.5 | 0.073 | 0.214 |
Crude ash | 2.11 | 2.18 | 2.15 | 0.068 | 0.082 |
Crude protein | 21.9 | 22.0 | 21.9 | 0.088 | 0.213 |
Crude fat | 1.73 | 1.83 | 1.85 | 0.074 | 0.032 |
Mineral elements | |||||
Mg, g·kg−1 | 0.12 | 0.11 | 0.10 | 0.077 | 0.031 |
Ca, g·kg−1 | 0.032 b | 0.039 a | 0.035 ab | 0.047 | 0.002 |
K, g·kg−1 | 1.82 | 1.68 | 1.69 | 0.056 | 0.034 |
Na, g·kg−1 | 0.58 | 0.57 | 0.52 | 0.084 | 0.013 |
Fe, mg·kg−1 | 10.3 b | 8.24 c | 12.9 a | 0.039 | 0.431 |
Cu, mg·kg−1 | 1.28 b | 1.99 a | 0.61 c | 0.044 | 0.083 |
Zn, mg·kg−1 | 18.9 | 18.3 | 20.0 | 0.051 | 0.045 |
Item | Control | L-Carnitine | Bio-Mos | p-Value | SEM |
---|---|---|---|---|---|
Basic nutrients (g 100 g−1) | |||||
Dry matter | 32.1 | 31.9 | 31.3 | 0.057 | 0.213 |
Crude ash | 5.98 | 4.92 | 5.18 | 0.062 | 0.124 |
Crude protein | 17.9 | 18.5 | 18.5 | 0.057 | 0.215 |
Crude fat | 3.81 a | 2.95 b | 3.32 c | 0.027 | 0.098 |
Mineral elements | |||||
Mg, g·kg−1 | 0.34 | 0.33 | 0.32 | 0.053 | 0.013 |
Ca, g·kg−1 | 0.15 a | 0.11 ab | 0.06 b | 0.037 | 0.008 |
K, g·kg−1 | 2.25 | 2.39 | 2.35 | 0.059 | 0.07 |
Na, g·kg−1 | 1.12 | 1.05 | 1.13 | 0.067 | 0.315 |
Fe, mg·kg−1 | 93.1 b | 116.4 ab | 128.4 a | 0.043 | 7.442 |
Cu, mg·kg−1 | 4.93 b | 9.18 a | 9.41 a | 0.044 | 0.551 |
Zn, mg·kg−1 | 47.3 | 49.6 | 48.3 | 0.079 | 2.482 |
Item | Control | L-Carnitine | Bio-Mos | p-Value | SEM |
---|---|---|---|---|---|
Physical parameters | |||||
Bone weight | |||||
g | 36.3 b | 39.7 a | 39.9 a | 0.035 | 0.676 |
g/100 g | 0.47 | 0.40 | 0.45 | 0.160 | 0.009 |
Length, mm | 117 b | 122 a | 125 a | 0.477 | 0.009 |
Perimeter, mm | 47.2 | 48.3 | 49.1 | 0.740 | 1.038 |
Geometric features | |||||
Ix, mm4 | 948.6 | 953.2 | 997.6 | 0.890 | 43.25 |
A, mm2 | 50.1 b | 53.4 ab | 59.8 a | 0.010 | 1.440 |
MRWT | 0.25 | 0.29 | 0.29 | 0.240 | 0.011 |
Cortical indices | |||||
CLT, mm | 3.53 | 3.55 | 3.75 | 0.617 | 0.096 |
CS, m2 | 81.3 c | 90.6 b | 95.8 a | 0.045 | 2.696 |
CI, % | 34.6 b | 33.9 b | 37.2 a | 0.038 | 0.757 |
CSI, % | 41.1 | 41.0 | 42.4 | 0.791 | 0.876 |
Strength parameters | |||||
Wy, N‧mm | 199 b | 209 a | 203 ab | 0.048 | 2.995 |
dy, mm | 1.89 b | 2.13 a | 2.02 a | 0.038 | 0.051 |
Wf, N·mm | 808 a | 720 b | 826 a | 0.035 | 31.17 |
Wy/dy, N‧mm·mm−1 | 99.0 | 99.2 | 101.1 | 0.934 | 2.201 |
Wf/A, N·mm·mm−2 | 15.9 a | 13.4 b | 13.8 b | 0.046 | 0.508 |
BI, mg·mm−1 | 295 b | 348 a | 314 ab | 0.093 | 10.22 |
Mineral composition | |||||
Crude ash, % | 27.4 | 28.3 | 28.6 | 0.067 | 0.217 |
P, g‧kg−1 | 95.3 b | 99.5 ab | 101.5 a | 0.009 | 0.908 |
Mg, g·kg−1 | 9.03 | 8.75 | 8.93 | 0.281 | 0.072 |
Ca, g·kg−1 | 161 | 165 | 167 | 0.405 | 1.772 |
K, g·kg−1 | 7.33 a | 6.63 b | 6.25 b | 0.002 | 0.131 |
Cu, mg·kg−1 | 14.8 | 14.6 | 14.5 | 0.377 | 0.079 |
Zn, mg·kg−1 | 304 | 308 | 306 | 0.441 | 3.688 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiecień, M.; Jachimowicz-Rogowska, K.; Krupa, W.; Winiarska-Mieczan, A.; Krauze, M. Effects of Dietary Supplementation of L-Carnitine and Mannan-Oligosaccharides on Growth Performance, Selected Carcass Traits, Content of Basic and Mineral Components in Liver and Muscle Tissues, and Bone Quality in Turkeys. Animals 2023, 13, 770. https://doi.org/10.3390/ani13040770
Kwiecień M, Jachimowicz-Rogowska K, Krupa W, Winiarska-Mieczan A, Krauze M. Effects of Dietary Supplementation of L-Carnitine and Mannan-Oligosaccharides on Growth Performance, Selected Carcass Traits, Content of Basic and Mineral Components in Liver and Muscle Tissues, and Bone Quality in Turkeys. Animals. 2023; 13(4):770. https://doi.org/10.3390/ani13040770
Chicago/Turabian StyleKwiecień, Małgorzata, Karolina Jachimowicz-Rogowska, Wanda Krupa, Anna Winiarska-Mieczan, and Magdalena Krauze. 2023. "Effects of Dietary Supplementation of L-Carnitine and Mannan-Oligosaccharides on Growth Performance, Selected Carcass Traits, Content of Basic and Mineral Components in Liver and Muscle Tissues, and Bone Quality in Turkeys" Animals 13, no. 4: 770. https://doi.org/10.3390/ani13040770
APA StyleKwiecień, M., Jachimowicz-Rogowska, K., Krupa, W., Winiarska-Mieczan, A., & Krauze, M. (2023). Effects of Dietary Supplementation of L-Carnitine and Mannan-Oligosaccharides on Growth Performance, Selected Carcass Traits, Content of Basic and Mineral Components in Liver and Muscle Tissues, and Bone Quality in Turkeys. Animals, 13(4), 770. https://doi.org/10.3390/ani13040770