Effects of Drying Methods and Blanching on Nutrient Utilization in Black Soldier Fly Larva Meals Based on In Vitro Assays for Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Black Soldier Fly Larva Meals
2.2. In Vitro Procedures
2.3. Chemical Analyses
2.4. Calculations and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, J.; Kim, Y.Y. Insect as feed ingredients for pigs. Anim. Biosci. 2022, 35, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, M.; Zhu, C.; Shoveller, A.K.; Huber, L.A. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. Transl. Anim. Sci. 2020, 4, txaa104. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Piccolo, G.; Loponte, R.; Di Meo, C.; Attia, Y.A.; Nizza, A.; Bovera, F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015, 14, 3889. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Y.; Chundang, P.; Zhang, Y.; Wang, M.; Vongsangnak, W.; Pruksakorn, C.; Kovitvadhi, A. Impacts of killing process on the nutrient content, product stability and in vitro digestibility of black soldier fly (Hermetia illucens) larvae meals. Appl. Sci. 2020, 10, 6099. [Google Scholar] [CrossRef]
- Bessa, L.W.; Pieterse, E.; Marais, J.; Dhanani, K.; Hoffman, L.C. Food safety of consuming black soldier fly (Hermetia illucens) larvae: Microbial, heavy metal and cross-reactive allergen risks. Foods 2021, 10, 1934. [Google Scholar] [CrossRef]
- Wynants, E.; Frooninckx, L.; Crauwels, S.; Verreth, C.; De Smet, J.; Sandrock, C.; Wohlfahrt, J.; Van Schelt, J.; Depraetere, S.; Lievens, B. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale. Microb. Ecol. 2019, 77, 913–930. [Google Scholar] [CrossRef]
- IPIFF. Guide on Good Hygiene Practices. Available online: https://ipiff.org/wp-content/uploads/2019/12/IPIFF-Guide-on-Good-Hygiene-Practices.pdf (accessed on 10 February 2023).
- Saucier, L.; M’ballou, C.; Ratti, C.; Deschamps, M.-H.; Lebeuf, Y.; Vandenberg, G. Comparison of black soldier fly larvae pre-treatments and drying techniques on the microbial load and physico-chemical characteristics. J. Insects Food Feed 2022, 8, 45–64. [Google Scholar] [CrossRef]
- Choi, H.; Won, C.S.; Kim, B.G. Protein and energy concentrations of meat meal and meat and bone meal fed to pigs based on in vitro assays. Anim. Nutr. 2021, 7, 252–257. [Google Scholar] [CrossRef]
- Boisen, S.; Fernández, J. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 1997, 68, 277–286. [Google Scholar] [CrossRef]
- Boisen, S.; Fernández, J. Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Anim. Feed Sci. Technol. 1995, 51, 29–43. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Kil, D.Y.; Kong, C.; Kim, B.G. Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian-Australas. J. Anim. Sci. 2014, 27, 1615–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; Association Office Analytical Chemists: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Kim, H.; Jung, A.H.; Park, S.H.; Yoon, Y.; Kim, B.G. In vitro protein disappearance of raw chicken as dog foods decreased by thermal processing, but was unaffected by non-thermal processing. Animals 2021, 11, 1256. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Feng, W.; Xiong, J.; Wang, T.; Wang, W.; Wang, C.; Yang, F. Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: Amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. Eur. Food Res. Technol. 2019, 245, 11–21. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of killing methods on lipid oxidation, colour and microbial load of black soldier fly (Hermetia illucens) larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Parniakov, O.; Mikhrovska, M.; Wiktor, A.; Alles, M.; Ristic, D.; Bogusz, R.; Nowacka, M.; Devahastin, S.; Mujumdar, A.; Heinz, V. Insect processing for food and feed: A review of drying methods. Dry. Technol. 2022, 40, 1500–1513. [Google Scholar] [CrossRef]
- Singh, Y.; Cullere, M.; Kovitvadhi, A.; Chundang, P.; Dalle Zotte, A. Effect of different killing methods on physicochemical traits, nutritional characteristics, in vitro human digestibility and oxidative stability during storage of the house cricket (Acheta domesticus L.). Innov. Food Sci. Emerg. Technol. 2020, 65, 102444. [Google Scholar] [CrossRef]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol. 2018, 235, 33–42. [Google Scholar] [CrossRef]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.B.; Bergagna, S.; Sardi, L.; et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 12. [Google Scholar] [CrossRef]
- Miranda, C.D.; Cammack, J.A.; Tomberlin, J.K. Life-history traits of the black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), reared on three manure types. Animals 2019, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Effects of microwave and hot air oven drying on the nutritional, microbiological load, and color parameters of the house crickets (Acheta domesticus). J. Food Process Preserv. 2020, 44, e14407. [Google Scholar] [CrossRef]
- Mshayisa, V.V.; Van Wyk, J.; Zozo, B. Nutritional, techno-functional and structural properties of black soldier fly (Hermetia illucens) larvae flours and protein concentrates. Foods 2022, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Soetemans, L.; Uyttebroek, M.; D’Hondt, E.; Bastiaens, L. Use of organic acids to improve fractionation of the black soldier fly larvae juice into lipid-and protein-enriched fractions. Eur. Food Res. Technol. 2019, 245, 2257–2267. [Google Scholar] [CrossRef] [Green Version]
- Ravi, H.K.; Degrou, A.; Costil, J.; Trespeuch, C.; Chemat, F.; Vian, M.A. Effect of devitalization techniques on the lipid, protein, antioxidant, and chitin fractions of black soldier fly (Hermetia illucens) larvae. Eur. Food Res. Technol. 2020, 246, 2549–2568. [Google Scholar] [CrossRef]
- Fox, C.; Blow, P.; Brown, J.; Watson, I. The effect of various processing methods on the physical and biochemical properties of shrimp head meals and their utilization by juvenile Penaeus monodon Fab. Aquaculture 1994, 122, 209–226. [Google Scholar] [CrossRef]
- Bosch, G.; Vervoort, J.; Hendriks, W. In vitro digestibility and fermentability of selected insects for dog foods. Anim. Feed Sci. Technol. 2016, 221, 174–184. [Google Scholar] [CrossRef]
- Campbell, M.; Ortuno, J.; Stratakos, A.C.; Linton, M.; Corcionivoschi, N.; Elliott, T.; Koidis, A.; Theodoridou, K. Impact of thermal and high-pressure treatments on the microbiological quality and in vitro digestibility of black soldier fly (Hermetia illucens) larvae. Animals 2020, 10, 682. [Google Scholar] [CrossRef] [Green Version]
- Galassi, G.; Jucker, C.; Parma, P.; Lupi, D.; Crovetto, G.M.; Savoldelli, S.; Colombini, S. Impact of agro-industrial byproducts on bioconversion, chemical composition, in vitro digestibility, and microbiota of the black soldier Fly (Diptera: Stratiomyidae) larvae. J. Insect. Sci. 2021, 21, 8. [Google Scholar] [CrossRef]
- Bosch, G.; Zhang, S.; Oonincx, D.G.; Hendriks, W.H. Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci. 2014, 3, e29. [Google Scholar] [CrossRef] [Green Version]
- Shorstkii, I.; Comiotto Alles, M.; Parniakov, O.; Smetana, S.; Aganovic, K.; Sosnin, M.; Toepfl, S.; Heinz, V. Optimization of pulsed electric field assisted drying process of black soldier fly (Hermetia illucens) larvae. Dry. Technol. 2022, 40, 595–603. [Google Scholar] [CrossRef]
- Manditsera, F.A.; Luning, P.A.; Fogliano, V.; Lakemond, C.M.M. Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects. Food Res. Int. 2019, 121, 404–411. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
Item, % | Drying Method: | Microwave | Hot-Air | Hot-Air | Hot-Air |
---|---|---|---|---|---|
Blanching: | - | - | Water | 2% Citric Acid Solution | |
Dry matter | 96.8 | 96.1 | 97.4 | 97.6 | |
Organic matter | 74.8 | 80.6 | 81.8 | 84.7 | |
Ash | 22.0 | 15.5 | 15.6 | 12.9 | |
Nitrogen | 8.5 | 8.9 | 9.4 | 9.1 | |
Ether extract | 6.9 | 7.4 | 7.4 | 11.5 | |
Acid detergent fiber | 10.8 | 12.7 | 18.8 | 17.6 | |
Chitin 2 | 4.3 | 4.8 | 7.1 | 7.2 | |
Indispensable amino acids | |||||
Arg | 2.43 | 2.55 | 2.79 | 2.56 | |
His | 1.43 | 1.43 | 1.71 | 1.46 | |
Ile | 2.14 | 2.31 | 2.48 | 2.11 | |
Leu | 3.32 | 3.62 | 3.93 | 3.57 | |
Lys | 2.80 | 2.96 | 3.24 | 2.88 | |
Met | 0.71 | 0.86 | 0.89 | 0.88 | |
Phe | 1.99 | 2.28 | 2.42 | 2.10 | |
Thr | 1.96 | 2.12 | 2.23 | 2.09 | |
Val | 4.39 | 4.27 | 5.49 | 5.14 | |
Dispensable amino acids | |||||
Ala | 3.39 | 3.82 | 3.56 | 3.43 | |
Asp | 4.42 | 4.76 | 5.11 | 4.85 | |
Cys | 0.38 | 0.42 | 0.38 | 0.36 | |
Glu | 6.42 | 6.06 | 6.59 | 6.39 | |
Gly | 2.69 | 2.65 | 3.08 | 2.89 | |
Pro | 3.15 | 3.08 | 3.45 | 3.23 | |
Ser | 2.19 | 2.23 | 2.49 | 2.32 | |
Tyr | 2.98 | 3.03 | 3.64 | 3.28 |
Item, % | Drying Method: | Microwave | Hot-Air | Hot-Air | Hot-Air | SEM | p-Value |
---|---|---|---|---|---|---|---|
Blanching: | - | - | Water | 2% Citric Acid Solution | |||
IVID of DM | 84.6 a | 84.8 a | 80.1 b | 82.9 ab | 0.6 | 0.003 | |
IVID of N | 84.4 b | 86.7 a | 81.3 c | 82.5 c | 0.3 | <0.001 | |
IVTTD of DM | 90.4 a | 89.6 a | 85.0 b | 84.5 b | 0.3 | <0.001 | |
IVTTD of OM | 85.7 b | 86.6 a | 80.6 d | 81.5 c | 0.1 | <0.001 |
Item, % | Drying Method: | Microwave | Hot-Air | Hot-Air | Hot-Air | SEM | p-Value |
---|---|---|---|---|---|---|---|
Blanching: | - | - | Water | 2% Citric Acid Solution | |||
Indispensable amino acids | |||||||
Arg | 94.4 b | 96.5 a | 90.7 c | 90.8 c | 0.3 | <0.001 | |
His | 93.8 a | 95.6 a | 89.6 b | 87.7 b | 0.5 | <0.001 | |
Ile | 91.5 b | 94.0 a | 87.8 c | 85.1 d | 0.4 | <0.001 | |
Leu | 90.7 b | 92.8 a | 85.7 c | 86.5 c | 0.4 | <0.001 | |
Lys | 93.6 a | 92.3 a | 89.9 b | 87.8 c | 0.4 | <0.001 | |
Met | 88.8 a | 91.4 a | 81.9 b | 83.2 b | 0.8 | <0.001 | |
Phe | 89.1 a | 89.7 a | 85.0 b | 83.1 b | 0.9 | 0.002 | |
Thr | 90.8 b | 92.7 a | 86.7 c | 87.7 c | 0.4 | <0.001 | |
Dispensable amino acids | |||||||
Ala | 92.5 b | 94.2 a | 88.3 d | 89.7 c | 0.3 | <0.001 | |
Asp | 91.1 b | 93.2 a | 86.8 d | 88.5 c | 0.3 | 0.005 | |
Cys | 82.5 a | 81.3 ab | 77.3 bc | 75.3 c | 1.1 | <0.001 | |
Glu | 94.2 a | 94.5 a | 91.3 c | 92.3 b | 0.2 | <0.001 | |
Gly | 87.2 a | 88.7 a | 81.1 b | 82.4 b | 0.6 | <0.001 | |
Pro | 94.3 a | 94.3 a | 90.3 b | 90.6 b | 0.3 | <0.001 | |
Ser | 90.6 a | 91.8 a | 87.0 b | 87.8 b | 0.4 | <0.001 | |
Tyr | 93.1 a | 94.7 a | 89.1 b | 88.3 b | 0.5 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.; Park, S.H.; Jung, H.J.; You, S.J.; Kim, B.G. Effects of Drying Methods and Blanching on Nutrient Utilization in Black Soldier Fly Larva Meals Based on In Vitro Assays for Pigs. Animals 2023, 13, 858. https://doi.org/10.3390/ani13050858
Son J, Park SH, Jung HJ, You SJ, Kim BG. Effects of Drying Methods and Blanching on Nutrient Utilization in Black Soldier Fly Larva Meals Based on In Vitro Assays for Pigs. Animals. 2023; 13(5):858. https://doi.org/10.3390/ani13050858
Chicago/Turabian StyleSon, Jeonghyeon, Seol Hwa Park, Hyun Jung Jung, Sun Jong You, and Beob Gyun Kim. 2023. "Effects of Drying Methods and Blanching on Nutrient Utilization in Black Soldier Fly Larva Meals Based on In Vitro Assays for Pigs" Animals 13, no. 5: 858. https://doi.org/10.3390/ani13050858
APA StyleSon, J., Park, S. H., Jung, H. J., You, S. J., & Kim, B. G. (2023). Effects of Drying Methods and Blanching on Nutrient Utilization in Black Soldier Fly Larva Meals Based on In Vitro Assays for Pigs. Animals, 13(5), 858. https://doi.org/10.3390/ani13050858