Sex Reversal Induced by Dietary Supplementation with 17α-Methyltestosterone during the Critical Period of Sex Differentiation in Oriental River Prawn (Macrobrachium nipponense)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Prawns
2.2. Dietary Preparation
2.3. Experimental Design
2.4. Sex Ratio Statistics
2.5. Measurement of the Growth Traits
2.6. Histological Observations of Testicular Development
2.7. The qPCR Analysis
2.8. Statistical Analysis
3. Results
3.1. Effects of MT Concentration on the Sex Ratio of Juvenile Prawns
3.2. Histological Observations of the Testis and Ovary
3.3. Effects of MT Concentration on Growth Traits of Juvenile Prawns
3.4. Analysis of Male-Specific and Female-Specific Genes by qRT-PCR
3.5. Analysis of Sex-Related Genes by qRT-PCR
4. Discussion
4.1. Sex Reversal
4.2. Gonadal Development
4.3. Sexual Differentiation Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, H.; Jiang, S.; Xiong, Y. Current status and prospects of farming the giant river prawn (Macrobrachium rosenbergii) and the oriental river prawn (Macrobrachium nipponense) in China. Aquac. Res. 2012, 43, 993–998. [Google Scholar] [CrossRef]
- Jin, S.; Hu, Y.; Fu, H.; Sun, S.; Jiang, S.; Xiong, Y.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Analysis of testis metabolome and transcriptome from the oriental river prawn (Macrobrachium nipponense) in response to different temperatures and illumination times. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 34, 100662. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, S.; Gui, J.-F.; Mei, J. Artificially induced sex-reversal leads to transition from genetic to temperature-dependent sex determination in fish species. Sci. China Life Sci. 2020, 63, 157–159. [Google Scholar] [CrossRef]
- Dong, Y.; Lai-Ning, Y. Sex and sex identification of fish. Acta Hydrobiolocica Sin. 2006, 30, 221–226. [Google Scholar] [CrossRef]
- Sun, R.; Li, Y. A sex-reversing factor: Insulin-like androgenic gland hormone in decapods. Rev. Aquac. 2021, 13, 1352–1366. [Google Scholar] [CrossRef]
- Ventura, T.; Sagi, A. The insulin-like androgenic gland hormone in crustaceans: From a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol. Adv. 2012, 30, 1543–1550. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, Y.; Guan, H.; Fu, H.; Jiang, S.; Xiong, Y.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Histological observation of gonadal development during post-larva in oriental river prawn, Macrobrachium nipponense. Chin. J. Fish. 2016, 29, 11–16. [Google Scholar]
- Cipolla-Neto, J.; Amaral, F.; Soares, J., Jr.; Gallo, C.; Furtado, A.; Cavaco, J.; Gonçalves, I.; Santos, C.; Quintela, T. The crosstalk between melatonin and sex steroid hormones. Neuroendocrinology 2022, 112, 115–129. [Google Scholar] [CrossRef]
- Zhu, Q.; Han, C.; Liu, S.; Ouyang, H.; Liu, D.; Zhang, Z.; Huang, J.; Han, L.; Li, S.; Li, G. Development and gene expression analysis of gonad during 17α-methyltestosterone-induced sex reversal in mandarin fish (Siniperca chuatsi). Aquac. Rep. 2022, 23, 101049. [Google Scholar] [CrossRef]
- Matthews, J.; Murphy, J.; Nasiadka, A.; Varga, Z. A simple method for inducing masculinization of zebrafish stocks using 17α-Methyltestosterone. Zebrafish 2022, 19, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Hu, J.; Yang, X.; Liu, X.; Chen, Y.; Xiao, L.; Liu, Y.; Wang, Q.; Chen, J.; Huang, M. Expression profiles of dmrts and foxls during gonadal development and sex reversal induced by 17α-methyltestosterone in the orange-spotted grouper. Gen. Comp. Endocrinol. 2019, 274, 26–36. [Google Scholar] [CrossRef]
- Evliyaoğlu, E.; Eroldoğan, O.; Yılmaz, H.; Genç, M.; Genç, E.; Duncan, N.; Aktaş, M.; Güroy, D. Artificial sex reversal of white grouper (Epinephelus aeneus) utilizing aromatase inhibitor (Fadrozole). Aquac. Res. 2019, 50, 1539–1546. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Xu, P.; Liu, X.; Guo, D.; Chen, X.; Bi, S.; Lai, H.; Wang, G.; Zhao, X.; Su, Y. Production of neo-male mandarin fish siniperca chuatsi by masculinization with orally administered 17α-methyltestosterone. Aquaculture 2021, 530, 735904. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Y.; Wang, Y.; Luo, J.; Li, J.; Shen, S.; Yang, J.; Ma, W. Full functional sex reversal achieved through silencing of MroDmrt11E gene in Macrobrachium rosenbergii: Production of all-male monosex freshwater prawn. Front. Endocrinol. 2022, 12, 1867. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Chen, S.; Hao, S.; Yang, X. Effect of low-temperature preservation on quality changes in pacific white shrimp, Litopenaeus vannamei: A review. J. Sci. Food Agric. 2019, 99, 6121–6128. [Google Scholar] [CrossRef] [PubMed]
- Ohs, C.; D’Abramo, L.; Kelly, A. Effect of dietary administration of 17a-methyltestosterone on the sex ratio of postlarval freshwater prawn, Macrobrachium rosenbergii, during the nursery stage of culture. J. World Aquac. Soc. 2006, 37, 328–333. [Google Scholar] [CrossRef]
- Maya, F.; Debby, I.; Haim, B. Regulation of sperm motility by PIP2(4,5) and actin polymerization. Dev. Biol. 2013, 381, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Breitbart, H.; Etkovitz, N. Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction. Asian J. Androl. 2011, 13, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Inoue, N.; Hamada, D.; Kamikubo, H.; Hirata, K.; Kataoka, M.; Yamamoto, M.; Ikawa, M. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development 2013, 140, 3221–3229. [Google Scholar] [CrossRef] [Green Version]
- Ventura, T.; Fitzgibbon, Q.; Battaglene, S.; Sagi, A.; Elizur, A. Identification and characterization of androgenic gland specific insulin-like peptide-encoding transcripts in two spiny lobster species: Sagmariasus verreauxi and Jasus edwardsii. Gen. Comp. Endocrinol. 2015, 214, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Weil, S.; Rosen, O.; Sagi, A. Timing sexual differentiation: Full functional sex reversal achieved in Macrobrachium rosenbergii through silencing of a single insulin-like gene. Biol. Reprod. 2011, 90, 1–6. [Google Scholar] [CrossRef]
- Li, F.; Bai, H.; Xiong, Y.; Fu, H.; Jiang, S.; Jiang, F.; Jin, S.; Sun, S.; Qiao, H.; Zhang, W. Molecular characterization of insulin-like androgenic gland hormone-binding protein gene from the oriental river prawn Macrobrachium nipponense and investigation of its transcriptional relationship with the insulin-like androgenic gland hormone gene. Gen. Comp. Endocrinol. 2015, 216, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Wilder, M.N. Reproductive mechanisms in Crustacea focusing on selected prawn species: Vitellogenin structure, processing and synthetic control. Aqua-BioSci. Monographs. 2010, 3, 73–110. [Google Scholar] [CrossRef]
- Agostini, J.; Costa, C.; Ferreira, J.; Dias, A.; Guerra, N.; Simões, Z.; Lourenço, A. Vitellogenin of the solitary bees Centris tarsata and Centris analis (Hymenoptera: Apidae): cDNA structural analysis and gene expression. Apidologie 2021, 52, 292–307. [Google Scholar] [CrossRef]
- Tsutsui, S.; Sato, M.; Miyashita, M.; Amano, H.; Maeda, T.; Nakamura, O. Vitellogenin-derived fragment in embryos of Japanese flounder Paralichthys olivaceus with binding and bactericidal activities against an infectious bacterium via an interaction with saccharides. Mol. Immunol. 2022, 142, 76–82. [Google Scholar] [CrossRef]
- Bai, H.; Qiao, H.; Li, F.; Fu, H.; Sun, S.; Zhang, W.; Jin, S.; Gong, Y.; Jiang, S.; Xiong, Y. Molecular characterization and developmental expression of vitellogenin in the oriental river prawn Macrobrachium nipponense and the effects of RNA interference and eyestalk ablation on ovarian maturation. Gene 2015, 562, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Qiao, H.; Li, F.; Fu, H.; Jiang, S.; Zhang, W.; Yan, Y.; Xiong, Y.; Sun, S.; Jin, S.; et al. Molecular and functional characterization of the vitellogenin receptor in oriental river prawn, Macrobrachium nipponense. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 194, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Faeed, M.; Kasra Kermanshahi, R.; PourKazemi, M.; Darboee, M.; Haghighi Karsidani, S. Study on effect feedings with probiotics in increasing resistance to Aeromonas hydrophila and changes in gut bacterial communities Sander lucioperca. Biol. J. Microorg. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Hodar, A.; Vasava, R.; Mahavadiya, D.; Joshi, N. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. J. Exp. Zool. India 2020, 23, 13–21. [Google Scholar] [CrossRef]
- Saleh, S.M.; Widodo, M.S.; Kilawati, Y. The effect of 17α-Methyltestosterone hormone application on masculinization and growth rate of vaname shrimp larvae (Litopenaeus Vannamei, Boone 1931). Russ. J. Agric. Socio-Econ. Sci. 2018, 79, 352–356. [Google Scholar] [CrossRef]
- New, M.; Valenti, W.; Tidwell, J.; D’Abramo, L.; Kutty, M. Freshwater Prawns: Biology and Farming; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 84, pp. 509–511. [Google Scholar] [CrossRef]
- Wei, Y.; Shen, H.; Xu, W.; Pan, Y.; Chen, J.; Zhang, W.; Mai, K. Replacement of dietary fishmeal by Antarctic krill meal on growth performance, intestinal morphology, body composition and organoleptic quality of large yellow croaker Larimichthys crocea. Aquaculture. 2019, 512, 734281. [Google Scholar] [CrossRef]
- Ma, X.K.; Liu, X.; Wen, H.; Xu, Y.J.; Zhang, L.J. Histological observation on gonadal sex differentiation in Cynoglossus semilaevis Günther. Mar. Fish Res. 2006, 27, 55–61. [Google Scholar]
- Hu, Y.; Fu, H.; Qiao, H.; Sun, S.; Zhang, W.; Jin, S.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Validation and evaluation of reference genes for quantitative real-Time PCR in Macrobrachium nipponense. Int. J. Mol. Sci. 2018, 19, 2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Rosales, M.; Castillo, S.; Pohlenz, C.; Gatlin, D., III. Evaluation of dried yeast and threonine fermentation biomass as partial fish meal replacements in the diet of red drum Sciaenops ocellatus. Anim. Feed. Sci. Technol. 2017, 232, 190–197. [Google Scholar] [CrossRef]
- Li, M.; Sun, L.; Wang, D. Roles of estrogens in fish sexual plasticity and sex differentiation. Gen. Comp. Endocrinol. 2019, 277, 9–16. [Google Scholar] [CrossRef]
- Fan, Z.; Zou, Y.; Liang, D.; Tan, X.; Jiao, S.; Wu, Z.; Li, J.; Zhang, P.; You, F. Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus). Reprod. Fertil. Dev. 2019, 31, 1742–1752. [Google Scholar] [CrossRef]
- Kossack, M.; Draper, B. Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). Curr. Top. Dev. Biol. 2019, 134, 119–149. [Google Scholar] [CrossRef]
- Faggion, S.; Vandeputte, M.; Chatain, B.; Gagnaire, P.-A.; Allal, F. Population-specific variations of the genetic architecture of sex determination in wild European sea bass Dicentrarchus labrax L. Heredity 2019, 122, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Doğan, M. Sex control in Rainbow trout (Oncorhynchus mykiss). Aquat. Anim. Rep. 2023, 1, 17–26. [Google Scholar]
- Teal, C.; Schill, D.; Fogelson, S.; Roberts, C.; Fitzsimmons, K.; Bauder, J.; Stewart, W.; Bonar, S. The effects of estradiol-17β on the sex reversal, survival, and growth of green sunfish Lepomis cyanellus. Auqaculture 2023, 15, 738853. [Google Scholar] [CrossRef]
- Nagahama, Y.; Chakraborty, T.; Paul-Prasanth, B.; Ohta, K.; Nakamura, M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol. Rev. 2021, 6, 1237–1308. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.S.; Evans, B.S.; Afonso, L.O. Genotypic female Atlantic salmon (Salmo salar) immersed in an exogenous androgen overexpress testicular-related genes and develop as phenotypic males. Aquaculture 2021, 545, 737216. [Google Scholar] [CrossRef]
- Snoeren, E.M.; Bovens, A.; Refsgaard, L.K.; Westphal, K.G.; Waldinger, M.D.; Olivier, B.; Oosting, R.S. Combination of testosterone and vardenafil increases female sexual functioning in sub-primed rats. Sex. Med. 2011, 4, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Faggion, S.; Vandeputte, M.; Vergnet, A.; Clota, F.; Blanc, M.-O.; Sanchez, P.; Ruelle, F.; Allal, F. Sex dimorphism in European sea bass (Dicentrarchus labrax L.): New insights into sex-related growth patterns during very early life stages. PLoS ONE 2021, 16, e0239791. [Google Scholar] [CrossRef]
- Suseno, D.; Luqman, E.; Lamid, M.; Mukti, A.; Suprayudi, M. Residual impact of 17α-methyltestosterone and histopathological changes in sex-reversed Nile tilapia (Oreochromis niloticus). Asian Pac. J. Reprod. 2020, 9, 37. [Google Scholar] [CrossRef]
- Weber, G.; Leeds, T.; Schneider, R. Sex reversal of female rainbow trout by immersion in 17α-methyltestosterone. Aquaculture 2020, 528, 735535. [Google Scholar] [CrossRef]
- Yao, W.; Jiang, P.; Bai, J. Effects of 17α-methyltestosterone on gonadal development and hormone levels in grass carp (Ctenopharyngodon idella). J. Fish. China 2019, 43, 801–809. [Google Scholar] [CrossRef]
- Jin, S.; Yue, D.; Fu, H.; Jiang, S.; Xiong, Y.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Effects of dietary supplementation with 17β-estradiol and 17α-methyltestosterone on growth performance and gonadal development of the juvenile oriental river prawn (Macrobrachium nipponense). Aquac. Rep. 2022, 23, 101042. [Google Scholar] [CrossRef]
- Li, M.; Zhang, F.; Ding, J.; Zuo, R.; Chang, Y. Effects of lipid sources on the growth performance, gonad development, fatty acid profile and transcription of related genes in juvenile sea urchin (Strongylocentrotus intermedius). Aquac. Nutr. 2021, 27, 28–38. [Google Scholar] [CrossRef]
- Charlesworth, D.; Bergero, R.; Graham, C.; Gardner, J.; Yong, L. Locating the sex determining region of linkage group 12 of guppy (Poecilia reticulata). G3 Genes Genomes Genet. 2020, 10, 3639–3649. [Google Scholar] [CrossRef]
- Kobayashi, Y. Control of gonadal maturation and sex in grouper. Aquac. Fish. 2022, 9, 519–524. [Google Scholar] [CrossRef]
- Zhang, T.; Zarkower, D. DMRT proteins and coordination of mammalian spermatogenesis. Stem Cell Res. 2017, 24, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Abayed, F.A.A.; Manor, R.; Aflalo, E.D.; Sagi, A. Screening for Dmrt genes from embryo to mature Macrobrachium rosenbergii prawns. Gen. Comp. Endocrinol. 2019, 282, 113205. [Google Scholar] [CrossRef]
- Rather, M.A.; Dhandare, B.C. Genome-Wide identification of doublesex and Mab-3-Related transcription factor (DMRT) genes in nile tilapia (Oreochromis niloticus). Biotechnol. Rep. 2019, 24, e00398. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, S.; Fu, H.; Qiao, H.; Sun, S.; Zhang, W.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Identification and Characterization of the DMRT11E Gene in the Oriental River Prawn Macrobrachium nipponense. Int. J. Mol. Sci. 2019, 20, 1734. [Google Scholar] [CrossRef] [Green Version]
- Tucker, E.J. The Genetics and Biology of FOXL2. Sex. Dev. 2022, 16, 184–193. [Google Scholar] [CrossRef]
- Wang, G.; Dong, S.; Guo, P.; Cui, X.; Duan, S.; Li, J. Identification of Foxl2 in freshwater mussel Hyriopsis cumingii and its involvement in sex differentiation. Gene 2020, 754, 144853. [Google Scholar] [CrossRef]
- Jin, S.; Fu, H.; Jiang, S.; Xiong, Y.; Sun, S.; Qiao, H.; Zhang, W.; Gong, Y.; Wu, Y. Molecular cloning, expression, and in situ hybridization analysis of forkhead box protein L2 during development in Macrobrachium nipponense. J. World Aquac. Soc. 2018, 49, 429–440. [Google Scholar] [CrossRef]
- Haseeb, A.; Lefebvre, V. The SOXE transcription factors—SOX8, SOX9 and SOX10—Share a bi-partite transactivation mechanism. Nucleic Acids Res. 2019, 47, 6917–6931. [Google Scholar] [CrossRef]
- Takouda, J.; Katada, S.; Imamura, T.; Sanosaka, T.; Nakashima, K. SoxE group transcription factor Sox8 promotes astrocytic differentiation of neural stem/precursor cells downstream of Nfia. Pharmacol. Res. Perspect. 2021, 9, e00749. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Zubizarreta, L.; Quintana, L. A teleost fish model to understand hormonal mechanisms of non-breeding territorial behavior. Front. Endocrinol. 2020, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jin, S.; Fu, H.; Qiao, H.; Zhang, W.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Functional analysis of a SoxE gene in the oriental freshwater prawn, Macrobrachium nipponense by molecular cloning, expression pattern analysis, and in situ hybridization (de Haan, 1849). 3 Biotech 2020, 10, 10. [Google Scholar] [CrossRef] [PubMed]
Development Days (d) | Body Weight (mg) | Average Body Weight (mg) |
---|---|---|
PL1 | 3.4–3.5 | 3.4 |
PL4 | 5.3–6.4 | 5.9 |
PL7 | 6.4–7.0 | 6.7 |
PL10 | 7.0–8.5 | 7.6 |
PL13 | 9.2–11.9 | 10.7 |
PL16 | 14.8–18.6 | 16.6 |
PL19 | 35.6–43.8 | 35.0 |
PL22 | 31.3–37.6 | 38.5 |
PL25 | 40.5–46.4 | 43.1 |
PL28 | 62.8–66.0 | 64.5 |
PL31 | 101.9–155.0 | 127.8 |
Characteristic | Male | Female |
---|---|---|
Physique | Big | Small |
The second pereiopod | About 1.5 times body length | No longer than body length |
Width of the fifth pereiopod | Narrower, equidistant | Greater than width of the fourth pereiopod |
The second ventral extremity | With a rod-like projection | None |
Genital pore | Located at the base of the fifth pereiopod | Located medial to the base of the third pereiopod |
Primer Name | Sequence (5′→3′) | Description |
---|---|---|
EIF-F | CATGGATGTACCTGTGGTGAAAC | FWD primer for EIF expression |
EIF-R | CTGTCAGCAGAAGGTCCTCATTA | RVS primer for EIF expression |
Vg-F | GAAGTTAGCGGAGATCTGAGGT | FWD primer for Vg expression |
Vg-R | CCTCGTTGACCAATCTTGAGAG | RVS primer for Vg expression |
Vgr-F | ACCACTCGGATGAGGACGACT | FWD primer for Vgr expression |
Vgr-R | CCATCTTTGCACTGGTAGTGGT | RVS primer for Vgr expression |
IAG-F | CGCCTCCGTCTGCCTGAGATAC | FWD primer for IAG expression |
IAG-R | CCTCCTCCTCCACCTTCAATGC | RVS primer for IAG expression |
SG-F | ACCCTAGCCCCAGTACGTGTT | FWD primer for SG expression |
SG-R | AGAGGTGGTGAAGCTGTCTCTCA | RVS primer for SG expression |
DMRT-F | ACGACCTTAGTAGGATGGACAGT | FWD primer for DMRT expression |
DMRT-R | GAGTGGAGGCAATAGAATGGGTA | RVS primer for DMRT expression |
Foxl2-F | AAATCCCTGTACGACCACATCG | FWD primer for Foxl2 expression |
Foxl2-R | CTTCGTCGGGTAGAGCATCTCC | RVS primer for Foxl2 expression |
SoxE-F | ACATAGATCGCGCAGAAATGAAC | FWD primer for SoxE expression |
SoxE-R | CCAAGGAAGGAAGACTTGTGAGT | RVS primer for SoxE expression |
Sex | Index | Group (mg/kg) | Pr > F 1 | |||||
---|---|---|---|---|---|---|---|---|
Control | MT50 | MT100 | MT200 | ANOVA | Linear Trend | Quadratic Trend | ||
Male | IMW (mg) | 44.0 ± 0.3 | 43.9 ± 0.3 | 43.0 ± 0.2 | 42.8 ± 0.4 | 0.02 | 0.00 | 0.96 |
FMW (mg) | 965.8 ± 24.0 b | 807.7 ± 55.9 a | 791.6 ± 37.0 a | 736.8 ± 37.7 a | 0.00 | 0.00 | 0.21 | |
WGR (%/g) | 2092.47 ± 47.44 b | 1736.74 ± 122.33 a | 1741.13 ± 81.56 a | 1628.87 ± 77.43 a | 0.00 | 0.00 | 0.17 | |
SGR (%/d) | 6.17 ± 0.04 b | 5.78 ± 0.13 a | 5.811 ± 0.09 a | 5.86 ± 0.05 a | 0.00 | 0.00 | 0.17 | |
Female | IMW (mg) | 44.0 ± 0.3 | 43.9 ± 0.3 | 43.0 ± 0.2 | 42.8 ± 0.4 | 0.02 | 0.00 | 0.96 |
FMW (mg) | 546.4 ± 20.8 a | 573.1 ± 32.1 a | 634.4 ± 27.5 ab | 706.0 ± 30.0 b | 0.00 | 0.00 | 0.43 | |
WGR (%/g) | 1141.05 ± 47.35 a | 1204.61 ± 71.71 a | 1377.84 ± 67.14 ab | 1549.79 ± 72.32 b | 0.00 | 0.00 | 0.41 | |
SGR (%/d) | 5.03 ± 0.07 a | 5.11 ± 0.11 a | 5.37 ± 0.09 ab | 5.59 ± 0.09 b | 0.00 | 0.00 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, P.; Yuan, H.; Gao, Z.; Daka, P.; Qiao, H.; Zhang, W.; Jiang, S.; Xiong, Y.; Gong, Y.; Wu, Y.; et al. Sex Reversal Induced by Dietary Supplementation with 17α-Methyltestosterone during the Critical Period of Sex Differentiation in Oriental River Prawn (Macrobrachium nipponense). Animals 2023, 13, 1369. https://doi.org/10.3390/ani13081369
Cai P, Yuan H, Gao Z, Daka P, Qiao H, Zhang W, Jiang S, Xiong Y, Gong Y, Wu Y, et al. Sex Reversal Induced by Dietary Supplementation with 17α-Methyltestosterone during the Critical Period of Sex Differentiation in Oriental River Prawn (Macrobrachium nipponense). Animals. 2023; 13(8):1369. https://doi.org/10.3390/ani13081369
Chicago/Turabian StyleCai, Pengfei, Huwei Yuan, Zijian Gao, Peter Daka, Hui Qiao, Wenyi Zhang, Sufei Jiang, Yiwei Xiong, Yongsheng Gong, Yan Wu, and et al. 2023. "Sex Reversal Induced by Dietary Supplementation with 17α-Methyltestosterone during the Critical Period of Sex Differentiation in Oriental River Prawn (Macrobrachium nipponense)" Animals 13, no. 8: 1369. https://doi.org/10.3390/ani13081369
APA StyleCai, P., Yuan, H., Gao, Z., Daka, P., Qiao, H., Zhang, W., Jiang, S., Xiong, Y., Gong, Y., Wu, Y., Jin, S., & Fu, H. (2023). Sex Reversal Induced by Dietary Supplementation with 17α-Methyltestosterone during the Critical Period of Sex Differentiation in Oriental River Prawn (Macrobrachium nipponense). Animals, 13(8), 1369. https://doi.org/10.3390/ani13081369