Workers of Apis mellifera Reared in Small-Cell Combs Show Higher Activity of the Proteolytic System in Hemolymph than Workers Reared in Standard-Cell Combs in Laboratory Cage Tests
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition of Bees
2.2. Laboratory Cage Tests
2.3. Hemolymph Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Comb Cell Width
3.2. Protein Concentrations, Protease, and Protease Inhibitor Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tautz, J. Phänomen Honigbiene, 2nd ed.; Spectrum-Elsevier: Heidelberg, Germany, 2007; p. 156. [Google Scholar]
- Winston, M.L. The Biology of the Honey Bee; Havard University Press: Cambridge, UK, 1987. [Google Scholar]
- Johnson, B.R. Division of labor in honeybees: Form, function, and proximate mechanisms. Behav. Ecol. Sociobiol. 2010, 64, 306–316. [Google Scholar] [CrossRef]
- Robinson, G.E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 1992, 37, 637–665. [Google Scholar] [CrossRef]
- Withers, G.S.; Fahrbach, S.E.; Robinson, G.E. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 1993, 364, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.B.; Roberts, S.P.; Elekonich, M.M. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp. Gerontol. 2008, 43, 538–549. [Google Scholar] [CrossRef]
- Margotta, J.W.; Roberts, S.P.; Elekonich, M.M. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J. Exp. Biol. 2018, 26, 221. [Google Scholar] [CrossRef]
- Fries, I.; Camazine, S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 2001, 32, 199–214. [Google Scholar] [CrossRef]
- Negri, I.; Mavris, C.; Di Prisco, G.; Caprio, E.; Pellecchia, M. Honey bees (Apis mellifera, L.) as active samplers of airborne particulate matter. PLoS ONE 2015, 10, e132491. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, N.; Kulhanek, K.; Antúnez, K.; Human, H.; Chantawannakul, P.; Chauzat, M.P.; van Engelsdorp, D. Drivers of Colony Losses. Curr. Opin. Insect Sci. 2018, 26, 142–148. [Google Scholar] [CrossRef]
- Borsuk, G.; Sulborska, A.; Stawiarz, E.; Olszewski, K.; Wiącek, D.; Ramzi, N.; Nawrocka, A.; Jędryczka, M. Capacity of honeybees to remove heavy metals from nectar and excrete the contaminants from their bodies. Apidologie 2021, 52, 1098–1111. [Google Scholar] [CrossRef]
- Genersch, E.; von der Ohe, W.; Kaatz, H.; Schroeder, A.; Otten, C.; Buchler, R.; Berg, S.; Ritter, W.; Muhlen, W.; Fisder, S.; et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–353. [Google Scholar] [CrossRef]
- Le Conte, Y.; Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. OIE J. 2008, 27, 499–510. [Google Scholar]
- Vaudo, A.D.; Tooker, J.F.; Grozinger, C.M.; Patch, H.M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 2015, 10, 133–141. [Google Scholar] [CrossRef]
- Castelli, L.; Branchiccela, B.; Garrido, M.; Invernizzi, C.; Porrini, M.; Romero, H.; Santos, E.; Zunino, P.; Antúnez, K. Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microb. Ecol. 2020, 80, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R.; Alaux, C.; Costa, C.; Csáki, T.; Doublet, V.; Eisenhardt, D.; Fries, I.; Kuhn, R.; McMahon, D.P.; Medrzycki, P.; et al. Standard methods for maintaining adult apis mellifera in cages under in vitro laboratory conditions. J. Apicult. Res. 2013, 52, 1–36. [Google Scholar] [CrossRef]
- Olszewski, K.; Paleolog, J. Foraging and hoarding efficiency in Buckfast purebreds and Norwegian Black Bee (A. m. mellifera) hybrids Part 1. Annual honey yield versus results of field flying cage and laboratory tests. J. Apic. Sci. 2005, 49, 17–25. [Google Scholar]
- Higes, M.; Nozal, M.J.; Alvaro, A.; Barrios, L.; Meana, A.; Martín-Hernández, R.; Bernal, J.L.; Bernal, J. The stability and effectiveness of fumagillin in controlling Nosema ceranae (Microsporidia) infection in honey bees (Apis mellifera) under laboratory and field conditions. Apidologie 2011, 42, 364–377. [Google Scholar] [CrossRef]
- Henry, M.; Cerrutti, N.; Aupinel, P.; Decourtye, A.; Gayrard, M.; Odoux, J.F.; Pissard, A.; Rüger, C.; Bretagnolle, V. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proc. R. Soc. B Biol. Sci. 2015, 282, 20152110. [Google Scholar] [CrossRef]
- Milne, C.P. An improved laboratory measurement of hoarding behavior in the honeybee. Am. Bee J. 1997, 117, 502–507. [Google Scholar]
- Olszewski, K.; Borsuk, G.; Paleolog, J.; Strachecka, A.J. Life span of worker honeybees reared in colonies kept on small-cell combs. Med. Weter 2014, 70, 10–13. [Google Scholar]
- Dziechciarz, P.; Borsuk, G.; Olszewski, K. Prospects and validity of laboratory cage tests conducted in honeybee research part one:Main directions of use of laboratory cage tests in honeybee research. J. Apic. Sci. 2019, 63, 201–207. [Google Scholar] [CrossRef]
- Dziechciarz, P.; Olszewski, K. Prospects and validity of laboratory cage tests conducted in honeybee research part two: New possibilities for use of laboratory cage tests in response to challenges revealed at the turn of the 20th and 21st Centuries. J. Apic. Sci. 2020, 64, 5–13. [Google Scholar] [CrossRef]
- Skowronek, P.; Wójcik, Ł.; Strachecka, A. Impressive Impact of Hemp Extract on Antioxidant System in Honey Bee (Apis mellifera) Organism. Antioxidants 2022, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- McMullan, J.B.; Brown, M.J.F. The influence of small-cell brood combs on the morphometry of honeybees (Apis mellifera). Apidologie 2006, 37, 665–672. [Google Scholar] [CrossRef]
- Coffey, M.F.; Breen, J.; Brown, M.J.F.; McMullan, J.B. Brood-cell size has no influence on the population dynamics of Varroa destructor mites in the native western honey bee, Apis mellifera mellifera. Apidologie 2010, 41, 522–530. [Google Scholar] [CrossRef]
- Cowan, T.W. The Honeybee: Its Natural History, Anatomy and Physiology; Houlston and Sons: London, UK, 1904. [Google Scholar]
- Maggi, M.; Damiani, N.; Ruffinengo, S.; De Jong, D.; Principal, J.; Eguaras, M. Brood cell size of Apis mellifera modifies the reproductive behavior of Varroa destructor. Exp. Appl. Acarol. 2010, 50, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Dziechciarz, P.; Borsuk, G.; Olszewski, K. Possibility to change the body size in worker bees by a combination of small-cell andstandard-cell combs in the same nest. Apidologie 2021, 52, 1017–1032. [Google Scholar] [CrossRef]
- Dziechciarz, P.; Strachecka, A.; Olszewski, K. Effect of Comb Cell Width on the Activity of the Proteolytic System in the Hemolymph of Apis mellifera Workers. Animals 2022, 12, 978. [Google Scholar] [CrossRef]
- Olszewski, K.; Borsuk, G.; Paleolog, J.; Strachecka, A.; Bajda, M. Hygienic behaviour of colonies kept on small-cell combs. Med. Weter. 2014, 70, 774–776. [Google Scholar]
- Dziechciarz, P.; Borsuk, G.; Olszewski, K. Dead brood of Apis mellifera is removed more effectively from small-cell combs than from standard-cell combs. Animals 2022, 12, 418. [Google Scholar] [CrossRef]
- Borsuk, G.; Ptaszyńska, A.A.; Olszewski, K.; Domaciuk, M.; Krutmuang, P.; Paleolog, J. A new method for quick and easy hemolymph collection from apidae adults. PLoS ONE 2017, 12, e0170487. [Google Scholar] [CrossRef]
- Skowronek, P.; Strachecka, A. Cannabidiol (CBD) Supports the Honeybee Worker Organism by Activating the Antioxidant System. Antioxidants 2023, 12, 279. [Google Scholar] [CrossRef] [PubMed]
- Fries, I.; Chauzat, M.P.; Chen, Y.P.; Doublet, V.; Genersch, E.; Gisder, S.; Higes, M.; McMahon, D.P.; Martín-Hernández, R.; Natsopoulou, M.; et al. Standard methods for Nosema research. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebriugh, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Schacterle, G.; Pollack, R. Simplified method for quantitative assay of small amounts of protein in biological material. Anal. Biochem. 1973, 51, 654–655. [Google Scholar] [CrossRef]
- Anson, M. The estimation of pepsin, tripsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 1938, 22, 79–84. [Google Scholar] [CrossRef]
- Strachecka, A.; Demetraki-Paleolog, J. System proteolityczny powierzchni ciała Apis mellifera w zachowaniu zdrowotności rodzin pszczelich. Kosmos 2011, 60, 43–51. [Google Scholar]
- Lee, T.; Lin, Y. Trypsin inhibitor and trypsin–like protease activity in air–or submergence–grown rice (Oryza sativa L.) coleoptiles. Plant Sci. 1995, 106, 43–54. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Kuszewska, K.; Chobotow, J.; Wójcik, Ł.; Paleolog, J.; Woyciechowski, M. Segmentation of the subcuticular fat body in Apis mellifera females with different reproductive potentials. Sci. Rep. 2021, 11, 13887. [Google Scholar] [CrossRef]
- Dziechciarz, P.; Strachecka, A.; Borsuk, G.; Olszewski, K. Effect of rearing in small-cell combs on activities of catalase and superoxide dismutase and total antioxidant capacity in the hemolymph of Apis mellifera workers. Antioxidants 2023, 12, 709. [Google Scholar] [CrossRef]
- Dziechciarz, P.; Borsuk, G.; Strachecka, A.; Olszewski, K. Simultaneous maintaining of bee colonies on combs with small and standard cells results in behavioral overdominance. In Proceedings of the EurBee 9: 9th European Congress of Apidology, Belgrade, Serbia, 20–22 September 2022. [Google Scholar]
- Wilson-Rich, N.; Dres, S.T.; Starks, P.T. The ontogeny of immunity: Development of innate immune strength in the honey bee (Apis mellifera). J. Insect Physiol. 2008, 54, 1392–1399. [Google Scholar] [CrossRef]
- Eckholm, B.J.; Huang, M.H.; Anderson, K.E.; Mott, B.M.; DeGrandi-Hoffman, G. Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status. Apidologie 2015, 46, 150–163. [Google Scholar] [CrossRef]
- Crailsheim, K. Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm). J. Insect Physiol. 1986, 32, 629–634. [Google Scholar] [CrossRef]
- Fluri, P.; Lüscher, M.; Wille, H.; Gerig, L. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 1982, 28, 61–68. [Google Scholar] [CrossRef]
- Crailsheim, K.; Schneider, L.H.W.; Hrassnigg, N.; Bühlmann, G.; Brosch, U.; Gmeinbauer, R.; Schöffmann, B. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function. J. Insect Physiol. 1992, 38, 409–419. [Google Scholar] [CrossRef]
- Blacquière, T.; Smagghe, G.; Van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef]
- Cullen, M.G.; Thompson, L.J.; Carolan, J.C.; Stout, J.C.; Stanley, D.A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE 2019, 14, e0225743. [Google Scholar] [CrossRef]
- Paleolog, J.; Wilde, J.; Miszczak, A.; Gancarz, M.; Strachecka, A. Antioxidation Defenses of Apis mellifera Queens and Workers Respond to Imidacloprid in Different Age-Dependent Ways: Old Queens Are Resistant, Foragers Are Not. Animals 2021, 11, 1246. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Paleolog, J.; Borsuk, G.; Bajda, M.; Krauze, M.; Merska, M.; Chobotow, J. Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera. Arch. Insect Biochem. Physiol. 2014, 86, 165–179. [Google Scholar] [CrossRef]
- Strachecka, A.J.; Olszewski, K.; Paleolog, J. Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian. Life-Span. J. Apic. Sci. 2015, 59, 129–141. [Google Scholar] [CrossRef]
- Strachecka, A.; Olszewski, K.; Kuszewska, K.; Paleolog, J.; Woyciechowski, M. Reproductive Potential Accelerates Preimaginal Development of Rebel Workers in Apis mellifera. Animals 2021, 11, 3245. [Google Scholar] [CrossRef]
- Vance, J.T.; Williams, J.B.; Elekonich, M.M.; Roberts, S.P. The effects of age and behavioral development on honey bee (Apis mellifera) flight performance. J. Exp. Biol. 2009, 212, 2604–2611. [Google Scholar] [CrossRef] [PubMed]
- Willem, J.; Boot, J.N.M.; Allsopp, C.; Allsopp, M. Differential feeding of larvae affects caste differentiation in Apis mellifera. Proc. Neth. Entomol. Soc. Meet. 2006, 17, 63–69. [Google Scholar]
- Mertl, A.L.; Traniello, J.F. Behavioral evolution in the major worker subcaste of twig-nesting Pheidole (Hymenoptera: Formicidae): Does morphological specialization influence task plasticity? Behav. Ecol. Sociobiol. 2009, 63, 1411–1426. [Google Scholar] [CrossRef]
Age | Group | Year | ||
---|---|---|---|---|
2020 | 2021 | 2022 | ||
1 day | SMC | 15 | 15 | 15 |
STC | 15 | 15 | 15 | |
7 days | SMC | 15 | 15 | 15 |
STC | 15 | 15 | 15 | |
14 days | SMC | 15 | 15 | 15 |
STC | 15 | 15 | 15 | |
21 days | SMC | - | 15 | 15 |
STC | - | 15 | 15 |
Hemolymph Parameters | Impact of the Year | Impact of the Age | ||||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | ||||||
SMC | STC | SMC | STC | SMC | STC | SMC | STC | |
protein concentration | H = 84.74 | H = 89.99 | F = 33.14 | F = 31.64 | H = 48.45 | F = 48.66 | H = 49.32 | H = 48.87 |
df = 2 | df = 2 | df = 2 | df = 2 | df = 3 | df = 3 | df = 3 | df = 3 | |
p = 0.00 | p = 0.00 | p = 0.00 | p = 0.58 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | |
activities of acidic proteases | H = 5.38 | H = 4.82 | H = 32.98 | H = 34.26 | H = 55.33 | H = 55.32 | H = 55.32 | H = 50.95 |
df = 2 | df = 2 | df = 2 | df = 2 | df = 3 | df = 3 | df = 3 | df = 3 | |
p = 0.07 | p = 0.09 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | |
activities of neutral proteases | H = 5.62 | H = 0.90 | H = 32.96 | H = 33.19 | H = 55.31 | H = 55.23 | H = 54.57 | H = 55.33 |
df = 2 | df = 2 | df = 2 | df = 2 | df = 3 | df = 3 | df = 3 | df = 3 | |
p = 0.06 | p = 0.63 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | |
activities of alkaline proteases | H = 4.82 | H = 11.18 | H = 37.15 | H = 30.02 | H = 55.32 | H = 55.35 | H = 54.55 | H = 54.21 |
df = 2 | df = 2 | df = 2 | df = 2 | df = 3 | df = 3 | df = 3 | df = 3 | |
p = 0.09 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | |
activities of acidic protease inhibitors | F = 28.14 | H = 66.69 | F = 51.14 | F = 144.61 | F = 507.88 | H = 50.04 | H = 55.33 | F = 235.74 |
df = 2 | df = 2 | df = 2 | df = 2 | df = 3 | df = 3 | df = 3 | df = 3 | |
p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | |
activities of neutral protease inhibitors | H = 90.98 | F = 100.25 | F = 54.11 | F = 167.76 | F = 679.91 | H = 51.91 | H = 55.23 | H = 51.14 |
df = 2 | df = 2 | df = 2 | df = 2 | df = 3 | df = 3 | df = 3 | df = 3 | |
p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | |
activities of alkaline protease inhibitors | H = 36.69 | H = 71.08 | H = 32.87 | F = 139.04 | F = 970.37 | F = 219.27 | F = 289.44 | F = 142.65 |
df = 2 | df = 2 | df = 2 | df = 2 | df = 3 | df = 3 | df = 3 | df = 3 | |
p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 |
Hemolymph Parameters | 2020 | 2021 | 2022 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 14 d | 21 d | 1 d | 7 d | 14 d | 21 d | 1 d | 7 d | 14 d | 21 d | |
protein concentration | - | |||||||||||
activities of acidic proteases | n.s. | = n.s. | - | = n.s | ||||||||
activities of neutral proteases | = n.s. | - | = n.s | |||||||||
activities of alkaline proteases | n.s. | - | ||||||||||
activities of acidic protease inhibitors | - | n.s. | n.s. | |||||||||
activities of neutral protease inhibitors | - | n.s. | = n.s. | |||||||||
activities of alkaline protease inhibitors | - | = n.s. | n.s. | n.s. |
Hemolymph Parameters | SMC | STC | ||
---|---|---|---|---|
Laboratory | Apiary | Laboratory | Apiary | |
protein concentration | ||||
activities of acidic proteases | = | |||
activities of neutral proteases | = | |||
activities of alkaline proteases | = | |||
activities of acidic protease inhibitors | n.t. | n.t. | ||
activities of neutral protease inhibitors | n.t. | n.t. | ||
activities of alkaline protease inhibitors | n.t. | n.t. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziechciarz, P.; Strachecka, A.; Borsuk, G.; Olszewski, K. Workers of Apis mellifera Reared in Small-Cell Combs Show Higher Activity of the Proteolytic System in Hemolymph than Workers Reared in Standard-Cell Combs in Laboratory Cage Tests. Animals 2023, 13, 1368. https://doi.org/10.3390/ani13081368
Dziechciarz P, Strachecka A, Borsuk G, Olszewski K. Workers of Apis mellifera Reared in Small-Cell Combs Show Higher Activity of the Proteolytic System in Hemolymph than Workers Reared in Standard-Cell Combs in Laboratory Cage Tests. Animals. 2023; 13(8):1368. https://doi.org/10.3390/ani13081368
Chicago/Turabian StyleDziechciarz, Piotr, Aneta Strachecka, Grzegorz Borsuk, and Krzysztof Olszewski. 2023. "Workers of Apis mellifera Reared in Small-Cell Combs Show Higher Activity of the Proteolytic System in Hemolymph than Workers Reared in Standard-Cell Combs in Laboratory Cage Tests" Animals 13, no. 8: 1368. https://doi.org/10.3390/ani13081368
APA StyleDziechciarz, P., Strachecka, A., Borsuk, G., & Olszewski, K. (2023). Workers of Apis mellifera Reared in Small-Cell Combs Show Higher Activity of the Proteolytic System in Hemolymph than Workers Reared in Standard-Cell Combs in Laboratory Cage Tests. Animals, 13(8), 1368. https://doi.org/10.3390/ani13081368