Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Source of Honey Bee Samples
2.2. Examination of Population Size, Injury Numbers, and Infestation Rate in Larvae and Pupae
2.3. The Observation of Injuries on Crippled Adult Honey Bees
2.4. Scanning Electron Microscope (SEM)
2.5. Data Analyses
3. Results
3.1. Bee Population, Number of Injuries in Larvae, Pupae, and Crippled Adult Honey Bees
3.2. The Relationship between Infestation Rate and Injury Numbers in Larvae and Pupae
3.3. The Relationship between Infestation Rate and Bee Population Per Hive
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zattara, E.E.; Aizen, M.A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 2021, 4, 114–123. [Google Scholar] [CrossRef]
- Marshman, J.; Blay-Palmer, A.; Landman, K. Anthropocene crisis: Climate change, pollinators, and food security. Environments 2019, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, F.A.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Chantawannakul, P.; de Guzman, L.I.; Li, J.; Williams, G.R. Parasites, pathogens, and pests of honeybees in Asia. Apidologie 2016, 47, 301–324. [Google Scholar] [CrossRef] [Green Version]
- Mull, A.; Gunnell, J.; Hansen, S.; Ramirez, R.; Walker, A.; Zesiger, C.; Spears, L. Factors contributing to bee decline. Utah State Univ. Ext. Utah Plant Pest Diagn. Lab. 2022, 1–5. Available online: https://digitalcommons.usu.edu/extension_curall/2250/ (accessed on 22 February 2022).
- Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 2020, 7, 166. [Google Scholar] [CrossRef]
- Phokasem, P.; de Guzman, L.I.; Khongphinitbunjong, K.; Frake, A.M.; Chantawannakul, P. Feeding by Tropilaelaps mercedesae on pre- and post-capped brood increases damage to Apis mellifera colonies. Sci. Rep. 2019, 9, 13044. [Google Scholar] [CrossRef] [Green Version]
- de Guzman, L.I.; Williams, G.R.; Khongphinitbunjong, K.; Chantawannakul, P. Ecology, life history, and management of Tropilaelaps mites. J. Econ. Entomol. 2017, 110, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Khongphinitbunjong, K.; de Guzman, L.I.; Buawangpong, N.; Rinderer, T.E.; Frake, A.M.; Chantawannakul, P. Observations on the removal of brood inoculated with Tropilaelaps mercedesae (Acari: Laelapidae) and the mite’s reproductive success in Apis mellifera colonies. Exp. Appl. Acarol. 2014, 62, 47–55. [Google Scholar] [CrossRef]
- Ma, S.; Yang, Y.; Fu, Z.; Diao, Q.; Wang, M.; Luo, Q.; Wang, X.; Dai, P. A combination of Tropilaelaps mercedesae and imidacloprid negatively affects survival, pollen consumption and midgut bacterial composition of honey bee. Chemosphere 2021, 268, 129368. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ma, S.; Wang, X.; Yang, Y.; Luo, Q.; Wang, X.; Liu, F.; Wang, Q.; Fu, Z.; Diao, Q.; et al. Tropilaelaps mercedesae parasitism changes behavior and gene expression in honey bee workers. PLoS Pathog. 2021, 17, e1009684. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D.; et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA 2019, 116, 1792–1801. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.L.; Morgan, M.J. Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): New and re-defined species. Exp. Appl. Acarol. 2007, 43, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.H.; Zhou, T.; Dai, P.L.; Song, H.L.; Wu, Y.Y.; Wang, Q. Prevalence, intensity and associated factor analysis of Tropilaelaps mercedesae infesting Apis mellifera. Exp. Appl. Acarol. 2011, 55, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Khongphinitbunjong, K.; De Guzman, L.I.; Burgett, M.D.; Rinderer, T.E.; Chantawannakul, P. Behavioral responses underpinning resistance and susceptibility of honeybees to Tropilaelaps mercedesae. Apidologie 2012, 43, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Burgett, M.; Akratanakul, P.; Morse, R.A. Tropilaelaps clareae: A parasite of honeybees in South-East Asia. Bee World 1983, 64, 25–28. [Google Scholar] [CrossRef]
- Anderson, D.L.; Roberts, J.M.K. Standard methods for Tropilaelaps mites research. J. Apic. Res. 2013, 52, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chantawannakul, P.; Ramsey, S.; van Engelsdorp, D.; Khongphinitbunjong, K.; Phokasem, P. Tropilaelaps mite: An emerging threat to European honey bee. Curr. Opin. Insect Sci. 2018, 26, 69–75. [Google Scholar] [CrossRef]
- Buawangpong, N.; de Guzman, L.I.; Khongphinitbunjong, K.; Frake, A.M.; Burgett, M.; Chantawannakul, P. Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies. Apidologie 2015, 46, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Forsgren, E.; De Miranda, J.R.; Isaksson, M.; Wei, S.; Fries, I. Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera). Exp. Appl. Acarol. 2009, 47, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Pettis, J.S.; Rose, R.; Lichtenberg, E.M.; Chantawannakul, P.; Buawangpong, N.; Somana, W.; Sukumalanand, P.; Vanengelsdorp, D. A rapid survey technique for Tropilaelaps mite (Mesostigmata: Laelapidae) detection. J. Econ. Entomol. 2013, 106, 1535–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Guzman, L.I.; Phokasem, P.; Khongphinitbunjong, K.; Frake, A.M.; Chantawannakul, P. Successful reproduction of unmated Tropilaelaps mercedesae and its implication on mite population growth in Apis mellifera colonies. J. Invertebr. Pathol. 2018, 153, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Woyke, J. Comparative population dynamics of Tropilaelaps clareae and Varroa jacobsoni mites on honeybees. J. Apic. Res. 1987, 26, 196–202. [Google Scholar] [CrossRef]
- Sammataro, D.; Gerson, U.; Needham, G. Parasitic mites of honey bee: Life history, implications, and impact. Annu. Rev. Entomol. 2000, 45, 519–548. [Google Scholar] [CrossRef]
- Rinderer, T.E.; Oldroyd, B.P.; Lekprayoon, C.; Wongsiri, S.; Boonthai, C.; Thapa, R. Extended survival of the parasitic honey bee. J. Apic. Res. 1994, 33, 171–174. [Google Scholar] [CrossRef]
- Khongphinitbunjong, K.; Neumann, P.; Chantawannakul, P.; Williams, G.R. The ectoparasitic mite Tropilaelaps mercedesae reduces western honey bee, Apis mellifera, longevity and emergence weight, and promotes deformed wing virus infections. J. Invertebr. Pathol. 2016, 137, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Khongphinitbunjong, K.; De Guzman, L.I.; Tarver, M.R.; Rinderer, T.E.; Chantawannakul, P. Interactions of Tropilaelaps mercedesae, honey bee viruses and immune response in Apis mellifera. J. Apic. Res. 2015, 54, 40–47. [Google Scholar] [CrossRef]
- Feng, M.; Ramadan, H.; Han, B.; Fang, Y.; Li, J. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees (Apis mellifera) and eastern honey bees (Apis cerana). BMC Genomics 2014, 15, 563. [Google Scholar] [CrossRef] [Green Version]
- Chan, Q.W.T.; Howes, C.G.; Foster, L.J. Quantitative comparison of caste differences in honeybee hemolymph. Mol. Cell. Proteom. 2006, 5, 2252–2262. [Google Scholar] [CrossRef] [Green Version]
- Ararso, Z.; Ma, C.; Qi, Y.; Feng, M.; Han, B.; Hu, H.; Meng, L.; Li, J. Proteome comparisons between hemolymph of two honeybee strains (Apis mellifera ligustica) reveal divergent molecular basis in driving hemolymph function and high royal jelly secretion. J. Proteome Res. 2018, 17, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Bienefeld, K.; Wegener, J.; Zautke, F.; Hao, Y.; Feng, M.; Han, B.; Fang, Y.; Wubie, A.J.; Li, J. Proteome analysis of the hemolymph, mushroom body, and antenna provides novel insight into honeybee resistance against Varroa infestation. J. Proteome Res. 2016, 15, 2841–2854. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, J.R.; Genersch, E. Deformed wing virus. J. Invertebr. Pathol. 2010, 103 (Suppl. S1), S48–S61. [Google Scholar] [CrossRef]
- Martin, S.; Highfield, A.; Brettell, L.; Villalobos, E.; Budge, G.; Powell, M.; Nikaido, S.; Schroeder, D.C. Global honey bee viral landscape altered by a parasitic mite. Science 2012, 336, 1304–1306. [Google Scholar] [CrossRef] [PubMed]
- Kavinseksan, B.; Wongsiri, S.; Rinderer, T.E.; Guzman, L.I.D. Comparison of the hygienic behaviour of ARS Russian and commercial honey bees in Thailand. Am. Bee J. 2004, 144, 870–872. [Google Scholar]
- Negi, J.; Kumar, N.R. Changes in protein profile and RNA content of Apis mellifera worker pupa on parasitization with Tropilaelaps clareae. J. Appl. Nat. Sci. 2014, 6, 693–695. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia. Pac. Entomol. 2016, 19, 487–495. [Google Scholar] [CrossRef]
- Nazzi, F.; Pennacchio, F. Honey bee antiviral immune barriers as affected by multiple stress factors: A novel paradigm to interpret colony health decline and collapse. Viruses 2018, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Devi, M.; Challa, N. Impact of weather parameters on seasonality of phytophagous mites. J. Entomol. Zool. 2019, 7, 1095–1100. [Google Scholar] [CrossRef]
- Hillayová, M.K.; Korený, L.; Śkvarenina, J. The local environment factors impact the infestation of bee colonies by mite Varroa destructor. Ecol. Indic. 2022, 141, 109104. [Google Scholar] [CrossRef]
- Smith, M.L.; Koenig, P.A.; Peters, J.M. The cues of colony size: How honey bees sense that their colony is large enough to begin to invest in reproduction. J. Exp. Biol. 2017, 220, 1597–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaplane, K.S.; Van der Steen, J.; Guzman-Novoa, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 2013, 51, 1–12. [Google Scholar] [CrossRef]
- Kanbar, G.; Engels, W. Number and position of wounds on honey bee (Apis mellifera) pupae infested with a single Varroa mite. Eur. J. Entomol. 2004, 101, 323–326. [Google Scholar] [CrossRef]
- Williams, G.R.; Rogers, R.E.L.; Kalkstein, A.L.; Taylor, B.A.; Shutler, D.; Ostiguy, N. Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada and the first description of an overtly-infected emerging queen. J. Invertebr. Pathol. 2009, 101, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Kanbar, G.; Engels, W. Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol Res. 2003, 90, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models version. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.K.; Lee, M.Y.; Ma, Y.I. Infestation of Varroa jacobsoni and Tropilaelaps clareae in some apiaries during spring and fall seasons, 1999–2000 in South Korea. Korean J. Apic. 2000, 15, 141–145. [Google Scholar]
- Ifantidis, M.D. Some aspects of the process of Varroa jacobsoni mite entrance into honey bee (Apis mellifera) brood cells. Apidologie 1988, 19, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Park, O.W. Testing for resistance to American foulbrood in honeybees. J. Econ. Entomol. 1937, 30, 504–512. [Google Scholar] [CrossRef]
- Gilliam, M.; Taber, S.; Richardson, G.V. Hygienic behavior of honey bees in relation to chalkbrood disease. Apidologie 1983, 14, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Toufailia, H.A.; Evison, S.E.F.; Hughes, W.O.H.; Ratnieks, F.L.W. Both hygienic and non-hygienic honeybee, Apis mellifera, colonies remove dead and diseased larvae from open brood cells. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 27–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snodgrass, R.E. The anatomy of the honey bee. Nature 1910, 85, 169. [Google Scholar] [CrossRef] [Green Version]
- Heisenberg, M.; Gerber, B. Common design of mushroom bodies in bees and flies? J. Comp. Neurol. 2002, 450, 1–3. [Google Scholar] [CrossRef]
- Ma, Y.; Ren, H.; Ning, J.; Zhang, P. Functional morphology and bending characteristics of the honeybee forewing. J. Bionic Eng. 2017, 14, 111–118. [Google Scholar] [CrossRef]
- Marden, J.H.; Donnell, B.C.O.; Thomas, M.A.; Bye, J.Y.; Marden, J.H.; Donnell, B.C.O.; Thomas, M.A.; Bye, J.Y. Surface-skimming stoneflies and mayflies: The taxonomic and mechanical diversity of two-dimensional aerodynamic locomotion. Physiol. Biochem. Zool. 2000, 73, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Loudon, C.; Koehl, M.A.R. Sniffing by a silkworm moth: Wing fanning enhances air penetration through and pheromone interception by antennae. J. Exp. Biol. 2000, 203, 2977–2990. [Google Scholar] [CrossRef]
Developmental Stage of Honey Bee | Explanatory Fixed Variable | Estimate | SE | t-Value | p-Value |
---|---|---|---|---|---|
Larvae | Intercept | 3.115 | 2.076 | 1.501 | 0.143 |
Wound number | 0.821 | 0.133 | 6.192 | <0.001 | |
Pupae | Intercept | 0.325 | 0.380 | 0.855 | 0.399 |
Wound number | 0.117 | 0.024 | 4.822 | <0.001 |
Explanatory Fixed Variable | Estimate | SE | t-Value | p-Value |
---|---|---|---|---|
Intercept | 62.62 | 8.37 | 7.477 | <0.001 |
Population | −0.001 | 0.0003 | −5.883 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, T.C.; Phokasem, P.; Sinpoo, C.; Chantawannakul, P.; Khongphinitbunjong, K.; Disayathanoowat, T. Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera. Animals 2023, 13, 1318. https://doi.org/10.3390/ani13081318
Ling TC, Phokasem P, Sinpoo C, Chantawannakul P, Khongphinitbunjong K, Disayathanoowat T. Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera. Animals. 2023; 13(8):1318. https://doi.org/10.3390/ani13081318
Chicago/Turabian StyleLing, Tial C., Patcharin Phokasem, Chainarong Sinpoo, Panuwan Chantawannakul, Kitiphong Khongphinitbunjong, and Terd Disayathanoowat. 2023. "Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera" Animals 13, no. 8: 1318. https://doi.org/10.3390/ani13081318
APA StyleLing, T. C., Phokasem, P., Sinpoo, C., Chantawannakul, P., Khongphinitbunjong, K., & Disayathanoowat, T. (2023). Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera. Animals, 13(8), 1318. https://doi.org/10.3390/ani13081318