Agroecological Zone-Specific Diet Optimization for Water Buffalo (Bubalus bubalis) through Nutritional and In Vitro Fermentation Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulation of Concentrate Mixtures
2.2. Preparation Diets/Rations
2.3. Determination of Chemical Composition
2.4. Estimation of Carbohydrate Fractions
2.5. Estimation of Protein Fractions
2.6. In Vitro Incubation
2.7. Methane Measurements
2.8. In Vitro Dry Matter Digestibility (IVDMD) and Energy of Diets
2.9. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Nitrogen Fractions
3.3. Carbohydrate Fractions
3.4. Gas and Methane Production Kinetics
3.5. Methane Production and Percentage Loss of Dietary Energy as Methane
3.6. Correlation between Chemical Constituents and Methane Production
4. Discussion
4.1. Chemical Composition
4.2. Carbohydrate and Protein Fractions
4.3. Gas and Methane Production and Loss of Energy as Methane
4.4. Correlation between Methane Production and Chemical Constituents (Proximate Constituents, Carbohydrate Fractions, and Protein Fractions)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nanda, A.S.; Nakao, T. Role of buffalo in the socioeconomic development of rural Asia: Current status and future prospectus. Anim. Sci. J. 2003, 74, 443–455. [Google Scholar] [CrossRef]
- Bilal, M.; Suleman, M.; Raziq, A. Buffalo: Black gold of Pakistan. Livest. Res. Rural Dev. 2006, 18, 140–151. [Google Scholar]
- Singh, P.K.; Kamboj, M.; Kumar, N. Effect of dummy calf, weaning and suckling on the reproductive performance of post-partum Murrah buffaloes. Indian J. Anim. Res. 2016, 50, 265–267. [Google Scholar] [CrossRef]
- Das, M.; Kundu, S.; Kushwaha, B. Comparative Nutrient Utilization in Murrah and Bhadawari Lactating Buffaloes Fed Barley Straw Based Ration. Indian J. Anim. Nutr. 2013, 30, 1–4. [Google Scholar]
- Kumar, M.; Dahiya, S.; Ratwan, P.; Kumar, S.; Chitra, A. Status, constraints and future prospects of Murrah buffaloes in India. Indian J. Anim. Sci. 2019, 89, 1291–1302. [Google Scholar] [CrossRef]
- Singh, S.; Kushwaha, B.; Nag, S.; Bhattacharya, S.; Gupta, P.; Mishra, A.; Singh, A. Assessment of enteric methane emission of Indian livestock in different agro-ecological regions. Curr. Sci. 2012, 102, 1017–1027. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.; Cheng, K.-J.; Okine, E.; Mathison, G. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 1996, 76, 231–243. [Google Scholar] [CrossRef]
- Lata, S.; Koli, P.; Singh, S.; Bhadoria, B.; Chand, U.; Ren, Y. The study of structure and effects of two new proanthocyanidins from Anogeissus pendula leaves on rumen enzyme activities. Front. Vet. Sci. 2023, 10, 1163197. [Google Scholar] [CrossRef]
- Singh, S.; Koli, P.; Bhadoria, B.K.; Singh, A. Nutritional composition, In vitro fermentation and methane production potential of tropical feed ingredients used in ruminants feeding. Anim. Nutr. Feed Technol. 2023, 23, 345–359. [Google Scholar] [CrossRef]
- Van Soest, P. Nutritional Ecology of the Ruminant; O and B Books; Cornell University: Ithaca, NY, USA, 1982. [Google Scholar]
- Chianese, D.S.; Rotz, C.A.; Richard, T.L. Whole-farm greenhouse gas emissions: A review with application to a Pennsylvania dairy farm. Appl. Eng. Agric. 2009, 25, 431–442. [Google Scholar] [CrossRef]
- Shibata, M.; Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 2010, 81, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Demeyer, D.; Van Nevel, C. Protein fermentation and growth by rumen microbes. Ann. Rech. Vet. 1979, 10, 277–279. [Google Scholar]
- Cone, J.W.; van Gelder, A.H. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 1999, 76, 251–264. [Google Scholar] [CrossRef]
- Kurihara, M.; Magner, T.; Hunter, R.; McCrabb, G. Methane production and energy partition of cattle in the tropics. Br. J. Nutr. 1999, 81, 227–234. [Google Scholar] [CrossRef]
- Kirchgessner, M.; Windisch, W.; Müller, H.; Kreuzer, M. Release of methane and of carbon dioxide by dairy cattle. Agribiol. Res. 1991, 44, 91–102. [Google Scholar]
- Moss, A.R. Methane: Global Warming and Production by Animals; Chalcombe Publications: Welton, UK, 1993. [Google Scholar]
- Moe, P.; Tyrrell, H. Methane production in dairy cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Santoso, B.; Kume, S.; Nonaka, K.; Kimura, K.; Mizukoshi, H.; Gamo, Y.; Takahashi, J. Methane emission, nutrient digestibility, energy metabolism and blood metabolites in dairy cows fed silages with and without galacto-oligosaccharides supplementation. Asian-Australas. J. Anim. Sci. 2003, 16, 534–540. [Google Scholar] [CrossRef]
- Takahashi, J. Nutritional manipulation of methanogenesis in ruminants. Asian-Australas. J. Anim. Sci. 2001, 14, 131–135. [Google Scholar]
- Estermann, B.; Sutter, F.; Schlegel, P.; Erdin, D.; Wettstein, H.; Kreuzer, M. Effect of calf age and dam breed on intake, energy expenditure, and excretion of nitrogen, phosphorus, and methane of beef cows with calves. J. Anim. Sci. 2002, 80, 1124–1134. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, Association of Official Analytical Chemists; AOAC: Washington, DC, USA, 1994. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Caballero, R.; Alzueta, C.; Ortiz, L.T.; Rodríguez, M.L.; Barro, C.; Rebolé, A. Carbohydrate and protein fractions of fresh and dried common vetch at three maturity stages. Agron. J. 2001, 93, 1006–1013. [Google Scholar] [CrossRef]
- Sastry, V.; Kamra, D.; Pathak, N. Laboratory manual of animal nutrition. Indian Vet. Res. Inst. Izatnagar India 1999, 1–266. [Google Scholar]
- Licitra, G.; Hernandez, T.; Van Soest, P. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Kh, M. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123, 403–419. [Google Scholar] [CrossRef]
- Santoso, B.; Mwenya, B.; Sar, C.; Takahashi, J. Methane production and energy partition in sheep fed timothy silage-or hay-based diets. J. Ilmu Ternak Dan Vet. 2007, 12, 27–33. [Google Scholar]
- Tilley, J.; Terry, D.R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Hariadi, B.T.; Santoso, B. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J. Sci. Food Agric. 2010, 90, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhao, G. Relationship between the methane production and the CNCPS carbohydrate fractions of rations with various concentrate/roughage ratios evaluated using in vitro incubation technique. Asian-Australas. J. Anim. Sci. 2013, 26, 1708. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.; Vázquez, J.; Salem, A.; Kholif, A.; Cipriano, M.; Camacho, L.; Márquez, O. In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. J. Appl. Anim. Res. 2017, 45, 389–395. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.; DePeters, E.; Taylor, S.; Gisi, D.; Higginbotham, G.; Riordan, T. Methane production from commercial dairy rations estimated using an in vitro gas technique. Anim. Feed Sci. Technol. 2005, 123, 391–402. [Google Scholar] [CrossRef]
- Detmann, E.; Valente, É.E.; Batista, E.D.; Huhtanen, P. An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livest. Sci. 2014, 162, 141–153. [Google Scholar] [CrossRef]
- Mayulu, H.; Daru, T.P.; Tricahyadinata, I. In vitro evaluation of ruminal digestibility and fermentation characteristics of local feedstuff-based beef cattle ration. F1000Research 2023, 11, 834. [Google Scholar] [CrossRef]
- Singh, S.; Bhadoria, B.K.; Koli, P.; Lata, S. Seasonal variation in chemical and biochemical constituents of tropical top feed species: Components in silvipasture system. Range Manag. Agrofor. 2021, 42, 312–319. [Google Scholar]
- Calabro, S.; Piccolo, V.; Infascelli, F. Evaluation of diet for buffalo dairy cows using the Cornell Net Carbohydrate and Protein System. Asian-Australas. J. Anim. Sci. 2003, 16, 1475–1481. [Google Scholar] [CrossRef]
- Elghandour, M.M.; Chagoyán, J.C.V.; Salem, A.Z.; Kholif, A.E.; Castañeda, J.S.M.; Camacho, L.M.; Cerrillo-Soto, M.A. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Ital. J. Anim. Sci. 2014, 13, 3075. [Google Scholar] [CrossRef]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Mitragyna speciosa korth leaves supplementation on feed utilization, rumen fermentation efficiency, microbial population, and methane production in vitro. Fermentation 2021, 8, 8. [Google Scholar] [CrossRef]
- Pirondini, M.; Malagutti, L.; Colombini, S.; Amodeo, P.; Crovetto, G.M. Methane yield from dry and lactating cows diets in the Po Plain (Italy) using an in vitro gas production technique. Ital. J. Anim. Sci. 2012, 11, e61. [Google Scholar] [CrossRef]
- Na, Y.; Li, D.H.; Lee, S.R. Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum). Asian-Australas. J. Anim. Sci. 2017, 30, 967. [Google Scholar] [CrossRef] [PubMed]
- Kulivand, M.; Kafilzadeh, F. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Scientiarum. Anim. Sci. 2015, 37, 9–14. [Google Scholar] [CrossRef]
- Chino Velasquez, L.B.; Molina-Botero, I.C.; Moscoso Muñoz, J.E.; Gómez Bravo, C. Relationship between Chemical Composition and In Vitro Methane Production of High Andean Grasses. Animals 2022, 12, 2348. [Google Scholar] [CrossRef] [PubMed]
- Gemeda, B.S.; Hassen, A. In vitro fermentation, digestibility and methane production of tropical perennial grass species. Crop Pasture Sci. 2014, 65, 479–488. [Google Scholar] [CrossRef]
- Yan, T.; Porter, M.; Mayne, C. Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal 2009, 3, 1455–1462. [Google Scholar] [CrossRef]
- Chen, C.-N.; Lee, T.-T.; Yu, B. Improving the Prediction of Methane Production Determined by in Vitro Gas Production Technique for Ruminants. Ann. Anim. Sci. 2016, 16, 565–584. [Google Scholar] [CrossRef]
- Ellis, J.; Kebreab, E.; Odongo, N.; McBride, B.; Okine, E.; France, J. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 2007, 90, 3456–3466. [Google Scholar] [CrossRef]
Ingredients | CM1 | CM2 | CM3 | CM4 | CM5 | CM6 | CM7 | CM8 | CM9 |
---|---|---|---|---|---|---|---|---|---|
Mustard seed cake | 35 | 40 | - | - | - | - | 40 | 45 | - |
Wheat bran | 25 | - | 25 | - | 25 | - | - | - | - |
Maize grain | 40 | - | - | 60 | - | - | 20 | - | 40 |
Cotton seed cake | - | - | 35 | 40 | - | - | - | - | 45 |
Oat grain | - | - | 40 | - | - | 60 | - | - | - |
Barley grain | - | 60 | - | - | 40 | - | - | - | - |
Groundnut cake | - | - | - | - | 35 | 40 | - | - | - |
Rice bran | - | - | - | - | - | - | 40 | 55 | 15 |
AER No. | Region | Maintenance | Growth | Production | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Diet | Composition | Proportions | Diet | Composition | Proportions | Diet | Composition | Proportions | ||
1 | Western Himalayan region | MD1 | Grass: GOL | 65:35 | GD1 | SST:L:CM2 | 60:30:10 | PD1 | WS:B:CM2 | 30:40:30 |
2 | Eastern Himalayan region | MD2 | Grass:LL | 75:25 | GD2 | RS:LL:CM1 | 50:35:15 | PD2 | Grass: LL:CM1 | 35:40:25 |
3 | Eastern plateau and plains region | MD3 | RS:MG | 20:80 | GD3 | RS:NG:CM7 | 30:50: 20 | PD3 | MST:NG:CM7 | 20:45:35 |
4 | Middle Gangetic plain | MD4 | WS:MG | 50:50 | GD4 | RS:B | 40:60 | PD4 | MST:CM6 | 60:40 |
5 | Trans and Upper Gangetic plain | MD5 | WS:B | 70:30 | GD5 | SST:B:CM2 | 60:25:15 | PD5 | WS:B:CM3 | 30:40:30 |
6 | Central plateau and hills | MD6 | LS | 100 | GD6 | GS:CM2 | 80:20 | PD6 | LS:CM5 | 60:40 |
7 | Western plateau and hills | MD7 | WS:SG | 50:50 | GD7 | SST/L/B | 55:45 | PD7 | WS:B:CM4 | 35:35:30 |
8 | Southern plateau and hills region | MD8 | RS:L | 65:35 | GD8 | SST:ST:CM7 | 40:40:20 | PD8 | SST:CM8 | 60:40 |
9 | Western dry zone | MD9 | PST:LL | 75:25 | GD9 | PST: LL:CM2 | 55:30:15 | PD9 | PST:CM2 | 60:40 |
10 | Coastal and island region | MD10 | RS:LL | 65:35 | GD10 | RS:LL:CM9 | 45:40:15 | PD10 | RS:LL:CM9 | 30:35:35 |
Diet | CP | OM | EE | NDF | ADF | Cellulose | H cellulose | Lignin |
MD1 | 76.0 cd | 876 cd | 32.1 a | 646 c | 453 a | 298 c | 193 de | 93.4 b |
MD2 | 93.3 a | 871 c | 27.5 b | 678 b | 456 a | 274 d | 222 c | 109 a |
MD3 | 84.3 b | 923 a | 17.8 d | 668 bc | 361 d | 309 b | 306 a | 49.6 de |
MD4 | 69.8 de | 903 b | 14.4 e | 651 c | 379 c | 318 b | 271 b | 45.7 ef |
MD5 | 96.1 a | 884 c | 18.1 d | 573 e | 386 c | 301 c | 187 e | 49.7 de |
MD6 | 76.9 cd | 914 a | 13.4 e | 537 f | 386 c | 283 d | 151 f | 93.9 b |
MD7 | 68.0 e | 920 a | 20.7 cd | 713 a | 406 b | 345 a | 307 a | 42.6 f |
MD8 | 77.8 bc | 857 e | 26.4 b | 591 d | 391 bc | 272 d | 200 d | 55.8 cd |
MD9 | 81.8 bc | 920 a | 21.5 c | 545 f | 344 e | 256 e | 201 d | 62.5 c |
MD10 | 95.5 a | 852 e | 17.9 d | 575 e | 392 bc | 274 d | 184 e | 53.7 d |
LSD | 7.12 | 10.20 | 3.17 | 12.96 | 15.62 | 15.07 | 9.17 | 6.84 |
Diet | CP | OM | EE | NDF | ADF | Cellulose | H cellulose | Lignin |
GD1 | 121 ab | 917 ab | 19.7 de | 610 b | 411 b | 311 b | 199 cde | 80.7 b |
GD2 | 116 bcd | 874 d | 32.4 a | 527 e | 341 e | 231 c | 186 e | 55.4 fg |
GD3 | 88.7 e | 856 e | 24.7 bc | 676 a | 392 cd | 334 a | 284 a | 55.9 fg |
GD4 | 111 bcd | 864 de | 18.6 e | 619 b | 411 bc | 311 b | 209 cd | 52.0 g |
GD5 | 117 bc | 922 a | 26.7 b | 610 b | 391 d | 303 b | 219 c | 64.2 de |
GD6 | 110 cd | 909 bc | 18.4 e | 546 d | 412 b | 306 b | 134 f | 92.5 a |
GD7 | 106 d | 899 c | 17.7 e | 584 c | 389 d | 306 b | 195 de | 71.6 cd |
GD8 | 111 bcd | 916 ab | 18.1 e | 690 a | 438 a | 329 a | 252 b | 75.5 bc |
GD9 | 111 bcd | 917 ab | 23.1 e | 493 f | 300 f | 213 d | 193 de | 62.5 ef |
GD10 | 130 a | 872 d | 35.5 a | 512 e | 328 e | 220 d | 183 e | 52.0 g |
LSD | 10.87 | 10.29 | 3.35 | 18.25 | 18.32 | 11.30 | 22.70 | 7.90 |
Diet | CP | OM | EE | NDF | ADF | Cellulose | H cellulose | Lignin |
PD1 | 130 bc | 901 c | 18.9 de | 491 e | 345 b | 262 c | 146 f | 54.4 d |
PD2 | 153 a | 899 c | 39.4 b | 537 c | 292 d | 177 g | 245 b | 79.4 b |
PD3 | 103 e | 882 d | 33.6 cd | 633 a | 360 b | 311 a | 273 a | 45.0 e |
PD4 | 116 d | 912 ab | 30.7 e | 589 b | 350 b | 249 de | 239 bc | 68.1 c |
PD5 | 137 b | 904 bc | 26.3 f | 529 cd | 326 c | 253 cd | 203 d | 49.7 de |
PD6 | 121 cd | 918 a | 32.8 de | 453 f | 288 d | 203 f | 165 e | 74.3 b |
PD7 | 121 cd | 917 a | 33.4 cd | 549 c | 318 c | 251 d | 231 bc | 51.1 d |
PD8 | 121 cd | 902 c | 35.7 c | 634 a | 455 a | 301 b | 179 e | 98.0 a |
PD9 | 116 d | 916 a | 21.7 g | 539 c | 310 c | 240 e | 229 bc | 49.3 de |
PD10 | 149 a | 886 d | 49.3 a | 508 de | 283 d | 200 f | 225 c | 50.9 d |
LSD | 9.82 | 7.95 | 2.68 | 22.11 | 16.41 | 10.41 | 18.67 | 5.68 |
Maintenance | Growth | Production | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | PA | PB1 | PB2 | PB3 | PC | Diet | PA | PB1 | PB2 | PB3 | PC | Diet | PA | PB1 | PB2 | PB3 | PC |
MD1 | 35.6 de | 101 f | 358 cd | 237 cd | 268 a | GD1 | 310 a | 213 b | 228 f | 125 cd | 123 abc | PD1 | 124 d | 242 bcd | 423 c | 95.2 ef | 116 b |
MD2 | 18.1 e | 95.3 f | 287 de | 301 b | 299 a | GD2 | 27.8 fg | 85.4 d | 547 a | 194 a | 146 a | PD2 | 49.4 g | 146 fg | 364 d | 291 b | 148 a |
MD3 | 194 a | 195 ab | 233 e | 157 e | 220 b | GD3 | 171 c | 213 b | 359 de | 138 bcd | 118 abcd | PD3 | 249 a | 279 ab | 175 f | 187 c | 110 bc |
MD4 | 187 a | 185 bc | 327 d | 88.8 f | 211 bc | GD4 | 172 c | 202 b | 385 cde | 155 b | 85.7 e | PD4 | 158 b | 296 a | 304 e | 133 d | 108 bc |
MD5 | 173 a | 213 a | 429 bc | 48.9 f | 135 def | GD5 | 167 c | 295 a | 336 e | 114 de | 87.2 de | PD5 | 134 cd | 259 abc | 464 e | 55.5 h | 87.4 cd |
MD6 | 123 b | 130 e | 576 a | 70.9 f | 99.6 f | GD6 | 141 d | 292 a | 429 bc | 28.4 f | 110 bcde | PD6 | 96.9 e | 208 ed | 508 bc | 113 de | 73.4 d |
MD7 | 188 a | 218 a | 24.3 f | 425 a | 145 de | GD7 | 203 b | 192 b | 357 de | 100 e | 147 a | PD7 | 71.3 f | 171 ef | 595 a | 72.1 fgh | 90.4 cd |
MD8 | 14.9 e | 67.8 g | 485 b | 257 bc | 175 cd | GD8 | 109 e | 218 b | 416 cd | 146 bc | 110 bcde | PD8 | 101 e | 223 cd | 492 b | 65.6 gh | 117 b |
MD9 | 74.4 c | 159 cd | 412 bc | 209 d | 145 de | GD9 | 50.8 f | 188 b | 490 ab | 142 bc | 129 ab | PD9 | 143 c | 228 cd | 431 c | 88.3 efg | 108 bc |
MD10 | 47.7 d | 138 de | 440 b | 261 bc | 114 ef | GD10 | 15.9 g | 147 c | 550 a | 195 a | 91.4 cde | PD10 | 20.2 h | 120 g | 364 d | 413 a | 82.3 d |
LSD | 22.84 | 27.36 | 78.36 | 47.84 | 40.64 | LSD | 23.03 | 31.46 | 64.18 | 24.93 | 32.45 | LSD | 14.29 | 39.28 | 57.32 | 26.78 | 22.65 |
Diet | tCHO | NSC | SC | CC | CB2 | CB1 | CA |
MD1 | 768 c | 161 d | 607 c | 224 b | 383 e | 20.3 g | 140 b |
MD2 | 751 d | 128 e | 622 bc | 262 a | 360 f | 95.6 cde | 32.9 d |
MD3 | 821 ab | 185 c | 636 b | 119 de | 517 b | 74.5 ef | 110 b |
MD4 | 818 ab | 189 c | 630 b | 110 ef | 520 b | 87.6 def | 101 c |
MD5 | 770 c | 215 b | 555 d | 119 de | 436 c | 120 bc | 94.8 c |
MD6 | 824 ab | 300 a | 523 f | 225 b | 298 g | 178 a | 122 b |
MD7 | 832 a | 157 d | 674 a | 102 f | 572 a | 114 bcd | 43 d |
MD8 | 753 d | 196 c | 557 d | 134 cd | 423 cd | 135 b | 60.4 d |
MD9 | 817 b | 300 a | 516 f | 150 c | 366 ef | 58.4 f | 242 a |
MD10 | 739 d | 199 c | 540 e | 129 d | 411 d | 76.8 ef | 123 b |
LSD | 14.23 | 15.14 | 14.70 | 16.43 | 18.56 | 30.53 | 31.46 |
Diet | tCHO | NSC | SC | CC | CB2 | CB1 | CA |
GD1 | 776 a | 196 d | 580 b | 194 b | 386 d | 144 cd | 51.9 def |
GD2 | 726 c | 238 b | 488 e | 133 fg | 355 e | 175 bc | 62.9 cde |
GD3 | 743 b | 88.9 f | 654 a | 134 fg | 520 a | 59.2 g | 29.8 fg |
GD4 | 735 bc | 142 e | 593 b | 125 g | 468 b | 59.4 g | 82.5 c |
GD5 | 779 a | 192 d | 586 b | 154 de | 433 c | 155 bc | 37.3 efg |
GD6 | 780 a | 248 b | 532 d | 222 a | 310 f | 179 ab | 68.7 cd |
GD7 | 776 a | 218 c | 558 c | 172 cd | 386 d | 86.1 fg | 132 b |
GD8 | 786 a | 125 e | 662 a | 181 bc | 480 b | 108 ef | 16.6 g |
GD9 | 783 a | 320 a | 463 f | 150 ef | 313 f | 121 de | 199 a |
GD10 | 707 d | 232 bc | 475 ef | 125 g | 350 e | 208 a | 23.5 fg |
LSD | 15.52 | 19.72 | 17.94 | 18.97 | 28.14 | 31.11 | 29.1 |
Diet | tCHO | NSC | SC | CC | CB2 | CB1 | CA |
PD1 | 752 bc | 288 b | 464 d | 131 d | 333 d | 239 b | 49.4 bc |
PD2 | 707 d | 237 d | 470 d | 190 b | 280 f | 194 d | 43.1 c |
PD3 | 746 c | 143 f | 602 a | 108 e | 494 a | 103 g | 40.2 c |
PD4 | 765 ab | 203 e | 562 b | 163 c | 398 b | 169 e | 34.1 cd |
PD5 | 741 c | 231 e | 509 c | 119 de | 390 bc | 133 f | 98.0 a |
PD6 | 764 b | 333 a | 431 e | 178 b | 252 g | 302 a | 31.7 cd |
PD7 | 762 b | 233 d | 529 c | 122 d | 407 b | 217 bcd | 16.1 d |
PD8 | 745 c | 133 f | 612 a | 235 a | 376 c | 97.8 g | 35.2 cd |
PD9 | 779 a | 262 c | 516 c | 118 de | 398 b | 197 cd | 65.4 b |
PD10 | 687 e | 253 cd | 434 e | 122 d | 312 e | 219 bc | 34.1 cd |
LSD | 13.55 | 22.04 | 22.31 | 13.64 | 19.94 | 24.31 | 19.49 |
Diets/Rations | Gas (mL/g) | Methane (mL/g) | ||||||
0–12 h | 12–24 h | 24–48 h | Cumulative | 0–12 h | 12–24 h | 24–48 h | Cumulative | |
MD1 | 64.3 c | 50.0 e | 50.0 b | 164 c | 9.83 d | 5.77 f | 5.08 h | 20.7 g |
MD2 | 58.5 h | 51.0 d | 44.3 f | 154 e | 6.57 f | 5.56 f | 11.3 b | 23.4 e |
MD3 | 59.5 gh | 55.8 b | 47.6 d | 163 c | 11.2 c | 12.3 a | 16.3 a | 39.8 a |
MD4 | 63.6 cd | 54.3 c | 50.0 b | 168 b | 12.6 b | 11.2 b | 17.0 a | 40.4 a |
MD5 | 66.0 b | 53.7 c | 45.3 e | 164 c | 11.2 c | 8.77 c | 5.66 g | 25.7 d |
MD6 | 62.3 de | 49.2 e | 47.9 d | 160 d | 15.1 a | 8.63 c | 9.56 d | 33.3 b |
MD7 | 69.8 a | 58.5 a | 48.3 cd | 178 a | 12.1 b | 7.89 d | 8.32 e | 28.3 c |
MD8 | 63.8 cd | 54.5 c | 46.1 e | 164 c | 8.72 e | 6.68 e | 7.02 f | 22.4 f |
MD9 | 61.8 ef | 44.5 g | 49.3 c | 156 e | 9.03 de | 6.67 e | 8.21 e | 23.9 e |
MD10 | 60.5 fg | 47.8 f | 52.6 a | 160 d | 7.12 f | 7.98 d | 10.8 c | 25.9 d |
LSD | 1.535 | 1.038 | 0.960 | 2.245 | 0.829 | 0.528 | 0.359 | 1.348 |
Diets/Rations | Gas (mL/g) | Methane (mL/g) | ||||||
0–12 h | 12–24 h | 24–48 h | Cumulative | 0–12 h | 12–24 h | 24–48 h | Cumulative | |
GD1 | 65.0 b | 50.3 f | 48.8 cd | 164 c | 12.8 c | 5.74 h | 3.95 i | 22.5 gh |
GD2 | 59.5 d | 55.8 b | 46.8 e | 162 de | 8.20 ef | 10.1 b | 15.3 c | 33.6 c |
GD3 | 62.4 c | 55.2 bc | 49.2 bc | 167 b | 10.5 d | 10.6 a | 15.8 b | 36.9 b |
GD4 | 64.8 b | 52.6 e | 48.8 cd | 166 b | 15.5 a | 10.9 a | 16.2 a | 42.6 a |
GD5 | 65.8 b | 51.8 e | 45.6 f | 163 cd | 13.2 c | 7.39 f | 6.40 g | 26.96 f |
GD6 | 67.3 a | 54.5 cd | 44.3 g | 166 b | 10.9 d | 7.96 e | 4.73 h | 23.6 g |
GD7 | 67.8 a | 57.0 a | 48.3 d | 173 a | 14.5 b | 9.49 c | 8.22 f | 32.2 d |
GD8 | 62.8 c | 54.0 d | 49.8 b | 167 b | 9.09 e | 6.07 g | 6.40 g | 21.6 h |
GD9 | 63.5 c | 46.3 g | 49.6 b | 159 f | 11.1 d | 8.48 d | 9.67 e | 29.2 e |
GD10 | 59.5 d | 50.0 f | 51.0 a | 161 ef | 7.87 f | 8.50 d | 10.27 d | 26.6 f |
LSD | 1.136 | 0.844 | 0.729 | 1.836 | 0.906 | 0.300 | 0.357 | 1.175 |
Diets/Rations | Gas (mL/g) | Methane (mL/g) | ||||||
0–12 h | 12–24 h | 24–48 h | Cumulative | 0–12 h | 12–24 h | 24–48 h | Cumulative | |
PD1 | 62.8 e | 54.3 cd | 44.0 g | 161 d | 13.9 b | 12.7 a | 14.5 b | 41.1 a |
PD2 | 62.6 e | 53.0 e | 46.8 e | 162 d | 11.1 d | 9.02 de | 14.2 b | 34.3 cd |
PD3 | 61.0 f | 54.6 bc | 48.8 cd | 164 c | 10.9 d | 11.2 bc | 16.0 a | 38.1 b |
PD4 | 64.3 d | 54.0 d | 50.0 ab | 168 b | 14.0 b | 11.0 bc | 15.9 a | 40.9 a |
PD5 | 67.6 a | 55.0 b | 45.0 f | 168 b | 15.6 a | 11.1 bc | 8.03 d | 34.7 c |
PD6 | 66.3 b | 54.8 bc | 44.1 g | 165 c | 15.0 a | 11.4 b | 6.94 e | 33.4 cd |
PD7 | 66.0 b | 58.6 a | 45.3 f | 170 a | 13.0 c | 10.5 c | 6.94 e | 30.4 e |
PD8 | 60.5 f | 43.8 h | 48.3 d | 153 f | 6.42 f | 5.68 f | 6.56 e | 18.6 g |
PD9 | 65.0 c | 47.5 g | 49.4 bc | 162 d | 13.5 bc | 9.41 d | 9.75 c | 32.7 d |
PD10 | 59.0 g | 49.7 f | 50.4 a | 159 e | 8.28 e | 8.63 e | 10.11 c | 27.0 f |
LSD | 0.663 | 0.557 | 0.796 | 1.278 | 0.883 | 0.741 | 0.786 | 1.970 |
Diets/Rations | IVDMD g/kg DM | CH4 mL/g DDM 24h | CH4 g/kg DM | CH4 g/kg DDM | GE kJ/g | GE in CH4 g DDM | CH4 %GE DDM |
MD1 | 422 bc | 37.2 f | 11.2 c | 26.7 ef | 16.9 cd | 1.42 ef | 8.45 ef |
MD2 | 402 c | 30.4 g | 8.70 d | 21.7 g | 18.0 ab | 1.16 g | 6.46 g |
MD3 | 482 b | 48.9 a | 16.9 a | 35.0 a | 17.5 bc | 1.87 a | 10.7 ab |
MD4 | 468 b | 49.4 a | 17.1 a | 35.4 a | 16.3 d | 1.89 a | 11.6 a |
MD5 | 468 b | 42.5 bcd | 14.3 b | 30.5 bcd | 17.5 bc | 1.63 bcd | 9.31 cde |
MD6 | 584 a | 43.2 bc | 17.0 a | 31.0 bc | 18.7 a | 1.66 bc | 8.87 de |
MD7 | 417 bc | 47.0 ab | 14.4 b | 33.7 ab | 17.4 bc | 1.80 ab | 10.3 bc |
MD8 | 367 e | 41.5 cde | 11.0 c | 29.8 cde | 16.2 d | 1.59 cde | 9.8 bcd |
MD9 | 474 bc | 33.5 fg | 11.3 c | 24.1 fg | 17.6 bc | 1.28 fg | 7.31 fg |
MD10 | 389 de | 38.5 de | 10.8 c | 27.6 de | 17.2 c | 1.47 de | 8.56 e |
LSD | 43.58 | 4.64 | 0.81 | 3.33 | 0.768 | 0.178 | 1.14 |
Diets/Rations | IVDMD g/kg DM | CH4 mL/g DDM 24 h | CH4 g/kg DM | CH4 g/kg DDM | GE kJ/g | GE in CH4 g DDM | CH4 %GE DDM |
GD1 | 450 d | 41.3 bc | 13.27 e | 29.6 bc | 16.9 cd | 1.57 bc | 9.29 bc |
GD2 | 496 bc | 37.0 de | 13.14 e | 26.5 de | 17.5 bc | 1.41 de | 8.06 e |
GD3 | 530 b | 39.9 cd | 15.13 c | 28.6 cd | 16.9 cd | 1.53 cd | 9.07 cd |
GD4 | 628 a | 42.1 bc | 18.94 a | 30.2 bc | 17.0 cd | 1.61 bc | 9.49 bc |
GD5 | 466 cd | 44.3 b | 14.74 c | 31.8 b | 16.9 cd | 1.7 b | 10.0 b |
GD6 | 530 b | 35.7 e | 13.55 de | 25.6 e | 16.6 d | 1.37 e | 8.21 de |
GD7 | 409 e | 58.7 a | 17.21 b | 42.1 a | 17.9 ab | 2.24 a | 12.5 a |
GD8 | 372 f | 40.9 bc | 10.87 g | 29.3 bc | 16.7 d | 1.57 bc | 9.43 bc |
GD9 | 469 cd | 41.9 bc | 14.01 d | 30.0 bc | 18.3 a | 1.61 bc | 8.82 cde |
GD10 | 408 e | 40.1 cd | 11.74 f | 28.8 cd | 17.4 bc | 1.53 cd | 8.83 cde |
LSD | 35.36 | 3.88 | 0.686 | 2.78 | 0.614 | 0.148 | 0.865 |
Diets/Rations | IVDMD g/kg DM | CH4 mL/g DDM 24h | CH4 g/kg DM | CH4 g/kg DDM | GE kJ/g | GE in CH4 g DDM | CH4 %GE DDM |
PD1 | 621 a | 42.9 c | 19.06 a | 30.7 c | 17.5 bcd | 1.66 c | 9.48 cd |
PD2 | 605 a | 33.2 de | 14.39 d | 23.8 de | 17.7 abc | 1.28 de | 7.24 e |
PD3 | 600 ab | 36.9 d | 15.82 c | 26.5 d | 16.8 ef | 1.41 d | 8.40 d |
PD4 | 523 cd | 47.9 ab | 17.92 b | 34.3 ab | 16.9 def | 1.82 ab | 10.8 ab |
PD5 | 520 d | 51.5 a | 19.11 a | 36.9 a | 17.4 bcd | 1.99 a | 11.4 a |
PD6 | 563 bc | 47.0 bc | 18.96 a | 33.7 ab | 16.7 f | 1.78 bc | 10.7 ab |
PD7 | 496 d | 47.4 ab | 16.82 c | 34.0 ab | 18.1 a | 1.82 ab | 10.1 bc |
PD8 | 391 e | 31.1 e | 8.68 f | 22.3 e | 17.2 cdef | 1.20 e | 6.92 e |
PD9 | 534 cd | 43.1 c | 16.4 c | 30.9 c | 17.3 bcde | 1.66 c | 9.59 c |
PD10 | 533 cd | 31.8 e | 12.1 e | 22.8 e | 17.8 ab | 1.20 e | 6.84 e |
LSD | 40.91 | 4.21 | 1.003 | 3.02 | 0.575 | 0.161 | 1.029 |
Chemical Constituents | CH4 g/g DDM | Protein Fractions | CH4 g/g DDM | CHO Fractions | CH4 g/g DDM |
---|---|---|---|---|---|
CP | −0.134 | NDIP | −0.448 (**) | tCHO | 0.353 (**) |
OM | 0.266 (**) | ADIP | −0.272 (**) | NSC | 0.115 |
EE | −0.422 (**) | SP | 0.387 (**) | SC | 0.083 |
NDF | −0.009 | NPN | 0.450 (**) | Starch % NSC | −0.104 |
ADF | −0.127 | PA | 0.412 (**) | CC DM | −0.365 (**) |
Cellulose | −0.073 | PB1 | 0.284 (**) | CB2DM | 0.278 (**) |
Hemi cellulose | 0.130 | PB2 | −0.053 | CB1DM | 0.031 |
Lignin | −0.365 (**) | PB3 | −0.341 (**) | CADM | 0.091 |
Energy | −0.032 | PC | −0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Koli, P.; Kushwaha, B.P.; Anele, U.Y.; Bhattacharya, S.; Ren, Y. Agroecological Zone-Specific Diet Optimization for Water Buffalo (Bubalus bubalis) through Nutritional and In Vitro Fermentation Studies. Animals 2024, 14, 143. https://doi.org/10.3390/ani14010143
Singh S, Koli P, Kushwaha BP, Anele UY, Bhattacharya S, Ren Y. Agroecological Zone-Specific Diet Optimization for Water Buffalo (Bubalus bubalis) through Nutritional and In Vitro Fermentation Studies. Animals. 2024; 14(1):143. https://doi.org/10.3390/ani14010143
Chicago/Turabian StyleSingh, Sultan, Pushpendra Koli, B. P. Kushwaha, Uchenna Y. Anele, Sumana Bhattacharya, and Yonglin Ren. 2024. "Agroecological Zone-Specific Diet Optimization for Water Buffalo (Bubalus bubalis) through Nutritional and In Vitro Fermentation Studies" Animals 14, no. 1: 143. https://doi.org/10.3390/ani14010143
APA StyleSingh, S., Koli, P., Kushwaha, B. P., Anele, U. Y., Bhattacharya, S., & Ren, Y. (2024). Agroecological Zone-Specific Diet Optimization for Water Buffalo (Bubalus bubalis) through Nutritional and In Vitro Fermentation Studies. Animals, 14(1), 143. https://doi.org/10.3390/ani14010143