Mediterranean Marine Mammals: Possible Future Trends and Threats Due to Mercury Contamination and Interaction with Other Environmental Stressors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mercury Biogeochemistry and Biomagnification in Mediterranean Pelagic Food Webs
3. Mercury Accumulation in Mediterranean Marine Mammals
4. Mercury–Selenium Interactions
5. Climate Change and Future Trends of Mercury Bioavailability in the Mediterranean Sea
6. Possible Cumulative Effects of Hg and Persistent Organic Pollutants (POPs)
7. Management Priorities for Mediterranean Marine Mammals
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cossa, D.; Knoery, J.; Bănaru, D.; Harmelin-Vivien, M.; Sonke, J.E.; Hedgecock, I.M.; Bravo, A.G.; Rosati, G.; Canu, D.; Horvat, M.; et al. Mediterranean mercury assessment 2022: An updated budget, health consequences, and research perspectives. Environ. Sci. Technol. 2022, 56, 3840–3862. [Google Scholar] [CrossRef]
- Bargagli, R.; Rota, E. Mercury biogeochemistry and biomagnification in the Mediterranean Sea: Current knowledge and future prospects in a context of climate change. Coasts 2024, 4, 89–107. [Google Scholar] [CrossRef]
- Bernhard, M.; Renzoni, A. Mercury concentrations in Mediterranean marine organisms and their environment: Natural and anthropogenic origin. Thalass. Jugosl. 1977, 13, 265–300. [Google Scholar]
- Aston, S.R.; Fowler, S.W. Mercury in the open Mediterranean: Evidence of contamination? Sci. Total Environ. 1985, 43, 13–26. [Google Scholar] [CrossRef]
- Kershaw, J.L.; Hall, A.J. Mercury in cetaceans: Exposure, bioaccumulation and toxicity. Sci. Total Environ. 2019, 694, 133683. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Global Mercury Assessment 2018; UN Environment Programme, Chemicals and Health Branch: Geneva, Switzerland, 2019; Available online: https://www.unep.org/resources/publication/global-mercury-assessment-2018 (accessed on 2 July 2024).
- Cinnirella, S.; Bruno, D.E.; Pirrone, N.; Horvat, M.; Zivkovic, I.; Evers, D.C.; Johnson, S.; Sunderland, E.M. Mercury concentrations in biota in the Mediterranean Sea, a compilation of 40 years of surveys. Sci. Data 2019, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Suarez, I.; Lozano-Bilbao, E.; Hardisson, A.; Paz, S.; Gutiérrez, A.J. Metal and trace element concentrations in cetaceans worldwide: A review. Mar. Pollut. Bull. 2023, 192, 115010. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.A.; Al-Rudainy, A.J.; Salman, N.M. Effect of environmental pollutants on fish health: An overview. Egypt. J. Aquat. Res. 2024, 50, 225–233. [Google Scholar] [CrossRef]
- Das, K.; Debacker, V.; Pillet, S.; Bouquegneau, J.-M. Heavy metals in marine mammals. In Toxicology of Marine Mammals, 1st ed.; Vos, J.G., Bossart, G., Fournier, M., O’Shea, T., Eds.; CRC Press: London, UK, 2003; pp. 135–167. [Google Scholar]
- Wilman, B.; Staniszewska, M.; Bełdowska, M. Is the inhalation influence on the level of mercury and PAHs in the lungs of the Baltic grey seal (Halichoerus grypus grypus)? Environ. Pollut. 2023, 320, 121083. [Google Scholar] [CrossRef]
- Martoja, R.; Barry, J.-P. Identification of tiemannite as a probable product of demethylation of mercury by selenium in cetaceans. A complement to the scheme of the biological cycle of mercury. Vie Milieu Life Environ. 1980, 30, 7–10. [Google Scholar]
- Leonzio, C.; Focardi, S.; Fossi, C. Heavy metals and selenium in stranded dolphins of the Northern Tyrrhenian (NW Mediterranean). Sci. Total Environ. 1992, 119, 77–84. [Google Scholar] [CrossRef]
- Nigro, M.; Leonzio, C. Intracellular storage of mercury and selenium in different marine vertebrates. Mar. Ecol. Prog. Ser. 1996, 135, 137–143. [Google Scholar] [CrossRef]
- Notarbartolo di Sciara, G. Marine mammals in the Mediterranean Sea: An overview. Adv. Mar. Biol. 2016, 75, 1–36. [Google Scholar] [CrossRef]
- Williams, R.S.; Brownlow, A.; Baillie, A.; Barber, J.L.; Barnett, J.; Davison, N.J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; et al. Evaluation of a marine mammal status and trends contaminants indicator for European waters. Sci. Total Environ. 2023, 866, 161301. [Google Scholar] [CrossRef]
- Schaap, I.; Buedenbender, L.; Johann, S.; Hollert, H.; Dogruer, G. Impact of chemical pollution on threatened marine mammals: A systematic review. J. Hazard. Mater. 2023, 459, 132203. [Google Scholar] [CrossRef]
- Borrell, A.; Aguilar, A.; Tornero, V.; Drago, M. Concentrations of mercury in tissues of striped dolphins suggest decline of pollution in Mediterranean open waters. Chemosphere 2014, 107, 319–323. [Google Scholar] [CrossRef]
- Sedak, M.; Bilandžić, N.; Ðokić, M.; Ðuras, M.; Gomerčić, T.; Benić, M. Body burdens and distribution of mercury and selenium in bottlenose, striped and Risso’s dolphins along the Adriatic coast: A 20-year retrospective. Mar. Poll. Bull. 2022, 185, 114298. [Google Scholar] [CrossRef]
- Shoham-Frider, E.; Goffman, O.; Harlavan, Y.; Kress, N.; Morick, D.; Roditi-Elasar, M.; Shefer, E.; Kerem, D. Trace elements in striped dolphins (Stenella coeruleoalba) from the Eastern Mediterranean: A 10-years perspective. Mar. Pollut. Bull. 2016, 109, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Fernandez, P.; Spitz, J.; Dars, C.; Dabin, W.; Mahfouz, C.; André, J.-M.; Chouvelon, T.; Authier, M.; Caurant, F. Two cetacean species reveal different long-term trends for toxic trace elements in European Atlantic French waters. Chemosphere 2022, 294, 133676. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-S.; Lutcavage, M.E.; Chandler, E.; Madigan, D.J.; Cerrato, R.M.; Fisher, N.S. Declining mercury concentrations in bluefin tuna reflect reduced emissions to the North Atlantic Ocean. Environ. Sci. Technol. 2016, 50, 12825–12830. [Google Scholar] [CrossRef]
- Wang, F.; Outridge, P.M.; Feng, X.; Meng, B.; Heimbürger-Boavida, L.-E.; Mason, R.P. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? Implications for evaluating the effectiveness of the Minamata Convention. Sci. Total Environ. 2019, 674, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.D.; Wilson, S.J.; Fryer, R.J.; Thomas, P.J.; Hudelson, K.; Andreasen, B.; Blévin, P.; Bustamante, P.; Chastel, O.; Christensen, G.; et al. Temporal trends of mercury in Arctic biota: 10 more years of progress in Arctic monitoring. Sci. Total Environ. 2022, 839, 155803. [Google Scholar] [CrossRef] [PubMed]
- AMAP/UNEP. UN Environment Programme, Chemicals and Health Branch, Geneva. In Technical Background Reports for the Global Mercury Assessment 2018; Arctic Monitoring and Assessment Programme: Oslo, Norway, 2019; p. 426. [Google Scholar]
- Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; Deliso, A.; Ferrara, R.; Maserti, B.E. Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields. J. Geophys. Res. 1992, 97, 3779–3786. [Google Scholar] [CrossRef]
- Ferrara, R.; Mazzolai, B.; Lanzillotta, E.; Nucaro, E.; Pirrone, N. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Sci. Total Environ. 2000, 259, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Rosati, G.; Canu, D.; Lazzari, P.; Solidoro, C. Assessing the spatial and temporal variability of methylmercury biogeochemistry and bioaccumulation in the Mediterranean Sea with a coupled 3D model. Biogeosciences 2022, 19, 3663–3682. [Google Scholar] [CrossRef]
- Gencarelli, C.N.; De Simone, F.; Hedgecock, I.M.; Sprovieri, F.; Yang, X.; Pirrone, N. European and Mediterranean mercury modelling: Local and long-range contribution to the deposition flux. Atmos. Environ. 2015, 117, 162–168. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Richon, C.; Dutay, J.-C.; Bopp, L.; Le Vu, B.; Orr, J.C.; Somot, S.; Dulac, F. Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario. Biogeosciences 2019, 16, 135–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Dutkiewicz, S.; Sunderland, E.M. Impact of climate change on methylmercury formation and bioaccumulation in the 21th century ocean. One Earth 2021, 4, 279–288. [Google Scholar] [CrossRef]
- MedECC. Climate and Environmental Change in the Mediterranean Basin-Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; p. 632. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Calafat, F.M.; Frederiske, T.; Horsburgh, K. The sources of sea-level changes in the Mediterranean Sea since 1960. J. Geophys. Res. 2022, 127, e2022JC019061. [Google Scholar] [CrossRef]
- Covelli, S.; Faganelli, J.; Horvat, M.; Brambati, A. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic Sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Rimondi, V.; Costagliola, P.; Lattanzi, P.; Morelli, G.; Cara, G.; Cencetti, C.; Fagotti, C.; Fredduzzi, A.; Marchetti, G.; Sconocchia, A.; et al. A 200 km-long mercury contamination of the Paglia and Tiber floodplain: Monitoring results and implications for environmental management. Environ. Pollut. 2019, 255, 113191. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, E.Y.; Buyukisik, H.B.; Kontas, A.; Turkdogan, M. A survey of metal concentrations in marine sediment cores in the vicinity of an old mercury-mining area in Karaburun, Aegean Sea. Environ. Sci. Pollut. Res. 2017, 24, 13823–13836. [Google Scholar] [CrossRef]
- Albertos, S.; Berenguer, N.I.; Sánchez-Virosta, P.; Gómez-Ramírez, P.; Jiménez, P.; Torres-Chaparro, M.Y.; Valverde, I.; Navas, I.; María-Mojica, P.; García-Fernández, A.J.; et al. Mercury exposure in birds linked to marine ecosystems in the Western Mediterranean. Arch. Environ. Contam. Toxicol. 2020, 79, 435–453. [Google Scholar] [CrossRef]
- Abass, K.; Huusko, A.; Knutsen, H.K.; Nieminen, P.; Myllynen, P.; Meltzer, H.M.; Vahakangas, K.; Rautio, A. Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environ. Int. 2018, 114, 1–11. [Google Scholar] [CrossRef]
- Arai, T.; Ikemoto, T.; Hokura, A.; Terada, Y.; Kunito, T.; Tanabe, S.; Nakai, I. Chemical forms of mercury and cadmium accumulated in marine mammals and seabirds as determined by XAFS analysis. Environ. Sci. Technol. 2004, 38, 6468–6474. [Google Scholar] [CrossRef]
- Savery, L.C.; Evers, D.C.; Wise, S.S.; Falank, C.; Wise, J.; Gianios, C., Jr.; Kerr, I.; Payne, R.; Thompson, W.D.; Perkins, C.; et al. Global mercury and selenium concentrations in skin from free-ranging sperm whales (Physeter macrocephalus). Sci. Total Environ. 2013, 450, 59–71. [Google Scholar] [CrossRef]
- Squadrone, S.; Chiaravalle, E.; Gavinelli, S.; Monaco, G.; Rizzi, M.; Abete, M.C. Analysis of mercury and methylmercury concentrations, and selenium:mercury molar ratios for a toxicological assessment of sperm whales (Physeter macrocephalus) in the most recent stranding event along the Adriatic coast (Southern Italy, Mediterranean Sea). Chemosphere 2015, 138, 633–641. [Google Scholar] [CrossRef]
- Monteiro, S.S.; Bozzetti, M.; Torres, J.; Tavares, A.S.; Ferreira, M.; Pereira, A.T.; Sá, S.; Araújo, H.; Bastos-Santos, J.; Oliveira, I.; et al. Striped dolphins as trace element biomonitoring tools in oceanic waters: Accounting for health-related variables. Sci. Total Environ. 2020, 699, 134410. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Decataldo, A.; Di Leo, A.; Misino, A. Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (southern Italy). Environ. Pollut. 2002, 116, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Fossi, M.C.; Panti, C.; Marsili, L.; Maltese, S.; Spinsanti, G.; Casini, S.; Caliani, I.; Gaspari, S.; Muñoz-Arnanz, J.; Jimenez, B.; et al. The Pelagos Sanctuary for Mediterranean marine mammals: Marine Protected Area (MPA) or marine polluted area? The case study of the striped dolphin (Stenella coeruleoalba). Mar. Pollut. Bull. 2013, 70, 64–72. [Google Scholar] [CrossRef] [PubMed]
- López-Berenguer, G.; Acosta-Dacal, A.; Luzardo, O.P.; Peñalver, J.; Martínez-López, E. Assessment of polycyclic aromatic hydrocarbons (PAHs) in Mediterranean top marine predators stranded in SE Spain. Chemosphere 2023, 336, 139306. [Google Scholar] [CrossRef]
- Vighi, M.; Borrell, A.; Sahyoun, W.; Net, S.; Aguilar, A.; Ouddane, B.; Garcia-Garin, O. Concentrations of bisphenols and phthalate esters in the muscle of Mediterranean striped dolphins (Stenella coeruleoalba). Chemosphere 2023, 339, 139686. [Google Scholar] [CrossRef]
- Capanni, F.; Karamanlidis, A.A.; Dendrinos, P.; Zaccaroni, A.; Formigaro, C.; D’Agostino, A.; Marsili, L. Monk seals (Monachus monachus) in the Mediterranean Sea: The threat of organochlorine contaminants and polycyclic aromatic hydrocarbons. Sci. Total Environ. 2024, 915, 169854. [Google Scholar] [CrossRef] [PubMed]
- Marsili, L.; Jiménez, B.; Borrell, A. Persistent organic pollutants in cetaceans living in a hotspot area: The Mediterranean Sea. In Marine Mammal Ecotoxicology; Fossi, M.C., Panti, C., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 185–212. [Google Scholar] [CrossRef]
- Avila, I.C.; Kaschner, K.; Dormann, C.F. Current global risks to marine mammals: Taking stock of the threats. Biol. Conserv. 2018, 221, 44–58. [Google Scholar] [CrossRef]
- Baldi, F.; Bargagli, R. Chemical leaching and specific surface area measurements of marine sediments in the evaluation of mercury contamination near cinnabar deposits. Mar. Environ. Res. 1982, 6, 69–82. [Google Scholar] [CrossRef]
- Žagar, D.; Knap, A.; Warwick, J.J.; Rajar, R.; Horvat, M.; Četina, M. Modelling of mercury transport and transformation processes in the Idrijca and Soča river system. Sci. Total Environ. 2006, 368, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.; Sciuretti, V.; Consoli, P.; Manea, E.; Menini, E.; Andaloro, F.; Romeo, T.; Danovaro, R. Volcanic-associated ecosystems of the Mediterranean Sea: A systematic map and an interactive tool to support their conservation. Peer J. 2023, 11, e15162. [Google Scholar] [CrossRef]
- Bagnato, E.; Oliveri, E.; Acquavita, A.; Covelli, S.; Petranich, E.; Barra, M.; Italiano, F.; Parello, F.; Sprovieri, M. Hydrochemical mercury and air-sea exchange over the submarine hydrothermal vents off-shore Panarea Island (Aeolian arc, Tyrrhenian Sea). Mar. Chem. 2017, 194, 63–78. [Google Scholar] [CrossRef]
- Bakalowicz, M. Coastal karst groundwater in the Mediterranean: A resource to be preferably exploited onshore, not from karst submarine springs. Geosciences 2018, 8, 258. [Google Scholar] [CrossRef]
- De Simone, F.; Gencarelli, C.N.; Hedgecock, I.M.; Pirrone, N. A modeling comparison of mercury deposition from current anthropogenic mercury emission inventories. Environ. Sci. Technol. 2016, 50, 5154–5162. [Google Scholar] [CrossRef]
- Mason, R.P.; Choi, A.L.; Fitzgerald, W.F.; Hammerschmidt, C.R.; Lamborg, C.H.; Soerensen, A.L.; Sunderland, E.M. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 2012, 119, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Villar, E.; Cabrol, L.; Heimbürger-Boavida, L.-E. Widespread microbial mercury methylation genes in the global ocean. Environ. Microbiol. Rep. 2020, 12, 277–287. [Google Scholar] [CrossRef]
- Motta, L.C.; Blum, J.D.; Johnson, M.W.; Umhau, B.P.; Popp, B.N.; Washburn, S.J.; Drazen, J.C.; Benitez-Nelson, C.R.; Hannides, C.C.S.; Close, H.G.; et al. Mercury cycling in the North Pacific subtropical gyre as revealed by mercury stable isotope ratios. Glob. Biogeochem. Cycles 2019, 33, 777–794. [Google Scholar] [CrossRef]
- Heimbürger, L.-E.; Cossa, D.; Marty, J.-C.; Migon, C.; Averty, B.; Dufour, A.; Ras, J. Methyl mercury distributions in relation to the presence of nano- and picoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochim. Cosmochim. Acta 2010, 74, 5549–5559. [Google Scholar] [CrossRef]
- Sammartino, M.; Di Cicco, A.; Marullo, S.; Santoleri, R. Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sci. 2015, 11, 759–778. [Google Scholar] [CrossRef]
- Tesán-Onrubia, J.A.; Heimbürger-Boavida, L.-E.; Dufour, A.; Harmelin-Vivien, M.; García-Arévalo, I.; Knoery, J.; Thomas, B.; Carlotti, F.; Tedetti, M.; Bȃnaru, D. Bioconcentration, bioaccumulation and biomagnification of mercury in plankton of the Mediterranean Sea. Mar. Pollut. Bullet. 2023, 194, 115439. [Google Scholar] [CrossRef]
- Buckman, K.L.; Lane, O.; Kotnik, J.; Bratkic, A.; Sprovieri, F.; Horvat, M.; Pirrone, N.; Evers, D.C.; Chen, C.Y. Spatial and taxonomic variation of mercury concentration in low trophic level fauna from the Mediterranean Sea. Ecotoxicology 2018, 27, 1341–1352. [Google Scholar] [CrossRef]
- Coll, M.; Piroddi, C.; Steenbeek, J.; Kaschner, K.; Ben Rais Lasram, F.; Aguzzi, J.; Ballesteros, E.; Nike Bianchi, C.; Corbera, J.; Dailianis, T.; et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 2010, 5, e11842. [Google Scholar] [CrossRef]
- Karamanlidis, A.A.; Dendrinos, P.; Fernández de Larrinoa, P.; Gücü, A.G.; Johnson, W.M.; Kiraç, C.O.; Pires, R. The Mediterranean monk seal (Monachus monachus): Status, biology, threats, and conservation priorities. Mamm. Rev. 2016, 46, 92–105. [Google Scholar] [CrossRef]
- Gnone, G.; Bellingeri, M.; Airoldi, S.; Gonzalvo, J.; David, L.; Di-Méglio, N.; Cañadas, A.M.; Akkaya, A.; Awbery, T.; Mussi, B.; et al. Cetaceans in the Mediterranean Sea: Encounter rate, dominant species, and diversity hotspots. Diversity 2023, 15, 321. [Google Scholar] [CrossRef]
- Bargagli, R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 2008, 400, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Monaci, F.; Borrel, A.; Leonzio, C.; Marsili, L.; Calzada, N. Trace elements in striped dolphins (Stenella coeruleoalba) from the western Mediterranean. Environ. Pollut. 1998, 99, 61–68. [Google Scholar] [CrossRef]
- Marsili, L.; Caruso, A.; Fossi, M.C.; Zanardelli, M.; Politi, E. Polycyclic aromatic hydrocarbons (PAHs) in subcutaneous biopsies of Mediterranean cetaceans. Chemosphere 2001, 44, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Fossi, M.C.; Marsili, L.; Leonzio, C.; Notarbartolo di Sciara, G.; Zanardelli, M.; Focardi, S. The use of non-destructive biomarker in Mediterranean cetaceans: Preliminary data on MFO activity in skin biopsy. Mar. Pollut. Bull. 1992, 24, 459–461. [Google Scholar] [CrossRef]
- Li, M.-L.; Kwon, S.Y.; Poulin, B.A.; Tsui, M.T.-K.; Motta, L.C.; Cho, M. Internal dynamics and metabolism of mercury in biota: A review of insights from mercury stable isotopes. Environ. Sci. Technol. 2022, 56, 9182–9195. [Google Scholar] [CrossRef]
- Sun, X.; Yu, R.-Q.; Zhang, M.; Zhang, X.; Chen, X.; Xiao, Y.; Ding, Y.; Wu, Y. Correlation of trace element concentrations between epidermis and internal organ tissues in Indo-Pacific humpback dolphins (Sousa chinensis). Sci. Total Environ. 2017, 605, 238–245. [Google Scholar] [CrossRef]
- Malcom, E.G.; Coleman, S.E.; Smith, E.M.; Cooke, M.E.; Jeff, H.R.; Ellick, R.M.; Volker, K.M. The potential use of skin and liver as biomarkers to estimate mercury in the brain, kidney, and muscle of bottlenose dolphins (Tursiops truncatus). Mar. Pollut. Bull. 2023, 191, 114903. [Google Scholar] [CrossRef]
- Madigan, D.J.; Li, M.; Yin, R.; Baumann, H.; Snodgrass, O.E.; Dewar, H.; Krabbenhoft, D.P.; Baumann, Z.; Fisher, N.S.; Balcom, P.; et al. Mercury stable isotopes reveal influence of foraging depth on mercury concentrations and growth in Pacific bluefin tuna. Environ. Sci. Technol. 2018, 52, 6256–6264. [Google Scholar] [CrossRef]
- Roditi-Elasar, M.; Kerem, D.; Hornung, H.; Kress, N.; Shoham-Frider, E.; Goffman, O.; Spanier, E. Heavy metal levels in bottlenose and striped dolphins off the Mediterranean coast of Israel. Mar. Pollut. Bull. 2003, 46, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Aznar, F.J.; Miguez-Lozano, R.; Ruiz, B.; Bosch de Castro, A.; Raga, J.A.; Blanco, C. Long-term changes (1990–2012) in the diet of striped dolphins Stenella coeruleoalba from the western Mediterranean. Mar. Ecol. Prog. Ser. 2017, 568, 231–247. [Google Scholar] [CrossRef]
- Martínez-López, E.; Peñalver, J.; Escriña, A.; Lara, L.; Gens, M.J.; María Dolores, E.; Alcaraz, A.; García-Fernández, A.J. Trace metals in striped dolphins (Stenella coeruleoalba) stranded along the Murcia coastline, Mediterranean Sea, during the period 2009–2015. Chemosphere 2019, 229, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Calzada, N.; Aguilar, A.; Lockyer, C.; Grau, E. Patterns of growth and physical maturity in the western Mediterranean striped dolphin, Stenella coeruleoalba (Cetacea; Odontoceti). Can. J. Zool. 1997, 75, 632–637. [Google Scholar] [CrossRef]
- Rojo-Nieto, E.; Fernández-Maldonado, C. Assessing trace elements in striped dolphins from the Strait of Gibraltar: Clues to link the bioaccumulation in the westernmost Mediterranean Sea area and nearest Atlantic Ocean. Chemosphere 2017, 170, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Capelli, R.; Drava, G.; De Pellegrini, R.; Minganti, V.; Poggi, R. Study of trace elements in organs and tissues of striped dolphins (Stenella coeruleoalba) found dead along the Ligurian coasts (Italy). Adv. Environ. Res. 2000, 4, 31–43. [Google Scholar] [CrossRef]
- Bellante, A.; Sprovieri, M.; Buscaino, G.; Buffa, G.; Di Stefano, V.; Salvagio Manta, D.; Barra, M.; Filiciotto, F.; Bonanno, A.; Giacoma, C.; et al. Stranded cetaceans as indicators of mercury pollution in the Mediterranean Sea. Ital. J. Zool. 2011, 79, 151–160. [Google Scholar] [CrossRef]
- Becker, P.R.; Mackey, E.A.; Demiralp, R.; Suydam, R.; Early, G.; Koster, B.J.; Wise, S.A. Relationship of silver with selenium and mercury in the liver of two species of toothed whales (odontocetes). Mar. Poll. Bull. 1995, 30, 262–271. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Giandomenico, S.; Ragone, P.; Di Leo, A. Tissue distribution of metals in striped dolphins (Stenella coeruleoalba) from the Apulian coasts, Southern Italy. Mar. Emviron. Res. 2000, 49, 55–66. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Ðokić, M.; Ðuras Gomerčić, T.; Zadravec, M.; Benić, M.; Prevendar Crnić, A. Toxic element concentrations in the bottlenose (Tursiops truncatus), striped (Stenella coeruleoalba) and Risso’s (Grampus griseus) dolphins stranded in Eastern Adriatic Sea. Bull. Environ. Contam. Toxicol. 2012, 89, 467–473. [Google Scholar] [CrossRef]
- Capelli, R.; Das, K.; De Pellegrini, R.; Drava, G.; Lepoint, G.; Miglio, C.; Minganti, V.; Poggi, R. Distribution of trace elements in organs of six species of cetaceans from the Ligurian Sea (Mediterranean), and the relationship with stable carbon and nitrogen ratios. Sci. Total Environ. 2008, 390, 569–578. [Google Scholar] [CrossRef]
- Borrell, A.; Clusa, M.; Aguilar, A.; Drago, M. Use of epidermis for the monitoring of tissular trace elements in Mediterranean striped dolphin (Stenella coeruleoalba). Chemosphere 2015, 122, 288–294. [Google Scholar] [CrossRef]
- Frodello, J.P.; Romeo, M.; Viale, D. Distribution of mercury in the organs and tissues of five toothed whale species of the Mediterranean. Environ. Pollut. 2000, 108, 447–452. [Google Scholar] [CrossRef]
- Formigaro, C.; Karamanlidis, A.A.; Dendrinos, P.; Marsili, L.; Silvi, M.; Zaccaroni, A. Trace element concentrations in the Mediterranean monk seal (Monachus monachus) in the eastern Mediterranean Sea. Sci. Total Environ. 2017, 576, 528–537. [Google Scholar] [CrossRef]
- Pinzone, M.; Damseaux, F.; Michel, L.N.; Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 2019, 237, 124448. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, T.W. The toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 1997, 34, 369–403. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Juang, C.A.; Ewald, J.D.; Yin, R.; Mikkelsen, B.; Krabbenhoft, D.P.; Balcom, P.H.; Dassuncao, C.; Sunderland, E.M. Selenium and stable mercury isotopes provide new insights into mercury toxicokinetics in pilot whales. Sci. Total Environ. 2020, 710, 136325. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, E.; Ikemoto, T.; Hokura, A.; Terada, Y.; Kunito, T.; Tanabe, S.; Nakai, I. The presence of mercury selenide in various tissues of the striped dolphin: Evidence from µ-XRF-XRD and XAFS analyses. Metallomics 2011, 3, 719–725. [Google Scholar] [CrossRef]
- von Hellfeld, R.; Gade, C.; ten Doeschate, M.; Davison, N.J.; Brownlow, A.; Mbadugha, L.; Hastings, A.; Paton, G. High resolution visualisation of tiemannite microparticles, essential in the detoxification process of mercury in marine mammals. Environ. Pollut. 2024, 342, 123027. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Gajdosechova, Z.; Lawan, M.M.; Urgast, D.S.; Raab, A.; Scheckel, K.G.; Lombi, E.; Kopittke, P.M.; Loeschner, K.; Larsen, E.H.; Woods, G.; et al. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci. Rep. 2016, 6, 34361. [Google Scholar] [CrossRef]
- López-Berenguer, G.; Peñalver, J.; Martínez-López, E. A critical review about neurotoxic effects in marine mammals of mercury and other trace elements. Chemosphere 2020, 246, 125688. [Google Scholar] [CrossRef]
- Bargagli, R.; Nelli, L.; Ancora, S.; Focardi, S. Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biol. 1996, 16, 513–520. [Google Scholar] [CrossRef]
- Cheng, L.; Abraham, J.; Trenberth, K.E.; Boyer, T.; Mann, M.E.; Zhu, J.; Wang, F.; Yu, F.; Locarnini, R.; Fasullo, J.; et al. New record ocean temperatures and related climate indicators in 2023. Adv. Atmos. Sci. 2024, 41, 1068–1082. [Google Scholar] [CrossRef]
- Ferrara, R.; Maserti, B.E.; Bargagli, R. Mercury in the atmosphere and in lichens in a region affected by a geochemical anomaly. Environ. Technol. Let. 1988, 9, 689–694. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Q.; Maavara, T.; Liu, S.; Wang, X.; Raymond, P.A. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 2021, 14, 672–677. [Google Scholar] [CrossRef]
- Galassi, G.; Spada, G. Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob. Planet. Change 2014, 123, 55–66. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, P.; Zhang, Y. Climate-driven changes of global marine mercury cycles in 2100. Proc. Natl. Acad. Sci. USA 2023, 120, e2202488120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, P.; Song, Z.; Huang, S.; Yuan, T.; Wu, P.; Shah, V.; Liu, M.; Chen, L.; Wang, X.; et al. An updated global mercury budget from a coupled atmosphere-land-ocean model: 40% more re-emissions buffer the effect of primary emission reductions. One Earth 2023, 6, 318–325. [Google Scholar] [CrossRef]
- Negrete-Bolagay, D.; Zamora-Ledezma, C.; Chuya-Sumba, C.; De Sousa, F.B.; Whitehead, D.; Alexis, F.; Guerrero, V.H. Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. J. Environ. Manag. 2021, 300, 113737. [Google Scholar] [CrossRef]
- López-Berenguer, G.; Acosta-Dacal, A.; Luzardo, O.P.; Peñalver, J.; Martínez-López, E. POPs concentration in cetacean stranded along the agricultural coastline of SE Spain show lower burdens of industrial pollutants in comparison to other Mediterranean cetaceans. Sci. Total Environ. 2023, 858, 159743. [Google Scholar] [CrossRef] [PubMed]
- Dron, J.; Wafo, E.; Boissery, P.; Dhermain, F.; Bouchoucha, M.; Chamaret, P.; Lafitte, D. Trends of banned pesticides and PCBs in different tissues of striped dolphins (Stenella coeruleoalba) stranded in the Northwestern Mediterranean reflect changing contamination patterns. Mar. Pollut. Bull. 2022, 174, 113198. [Google Scholar] [CrossRef] [PubMed]
- Dron, J.; Wafo, E.; Boissery, P.; Dhermain, F.; Bouchoucha, M.; Chamaret, P.; Lafitte, D. Occurrence and distribution of PAHs in stranded dolphin tissues from the Northwestern Mediterranean. Mar. Pollut. Bull. 2023, 191, 114898. [Google Scholar] [CrossRef]
- Minoia, L.; Consales, G.; Mazzariol, S.; Mancusi, C.; Terracciano, G.; Ceciarini, I.; Capanni, F.; Neri, A.; D’Agostino, A.; Marsili, L. Preliminary assessment of persistent organic pollutants (POPs) in tissues of Risso’s dolphin (Grampus griseus) specimens stranded along the Italian coasts. Mar. Pollut. Bull. 2023, 186, 114470. [Google Scholar] [CrossRef]
- Capanni, F.; Muñoz-Armanz, J.; Marsili, L.; Fossi, M.C.; Jiménez, B. Assessment of PCDD/Fs, dioxin-like PCBs and PBDEs in Mediterranean striped dolphins. Mar. Pollut. Bull. 2020, 156, 111207. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Borrell, A.; Colomer-Vidal, P.; Vighi, M.; Trilla-Prieto, N.; Aguilar, A.; Gazo, M.; Jiménez, B. Biomagnification and temporal trends (1990–2021) of perfluoroalkyl substances in striped dolphins (Stenella coeruleoalba) from the NW Mediterranean sea. Environ. Pollut. 2023, 339, 122738. [Google Scholar] [CrossRef]
- Liber, Y.; Mourier, B.; Marchand, P.; Michon, E.; Perrodin, Y.; Bedell, J.-P. Past and recent state of sediment contamination by persistent organic pollutants (POPs) in the Rhône River: Overview of ecotoxicological implications. Sci. Total Environ. 2019, 646, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Bargagli, R.; Rota, E. Microplastic interactions and possible combined biological effects in Antarctic marine ecosystems. Animals 2023, 13, 162. [Google Scholar] [CrossRef]
- Braulik, G.T.; Taylor, B.L.; Minton, G.; Notarbartolo di Sciara, G.; Collins, T.; Rojas-Bracho, L.; Crespo, E.A.; Ponnampalam, L.S.; Double, M.C.; Reeves, R.R. Red-list status and extinction risk of the world’s whales, dolphins, and porpoises. Conserv. Biol. 2023, 37, e14090. [Google Scholar] [CrossRef]
- Zenetos, A.; Galanidi, M. Mediterranean non indigenous species at the start of the 2020s: Recent changes. Mar. Biodivers. Rec. 2020, 13, 10. [Google Scholar] [CrossRef]
- Notarbartolo di Sciara, G.; Agardy, T.; Hyrenbach, D.; Scorazzi, T.; Van Klaveren, P. The Pelagos Sanctuary for Mediterranean marine mammals. Aquat. Conserv. 2008, 18, 367–391. [Google Scholar] [CrossRef]
- Grattarola, C.; Minoia, L.; Giorda, F.; Consales, G.; Capanni, F.; Ceciarini, I.; Franchi, E.; Ascheri, D.; Garibaldi, F.; Dondo, A.; et al. Health status of stranded common bottlenose dolphins (Tursiops truncatus) and contamination by immunotoxic pollutants: A threat to the Pelagos Sanctuary—Western Mediterranean Sea. Diversity 2023, 15, 569. [Google Scholar] [CrossRef]
- Azzellino, A.; Panigada, S.; Lanfredi, C.; Zanardelli, M.; Airoldi, S.; Notarbartolo di Sciara, G. Predictive habitat models for managing marine areas: Spatial and temporal distribution of marine mammals within the Pelagos Sanctuary (Northwestern Mediterranean sea). Ocean Coast. Manag. 2012, 67, 63–74. [Google Scholar] [CrossRef]
- Titchou, F.E.; Zazou, H.; Afanga, H.; El Gaayda, J.; Akbour, R.A.; Hamdani, M. Removal of persistent organic pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process. Groundw. Sustain. Dev. 2021, 13, 100575. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Alves, M.; Leitão, F.; Tacão, M.; Henriques, I.; Castro, P.M.L.; Amorim, C.L. Bioremediation of coastal aquaculture effluents spiked with florfenicol using microalgae-based granular sludge—A promising solution for recirculating aquaculture systems. Water Res. 2023, 233, 119733. [Google Scholar] [CrossRef]
- Dell’Anno, A.; Beolchini, F.; Corinaldesi, C.; Amato, A.; Becci, A.; Rastelli, E.; Hekeu, M.; Regoli, F.; Astarita, E.; Greco, S.; et al. Assessing the efficiency and eco-sustainability of bioremediation strategies for the reclamation of highly contaminated marine sediments. Mar. Environ. Res. 2020, 162, 105101. [Google Scholar] [CrossRef]
- Guittonny-Philippe, A.; Masotti, V.; Höhener, P.; Boudenne, J.-L.; Viglione, J.; Laffont-Schwob, I. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions. Environ. Int. 2014, 64, 1–16. [Google Scholar] [CrossRef]
Sampling Area | Year | N of Samples | Length (cm) | Liver | Kidney | Muscle | Lung | Brain | Ref. |
---|---|---|---|---|---|---|---|---|---|
Gibraltar Str. (Southern Spain) | 2012–2013 | 1 | 95 | 1.5 | 0.79 | 14.8 | [80] | ||
5 | 121–184 | 3.9–88.3 | 2.1–25.3 | 1.3–16.3 | |||||
4 | 200–220 | 63–270 | 8.8–26.5 | 3.9–25.3 | |||||
Southern Spain | 2009–2015 | 2 | <95 | 2.5 ± 1.0 | 0.59 ± 0.55 | 1.45 | 0.66 | 0.59 ± 0.46 | [78] |
26 | <187 ♀; <190 ♂ | 27.2 ± 32.3 | 5.4 ± 4.1 | 1.9 ± 1.1 | 1.5 ± 1.7 | 1.02 ± 0.46 | |||
25 | >187 ♀; >190 ♂ | 241 ± 158 | 14.2 ± 7.3 | 14.1 ± 9.3 | 13.0 ± 8.3 | 22.8 ± 24.9 | |||
NW Mediterranean Ligurian Sea | 1986–1990 | 3–4 | 98–110 | 3.2–5.3 | 1.3–2.5 | 1.3–1.5 | 0.50–1.25 | 0.75–1.00 | [81] |
3–7 | 159–188 | 56.3–178.3 | 7.8–16.3 | 3.3–14.3 | 2.5–6.8 | 4.0–5.8 | |||
5–7 | 193–226 | 33.0–748 | 10.5–40.8 | 19.0–65.0 | 46–112 | 8.8–47 | |||
Sicily Channel | 2000–2009 | 3–4 | 85–110 | 2.1–22.5 | 0.1–5.6 | 0.1–0.3 | 0.60–1.90 | [82] | |
3 | 131–182 | 5.5–24.4 | 2.5–5.9 | 1.3–3.4 | 0.45–2.82 | ||||
1 | 190 | 114 | 0.1 | 4.2 | 17.8 | ||||
Apulian coasts | 1987 | 5 | 190–208 | 189 ± 28 | 10.3 ± 2.2 | 10.9 ± 2.5 | 28.7 ± 14.2 | 13.9 ± 6.0 | [84] |
Eastern Adriatic Sea | 2002 | 5 | 188–207 | 182 ± 91.6 | 12.6 ± 7.3 | 16.5 ± 13.9 | [85] | ||
Israel coasts | 1993–2001 | 1 | 102 | 1.4 | 1.9 | 0.54 | [76] | ||
5 | 187–197 | 26–550 | 1.9–27 | 2.3–21 |
Sampling Area | Period (Year) | Species | Sample (n per Age) | ƩPCBs | ƩDDTs | ƩPAH (n) | HCB | ƩHCH | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ionian/Aegean Seas | 1995–2013 | Monachus monachus | 31 IM | 59,500 | 55,900 | (14) 724 | 239 | [49] | |
11 ♀ | 240,000 | 171,000 | (14) 549 | 324 | |||||
5 ♂ | 36,000 | 47,500 | (14) 231 | 180 | |||||
SE Spain | 2011–2018 | Stenella coeruleoalba | 12 IM | 4340 ± 7090 | 3865 ± 4628 | 25.9 ± 28.1 | 131 ± 237 | [106] | |
6 ♀ | 2206 ± 1535 | 2120 ± 1593 | 15.9 ± 21.1 | 75.4 ± 93.5 | |||||
6 ♂ | 13,361 ± 18,208 | 9788 ± 15,030 | 41.5 ± 67.1 | 242 ± 533 | |||||
Tursiops truncatus | 8 all | 6106 ± 5610 | 2266 ± 1739 | 18.6 ± 12.3 | 73.4 ± 58.8 | ||||
SE Spain | 2011–2018 | S. coeruleoalba T. truncatus | 34 all | (16) 100 ± 59 | [47] | ||||
8 all | (16) 109 ± 44 | ||||||||
French Mediterranean coast | 1988–2000 | S. coeruleoalba | 5 all | 45,200 | ———— | [107] | |||
2000–2003 | 3 all | 69,978 | 3108 | ||||||
2003–2009 | 33 all | 37,460 | 17,036 | ||||||
2010–2016 | 45 all | 21,058 | 10,777 | ||||||
French Mediterranean coast | 2010–2016 | S. coeruleoalba T. truncatus | 42 all | (16) 1020 | [108] | ||||
5 all | (16) 981 | ||||||||
Italian coasts | 1998–2021 | Grampus griseus | 2 IM | 137,500 ± 193,070 | 71,050 ± 69,950 | 370 ± 380 | [109] | ||
10 ♀ | |||||||||
8 ♂ | |||||||||
Tyrrh./Ligurian Seas | 2015–2016 | S. coeruleoalba | 5 ♀ | 1360 | [110] | ||||
5 ♂ | 2590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bargagli, R.; Rota, E. Mediterranean Marine Mammals: Possible Future Trends and Threats Due to Mercury Contamination and Interaction with Other Environmental Stressors. Animals 2024, 14, 2386. https://doi.org/10.3390/ani14162386
Bargagli R, Rota E. Mediterranean Marine Mammals: Possible Future Trends and Threats Due to Mercury Contamination and Interaction with Other Environmental Stressors. Animals. 2024; 14(16):2386. https://doi.org/10.3390/ani14162386
Chicago/Turabian StyleBargagli, Roberto, and Emilia Rota. 2024. "Mediterranean Marine Mammals: Possible Future Trends and Threats Due to Mercury Contamination and Interaction with Other Environmental Stressors" Animals 14, no. 16: 2386. https://doi.org/10.3390/ani14162386
APA StyleBargagli, R., & Rota, E. (2024). Mediterranean Marine Mammals: Possible Future Trends and Threats Due to Mercury Contamination and Interaction with Other Environmental Stressors. Animals, 14(16), 2386. https://doi.org/10.3390/ani14162386