Hepatic Metabolomic Responses to Low-Temperature Stress in the Invasive Turtle, Trachemys scripta elegans
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animal Collection
2.2. Experimental Treatment and Sample Preparation
2.3. Liver Metabolomic Profiling
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angilleta, M.J. Thermal Adaptation: A Theoretical and Empirical Synthesis; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Schmidt-Nielsen, K. Animal Physiology: Adaptation and Environment; Cambridge University Press: Cambridge, UK, 1997; pp. 169–216. [Google Scholar]
- Holenweg, A.K.; Reyer, H.U. Hibernation behavior of Rana lessonae and R. esculenta in their natural habitat. Oecologia 2000, 123, 41–47. [Google Scholar] [CrossRef]
- Niu, Y.G.; Zhang, X.J.; Men, S.K.; Storey, K.B.; Chen, Q. Integrated analysis of transcriptome and metabolome data reveals insights for molecular mechanisms in overwintering Tibetan frogs, Nanorana parkeri. Front. Physiol. 2023, 13, 1104476. [Google Scholar] [CrossRef] [PubMed]
- Storey, K.B. Reptile freeze tolerance: Metabolism and gene expression. Cryobiology 2006, 52, 1–16. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Niu, C.J.; Jia, H.; Chen, X.T. Effects of acute cold exposure on oxidative balance and total antioxidant capacity in juvenile Chinese soft-shelled turtle, Pelodiscus sinensis. Integr. Zool. 2017, 12, 371–378. [Google Scholar] [CrossRef]
- Cheng, C.H.; Ye, C.X.; Guo, Z.X.; Wang, A.L. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress. Fish Shellfish Immunol. 2017, 64, 137–145. [Google Scholar] [CrossRef]
- Costanzo, J.P.; do Amaral, M.C.F.; Rosendale, A.J.; Lee, R.E. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J. Exp. Biol. 2013, 216, 3461–3473. [Google Scholar] [CrossRef]
- Miao, B.B.; Niu, S.F.; Wu, R.X.; Liang, Z.B.; Tang, B.G.; Zhai, Y.; Xu, X.Q. Gene expression profile and co-expression network of pearl gentian grouper under cold stress by integrating Illumina and PacBio sequences. Animals 2021, 11, 1745. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Z.D.; Yang, Y.T.; Wang, J.; Yang, T.H.; Chen, X.; Liang, L.Q.; Mu, W.J. Histology, physiology, and glucose and lipid metabolism of Lateolabrax maculatus under low temperature stress. J. Therm. Biol. 2022, 104, 103161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.L.; Zhao, T.; Feng, J.Y.; Chang, L.M.; Zheng, P.Y.; Fu, S.J.; Li, X.M.; Yue, B.S.; Jiang, J.P.; Zhu, W. Temperature and diet acclimation modify the acute thermal performance of the largest extant amphibian. Animals 2022, 12, 531. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Gui, L.; Liu, M.L.; Li, W.H.; Hu, P.; Duarte, D.F.C.; Niu, H.B.; Chen, L.B. Transcriptomic responses to low temperature stress in the Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2019, 84, 1145–1156. [Google Scholar] [CrossRef]
- Grenot, C.J.; Garcin, L.; Dao, J.; Hérold, J.P.; Fahys, B.; Tséré-Pagès, H. How does the European common lizard, Lacerta vivipara, survive the cold of winter? Comp. Biochem. Physiol. A 2000, 127, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.M.T.; Farrell, A.P. The cardiovascular responses of the red-eared slider (Trachemys scripta) acclimated to either 22 or 5 °C: I. effects of anoxic exposure on in vivo cardiac performance. J. Exp. Biol. 2000, 203, 3765–3774. [Google Scholar] [CrossRef]
- Holden, K.G.; Gangloff, E.J.; Gomez-Mancillas, E.; Hagerty, K.; Bronikowski, A.M. Surviving winter: Physiological regulation of energy balance in a temperate ectotherm entering and exiting brumation. Gen. Comp. Endocrinol. 2021, 307, 113758. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Niu, C.J.; Chen, B.J.; Storey, K.B. Digital gene expression profiling reveals transcriptional responses to acute cold stress in Chinese soft-shelled turtle Pelodiscus sinensis juveniles. Cryobiology 2018, 81, 43–56. [Google Scholar] [CrossRef]
- Ernst, C.H.; Lovich, J.E. Turtles of the United States and Canada, 2nd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2009; p. 827. [Google Scholar]
- Kang, C.Q.; Meng, Q.Y.; Dang, W.; Lu, H.L. Divergent incubation temperature effects on thermal sensitivity of hatchling performance in two different latitudinal populations of an invasive turtle. J. Therm. Biol. 2021, 100, 103079. [Google Scholar] [CrossRef] [PubMed]
- Dodd, K.L.; Murdock, C.; Wibbels, T. Interclutch variation in sex ratios produced at pivotal temperature in the Red-Eared Slider, a turtle with temperature-dependent sex determination. J. Herpetol. 2006, 40, 544–549. [Google Scholar] [CrossRef]
- Saunders, D.K.; Patel, K.H. Comparison of blood viscosity in red-eared sliders (Trachemys scripta) adapted to cold and room temperature. J. Exp. Zool. 1998, 281, 157–163. [Google Scholar] [CrossRef]
- Logan, C.A.; Buckley, B.A. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. J. Exp. Biol. 2015, 218, 1915–1924. [Google Scholar] [CrossRef]
- Li, R.X.; Amenyogbe, E.; Lu, Y.; Jin, J.H.; Xie, R.T.; Huang, J.S. Effects of low-temperature stress on intestinal structure, enzyme activities and metabolomic analysis of juvenile golden pompano (Trachinotus ovatus). Front. Mar. Sci. 2023, 10, 1114120. [Google Scholar] [CrossRef]
- Nie, X.B.; Lei, J.L.; Chen, S.X.; Zhang, Y.T.; Zhang, C.F.; Hong, W.S. Physiological, proteomic, and gene expression analysis of turbot (Scophthalmus maximus) in response to cold acclimation. Aquaculture 2018, 495, 281–287. [Google Scholar] [CrossRef]
- Wentworth, S.A.; Thede, K.; Aravindabose, V.; Monroe, I.; Thompson, A.W.; Molyneaux, N.; Owen, C.L.; Burns, J.R.; Gonzalez-vicente, A.; Garvin, J.L.; et al. Transcriptomic analysis of changes in gene expression of immune proteins of gill tissue in response to low environmental temperature in fathead minnows (Pimephales promelas). Comp. Biochem. Physiol. D 2018, 25, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.D.; You, Q.C.; Chi, C.F.; Luo, S.Y.; Song, H.B.; Lou, B.; Takeuchi, Y. Transcriptional response to low temperature in the yellow drum (Nibea albiflora) and identification of genes related to cold stress. Comp. Biochem. Physiol. D 2018, 28, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.Y.; Mo, D.M.; Li, H.; Wang, W.L.; Lu, H.L. Divergent responses in the gut microbiome and liver metabolome to ammonia stress in three freshwater turtles. Sci. Total Environ. 2023, 859, 160372. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.T.; Jiang, L.W.; Huo, Z.M.; Liu, L.H.; Yang, F.; Yan, X.-W. Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum. Fish Shellfish Immunol. 2016, 55, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.L.; Huang, Y.H.; Chen, Q.; Jiang, Q.C.; Li, Y.M.; Zhao, Y.L. Effects and transcriptional responses in the hepatopancreas of red claw crayfish Cherax quadricarinatus under cold stress. J. Therm. Biol. 2019, 85, 102404. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.W.; Shi, Y.P.; Wang, J.; Niu, Z.Y.; Wei, L.; Tian, H.B.; Yu, F.F.; Gao, L. The intestinal microbiota and metabolic profiles of Strauchbufo raddei underwent adaptive changes during hibernation. Integr. Zool. 2024, 19, 612–630. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Zhao, J.; Wen, H.S.; Li, Y.; Li, J.F.; Li, L.M.; Tao, Y.X. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS ONE 2019, 14, e0217133. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Qiang, J.; Yang, H.; Xu, P.; Zhu, Z.X.; Yang, R.Q. Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress. J. Therm. Biol. 2015, 53, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.L.; Chen, Y.N.; Kuo, C.-M. Physiological responses, desaturase activity, and fatty acid composition in milkfish (Chanos chanos) under cold acclimation. Aquaculture 2003, 220, 903–918. [Google Scholar] [CrossRef]
- Niu, Y.G.; Cao, W.J.; Storey, K.B.; He, J.; Wang, J.Z.; Zhang, T.; Tang, X.L.; Chen, Q. Metabolic characteristics of overwintering by the high-altitude dwelling Xizang plateau frog, Nanorana parkeri. J. Comp. Physiol. B 2020, 190, 433–444. [Google Scholar] [CrossRef]
- Guderley, H. Metabolic responses to low temperature in fish muscle. Biol. Rev. 2004, 79, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Xie, G.X.; Jia, W.P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Poša, M.; Sebenji, A. Chemometric and conformational approach to the analysis of the aggregation capabilities in a set of bile salts of the allo and normal series. J. Pharmaceut. Biomed. 2016, 121, 316–324. [Google Scholar] [CrossRef]
- Samuni, Y.; Goldstein, S.; Dean, O.M.; Berk, M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta 2013, 1830, 4117–4129. [Google Scholar] [CrossRef]
- Yan, J.; Yan, J.Y.; Wang, Y.X.; Ling, Y.N.; Song, X.D.; Wang, S.Y.; Liu, H.Q.; Liu, Q.C.; Zhang, Y.; Yang, P.Z.; et al. Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway. Br. J. Pharmacol. 2019, 176, 3126–3142. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.-B.; Guo, Q.-H.; Yang, J.-M.; Zhang, J.-H.; Lu, H.-L. Hepatic Metabolomic Responses to Low-Temperature Stress in the Invasive Turtle, Trachemys scripta elegans. Animals 2024, 14, 2388. https://doi.org/10.3390/ani14162388
Tang H-B, Guo Q-H, Yang J-M, Zhang J-H, Lu H-L. Hepatic Metabolomic Responses to Low-Temperature Stress in the Invasive Turtle, Trachemys scripta elegans. Animals. 2024; 14(16):2388. https://doi.org/10.3390/ani14162388
Chicago/Turabian StyleTang, Huo-Bin, Qiao-Hong Guo, Jia-Meng Yang, Jin-Hui Zhang, and Hong-Liang Lu. 2024. "Hepatic Metabolomic Responses to Low-Temperature Stress in the Invasive Turtle, Trachemys scripta elegans" Animals 14, no. 16: 2388. https://doi.org/10.3390/ani14162388
APA StyleTang, H. -B., Guo, Q. -H., Yang, J. -M., Zhang, J. -H., & Lu, H. -L. (2024). Hepatic Metabolomic Responses to Low-Temperature Stress in the Invasive Turtle, Trachemys scripta elegans. Animals, 14(16), 2388. https://doi.org/10.3390/ani14162388